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Aamir S. Teeli 1, Paweł Leszczyński 1, Narayanan Krishnaswamy 2, Hidesato Ogawa 3,
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The corpus luteum (CL) is an important tissue of the female reproductive process which

is established through ovulation of the mature follicle. Pulsatile release of prostaglandin

F2α from the uterus leads to the regression of luteal cells and restarts the estrous cycle

in most non-primate species. The rapid functional regression of the CL, which coincides

with decrease of progesterone production, is followed by its structural regression.

Although we now have a better understanding of how the CL is triggered to undergo

programmed cell death, the precise mechanisms governing CL protein degradation

in a very short period of luteolysis remains unknown. In this context, activation of

ubiquitin-proteasome pathway (UPP), unfolded protein response (UPR) and autophagy

are potential subcellular mechanisms involved. The ubiquitin-proteasome pathway (UPP)

maintains tissue homeostasis in the face of both internal and external stressors. The

UPP also controls physiological processes in many gonadal cells. Emerging evidence

suggests that UPP dysfunction is involved in male and female reproductive tract

dysfunction. Autophagy is activated when cells are exposed to different types of stressors

such as hypoxia, starvation, and oxidative stress. While emerging evidence points to an

important role for the UPP and autophagy in the CL, the key underlying transcriptional

mechanisms have not been well-documented. In this review, we propose how CL

regression may be governed by the ubiquitin-proteasome and autophagy pathways. We

will further consider potential transcription factors which may regulate these events in

the CL.

Keywords: ubiquitin-proteasome, autophagy, steroidogenesis, corpus luteum, transcription factors

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2019.00748
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2019.00748&domain=pdf&date_stamp=2019-11-19
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:h.taniguchi@ighz.pl
https://doi.org/10.3389/fendo.2019.00748
https://www.frontiersin.org/articles/10.3389/fendo.2019.00748/full
http://loop.frontiersin.org/people/728443/overview
http://loop.frontiersin.org/people/729288/overview
http://loop.frontiersin.org/people/571413/overview
http://loop.frontiersin.org/people/729490/overview
http://loop.frontiersin.org/people/820447/overview
http://loop.frontiersin.org/people/531531/overview
http://loop.frontiersin.org/people/729279/overview
http://loop.frontiersin.org/people/524911/overview


Teeli et al. UPS and Autophagy in Luteolysis

INTRODUCTION

Corpus luteum (CL) formation, an integral part of the female
reproductive process, is accomplished through ovulation of the
mature follicle. The CL is a transient organ composed of various
cells types. These include endothelial cells, immune cells, and
luteal cells, which differentiate from follicular cells (granulosa
and thecal cells) following ovulation. The CL development is
classified as early, mid, late and regression stages in terms of
its growth rate, neovascularisation, and rate of progesterone
(P4) production. In the absence of pregnancy, luteolysis occurs
with a decrease in P4 synthesis and secretion. Conversely, P4
produced by the CL maintains pregnancy in several species.
To produce P4 in the CL, free cholesterol is transferred to the
inner mitochondrial membrane by carrier proteins including
steroidogenic acute regulatory protein (STAR). This process
involving the P450 cholesterol side-chain cleavage enzyme
(p450scc/CYP11A1) converts cholesterol to pregnenolone, the
C-21 steroid precursor (1). STAR is a protein that governs the
rate-limiting step of gonadal steroidogenesis.

In a non-fertile estrous or menstrual cycle, the CL undergoes
luteolysis. In ruminants, pulsatile release of prostaglandin F2α
(PGF2α) by the uterus leads to regression of luteal cells and
renewal of the estrous cycle. The rapid functional regression
of the CL, which is characterized by decreased P4 production,
is followed by structural regression. During the structural
regression, luteal cells undergo apoptosis (2–5). Failure of this
mechanism is associated with dysfunction of the reproductive
cycle and infertility. While we understand the process by which
the CL undergoes programmed cell death, the mechanisms
governing the degradation of a large quantity of CL proteins over
a very short period of time is yet to be elucidated.

The ubiquitin-proteasome pathway (UPP) plays an important
role in the degradation of unnecessary proteins. During this
process, target proteins are first bound to small ubiquitin
proteins and degraded. The UPP is a regulatory mechanism that
maintains tissue homeostasis in response to various stressors
including oxidative stress. This pathway acts through the
endoplasmic reticulum (ER) (6). The UPP governs physiological
processes in a variety of gonadal cells (7, 8). Emerging
evidence suggests that UPP dysfunction leads to pathology
within reproductive system (9). Additionally, the unfolded
protein response (UPR) signaling pathway, a cellular stress
response associated with the ER, is involved in the development,
maintenance, and regression of the bovine CL (10). Female
mice lacking Beclin1 (Becn1), a regulator of autophagy and
the UPR system, display a preterm labor phenotype associated
with P4 production dysfunction in ovarian granulosa cells
(GCs) (11). Interestingly, GRP78, an ER chaperone protein
essential for UPR, plays an integral role in the initiation of
steroidogenesis through STAR activation at the mitochondrial
membrane (12). Moreover, increased oxidative stress in the
ER reduces testosterone production in Leydig cells (13). As
such, the UPP and UPR are crucial to degrade unnecessary
proteins and maintain cellular homeostasis. Unfortunately, the
molecular mechanisms governing UPR function in the CL
remain poorly understood.

Similar to the UPP system, autophagy degrades unnecessary
proteins through the autophagosome. This process is involved
in the metabolism of cellular components associated with
the UPP under normal and pathologic conditions. The UPP
and autophagy systems are closely related mechanisms that
remove unnecessary cellar components. They act cooperatively
to maintain cellular homeostasis (14). ER stress is an important
trigger of the UPP and autophagy. Recent studies have
demonstrated that ER stress and autophagy play important
roles in structural regression of CL (15, 16). Together, these
results suggest that ER stress-mediated autophagy may play an
important role in luteolysis.

In view of these findings, we hypothesize that the UPP and
autophagy may play important roles in the functional regulation
of the CL and luteolysis. In this review, we will explore the
molecular mechanisms governing luteal function and regression
as well as its interplay with the proteasome-autophagy system.

FUNCTIONAL LUTEAL REGRESSION AND
TRANSCRIPTION FACTORS
CONTROLLING CL FUNCTION

Progesterone, the major hormone of CL is elaborated by small
and large luteal cells, that are derived from the follicular theca
interna and granulosa cells, respectively. The non-steroidogenic
component of CL comprises of endothelial cells, pericytes,
fibroblasts and immune cells. Small luteal cells are stimulated
by luteinizing hormone (LH) which is secreted by the pituitary
gland. P4 secreted by large luteal cells represents the basal P4
level. The P4 level derived from small luteal cells is known
as LH-induced P4. The LH receptor is a G protein-coupled
receptor with seven membrane spanning domains (17). Once
LH binds to its receptor, the second messenger cyclic AMP is
released and protein kinase A (PKA) is subsequently activated.
PKA phosphorylates various proteins and in turn modulates
their function (18). Thereafter, transcription factors induce the
expression of steroidogenic enzymes including STAR, Cyp11a,
and 3β-hydroxysteroid dehydrogenase (3β-HSD). STAR plays a
role in transporting cholesterol to the mitochondria. P450scc
converts cholesterol into pregnenolone in the mitochondria.
Pregnenolone is finally converted to P4 by 3β-HSD in the luteal
cells [(19), Figure 1].

The regulation of steroidogenesis in the CL involves the
temporal expression of genes coding for a variety of steroidogenic
enzymes. As the rapid upregulation of steroidogenic enzyme gene
expression is required, it is likely that the acute regulation of
steroidogenesis in the CL is regulated by transcription factors
(Figure 1) and change in the expression and activity of these
transcription factors trigger functional CL regression. In this
regard, NR5A1 (Nuclear Receptor Subfamily 5 Group AMember
1, also known also as adrenal 4 binding protein/steroidogenic
factor 1: Ad4BP/SF-1), a regulator of multiple P450 hydroxylases
and other components of the steroidogenic program, was first
isolated from the adrenal gland (20, 21). Since then, several
researchers have identified other transcription factors that
regulate the promoter activity of Star, CYP11A1, HSD3B2, and
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FIGURE 1 | Mechanism of progesterone synthesis and its molecular regulation by GATA and NR5A transcription factors in steroidogenic cells. STAR plays a role in

transporting cholesterol to the mitochondria. p450scc converts cholesterol into pregnenolone in the mitochondria. Pregnenolone is finally converted to progesterone

by 3β-HSD in steroidogenic cells. STAR and Cyp11a promoters contain evolutionally conserved GATA and NR5A/4A binding sites. GATA, NR4A1, and NR5A

transcription factors control the expression of steroidogenic enzymes including STAR, p450scc/Cyp11a. NR5A1, Nuclear Receptor Subfamily 5 Group A Member 1;

NR5A2, Nuclear Receptor Subfamily 5 Group A Member 2; NR4A1, Nuclear Receptor Subfamily 4 Group A Member 1; p450scc, cytochrome p450 side-chain

cleavage enzyme; STAR, Steroidogenic Acute Regulatory Protein; 3β-HSD, 3β-hydroxysteroid dehydrogenase.

CYP17 [reviewed in (22)]. NR5A1 is abundant in the CL during
the midluteal phase and binds to the Star promoter in vivo (23).
Moreover, NR5A1 regulates Star and Cyp11a gene expressions
in luteal cells and the CL of many species (23–26). A luteal cell-
specificNr5a1 knockout (KO) has not been reported. The ovaries
of a newborn mice lacking Nr5a1 in GCs are comparable with
wild type; however, Nr5a1-deficient adult females lack CL and
suffer from sterility (27).

NR5A2 (also known as Fetoprotein transcription factor: FTF,
liver receptor homolog 1: LRH-1), another NR5A familymember,

is also present in the ovary (28). Interestingly, NR5A2 recognizes
the same consensus binding sequence as NR5A1 and may
regulate similar steroidogenic enzyme target genes. NR5A2 is
the most prominent NR5A factor in the CL (29). Similar to
NR5A1, NR5A2 is a potent regulator of steroidogenic gene
expression in the CL (23, 29). Luteal specific KO of Nr5a2 is
linked with luteal insufficiency, which suggests that this factor
plays a crucial role in luteal formation and function (30).
Additionally, Nr5a1 and Nr5a2 KO mice individually exhibit
luteal disruption with downregulated steroidogenic enzyme gene
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expression (functional luteal disruption) and severe structural
damage (27, 29, 31). Both these factors, therefore, play prominent
roles in luteal function, development, and regression.

While the role of NR4A1 (Nuclear Receptor Subfamily 4
Group A Member 1) in steroidogenesis in the CL is yet to
be elucidated, its expression is upregulated by cAMP, a second
messenger of several pituitary hormones including LH. NR4A1
is present in the theca cells, GCs, and luteal cells in the human
ovary (32, 33). Moreover, NR4A1 is known to regulate StAR gene
expression activity in mouse Leydig cells (34, 35). On the other
hand, NR4A1 levels are upregulated by PGF2α in pseudopregnant
rats (36). Further studies are needed to elucidate the control of
NR4A1 levels and its role in luteal steroidogenesis.

The gonads also express several GATA factors that are known

to regulate steroidogenic gene expression [reviewed in (37)]. In
the CL of Gata4 and Gata6 conditional double knockdown mice,

a reduction in P4 production is observed along with an acute

inhibition of expression of genes in the steroidogenic pathway

including Star, Hsd3b1, and Cyp11a [(38), Figure 2]. Moreover,
GATA4 and GATA6mRNA and protein were identified in bovine
CL and it is suggested that GATA6 may be involved in the
regulation of STAR expression in this species (23). As GATA4 and
GATA6 are proposed to physically and functionally interact with
NR5A1 and NR5A2 to upregulate steroidogenic enzyme gene
transcription via theHSD3B2 andCyp19a promoter (39), one can
expect that they also play important roles in steroidogenesis in

the CL. While we have good insights into how steroidogenesis
is likely turned on by transcriptional factors in the CL, the
mechanism governing its inhibition during functional luteolysis
remains obscure. NR0B1 inhibits transcriptional cooperation
between GATA4 and NR5A1 in testicular cells, suggesting that
it might possibly mediate the inhibitory effect of PGF2α on P4 in
the CL (40, 41).

STRUCTURAL CL REGRESSION AND
APOPTOSIS

Reduced P4 secretion begins during the late luteal phase and
leads to CL structural regression. This structural regression
occurs through apoptosis which involves nuclear fragmentation
(3, 4) as well as caspase 3 and p53 activation (42–44).
Detailed information of apoptosis-mediated CL regression is
well-reviewed in (45). Our group has identified that apoptosis
in bovine CL is induced by the interaction between cytokines
and Fas/FasL (46). It is well-established that PGF2α triggers
apoptosis during luteolysis. Immune cells and cytokines play
important roles in structural luteolysis as evidenced by increased
T-lymphocyte and macrophage influx during CL regression (47).
In bovine luteal cells, Fas-FasL mediated cell death plays a
crucial role in luteal cell apoptosis. This process is induced
by interferon gamma (IFNγ) and tumor necrosis factor alpha

FIGURE 2 | Schematic representation showing the role of GATA4 in luteogenesis and luteolysis. Gata4 is located in the nucleus and regulates several steroidogenic

enzymes gene expression. Although p62 is thought to be localized in the cytoplasm, recent studies have suggested that p62 physically interacts with nuclear proteins.

Here, we show a hypothetical regulation of GATA4 transcription factor through an interaction with p62 in the luteolytic CL. STAR, Steroidogenic Acute Regulatory

Protein; 3β-HSD, 3β-hydroxysteroid dehydrogenase; CYP11A, Cytochrome P450 Family 11 Subfamily A Member; Ub, Ubiquitin; LC3, Microtubule-associated protein

1A/1B-light chain 3; UBA, Ubiquitin-Associated domain.
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(TNFα) plays a stimulatory role. Treatment of luteal cells
with Fas ligand, in presence of IFNγ and TNFα, leads to
the formation of apoptotic bodies, which supports the notion
that these cytokines are implicated in luteal regression (46).
Moreover, IFNγ and TNFα induce mouse luteal cell apoptosis
(48). Macrophages degrade extracellular matrix (ECM) and
phagocytize degenerated luteal cells leading to the release of
cytokines including TNFα, interleukin-1β (IL-1), and IFNγ (49).
The intraluteal TNFα level increases significantly during both
spontaneous and induced in vivo luteolysis in microdialyzed
CL (50). It is, therefore, likely that TNFα stimulates synthesis
of luteal PGF2α. This modulation of TNFα levels also leads
to increased nitrates/nitrites, and stabilization of nitric oxide
metabolites (51). TNFα acts in concert with IFNγ to induce
luteolysis (46, 52). Hojo et al. (53) have demonstrated that
necroptosis is involved in structural regression of CL due
to receptor-interacting serine/threonine-protein kinase (RIPK)1
and 3 induction following the treatment of the luteal cells with
the inflammatory cytokines IFNγ and TNFα in bovine CL (53).
Increased RIPK1 and 3 protein expression is also found in PGF2α-
induced CL regression, suggesting necroptosis is involved in CL
regression. Administration of PGF2α in livestock with functional
CL induces luteal regression.

Following functional and structural regression of the
CL, proteins in the CL are degraded and removed by
regulatory mechanisms. We describe hereafter the proteasome-
ubiquitin system and the autophagy mechanisms involved
in protein degradation and removal of unnecessary
tissue structures.

PROTEASOME AND CL REGULATION

The UPP plays major roles in the degradation of unnecessary
proteins. The targeted proteins are bound by small ubiquitin
proteins (Figure 3). The role of ubiquitin is tightly regulated
by several enzymes namely ubiquitin-activating enzyme (E1),
ubiquitin-conjugating enzyme (E2), and ubiquitin ligase (E3)
(54). On the other hand, the ubiquitinated proteins are degraded
by a huge protein complex called the 26S proteasome. The 26S
proteasome complex consists of two subclass complexes: the 19S
and 20S particles. It is known that theUPP plays important role in
the reproductive system (7, 8). Emerging evidence also suggests
that dysfunction of the UPS leads to multiple diseases, including
the dysfunction of themale and female reproductive tracts (9, 55).

Surprisingly, the UPP system in the CL is not well-
characterized and only a very limited number of proteasome
genes have been identified in the CL. Nonetheless, the
proteasome plays a central role in the degradation of unnecessary
proteins, which are labeled with ubiquitin proteins. Since the
mammalian CL is renewed after each infertile estrous/menstrual
cycle, understanding how its proteins are degraded is an
important question that remains unanswered. The proteasome
inhibitors MG115 and MG132 reduced both mRNA and protein
expression of StAR in the rat adrenal cortex (56). On the other
hand, the stability of breast cancer susceptibility gene 1 (BRCA1)
and its partner BRCA1-associated RING domain protein 1
(BARD1) is regulated by proteasome degradation in human
ovarian GCs (57). This regulatory process is also associated with
both cAMP-dependent and cAMP-independent steroidogenic

FIGURE 3 | Schematic representation showing UPP and autophagy mediated proteolysis. A transcription factor, Nrf1 is liberated from the ER after stress and

translocates to the nucleus, where it induces the expression of proteasome subunit genes through the ARE (antioxidant response element) by hetero-dimerizing with a

small Maf (sMaf) protein. Selective autophagy is known to exert proteolysis through the recognition of unnecessary target protein via p62-LC3-autophagosome. Nrf1,

NF-E2-related factor 1; sMAF, small musculoaponeurotic fibrosarcoma proteins; ARE, antioxidant response element; Ub, Ubiquitin; LC3, Microtubule-associated

protein 1A/1B-light chain 3; UBA, Ubiquitin-Associated domain.
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processes. Forskolin-induced Cyp19a expression is blocked by
MG132 treatment, which suggests that proteasome inhibition
downregulates steroidogenesis. It appears that the proteasome-
ubiquitin system plays an important role in steroidogenic gene
expression and therefore further functional studies about the
roles of UPP in luteal steroidogenesis are required. At the
molecular level, NF-E2-related factor 1 (NRF1), a transcription
factor involved in the stress response, has garnered significant
attention due to its implication in protein clearance via the UPP
(Figure 3). NRF1 is a member of the cap “n” collar (CNC)-
bZip transcription factor family and is localized at the ER until
an external stressor is present. Upon activation by an external
stressor, NRF1 is liberated from the ER and translocates to
the nucleus, where it stimulates the expression of proteasome
subunit genes via the antioxidant response element (ARE)
by hetero-dimerizing with a sMAF (small musculoaponeurotic
fibrosarcoma) proteins and to maintain protein homeostasis
[(58, 59); Figure 3]. Proteasome and deubiquitination enzyme
gene expressions are regulated by NRF1 (60, 61). A recent study
has demonstrated that deletion of Nrf1 causes downregulation of
several proteasome genes with the accumulation of ubiquitinated
proteins and p62/SQSTM1, an autophagy marker (61). Much like
ubiquitination, deubiquitination also contributes to proteostasis
by regulating cellular levels of free monomeric ubiquitin.
However, while Proteasome subunit beta type (PSMB) 8 and 9
gene expression, has been identified in the bovine CL (62), the
roles of the UPP and its regulation byNRF1 require further study.

UPR AND CL REGRESSION

Another pathway that has been implicated in CL regression
is ER stress pathway (10, 15, 63). The ER stress is a cellular
phenomenon induced by diverse stimuli disturbing the protein
folding in the ER (64, 65). In response to ER stress, UPR pathway
is activated to restore the ER homeostasis. The UPR pathway
involves the actions of three signaling proteins: protein kinase
RNA-like ER kinase (PERK), inositol-requiring enzyme-1/X-
box-binding protein (IRE1/XBP-1), and activating transcription
factor 6 (ATF6) (66, 67). The PERK and ATF6 are normally
in inactive form due to their association with BiP (Binding
immunoglobulin Protein; also known as Glucose-regulated
protein-Grp78), an ER resident chaperone (Figure 4). The main
role of the CL is to secrete P4, which is essential for maintaining
pregnancy. While the steroidogenic process diverges into several
separate pathways which lead to the synthesis of different steroid
products, StAR is significantly involved in this process and
regulates the rate-limiting step in P4 production in the CL.
Reduced expression of GRP78, a ER chaperone protein critical
for UPR, cause inhibition of StAR protein expression and activity
in steroidogenic cells (12). Moreover, female mice lacking Becn1,
a regulator of autophagy and the UPR system, have a defect in
P4 production in the ovarian GCs and display a preterm labor
phenotype (11). These results suggest that the UPR system may
regulate P4 production through various mechanisms. On the
other hand, Skn1, an ortholog of Nrf1-3 in C. elegans, regulates
UPR signaling and transcription factor genes. SKN-1 contributes

FIGURE 4 | Molecular mechanism of UPR. ER Stress-activated three

pathways (IRE, PERK, and ATF6) control the activity of XBP1s, ATF4, ATF6

transcription factors and regulate UPR related gene expressions, which

triggers autophagy. On the other hand, Beclin1 forms a complex with PI3KIII

and p150, and this also triggers autophagy mechanism. In Caenorhabditis

elegans, SKN-1, the ortholog of human Nrf1-3, has been reported to regulate

ATF6 and XBP1 expressions at the promoter level. ER, endoplasmic reticulum;

GRP78, Glucose-regulated protein; PERK, PKR-like eukaryotic initiation factor

2α (eIF2α) kinase; IRE1, inositol-requiring transmembrane

kinase/endoribonuclease 1; ATF6, activating transcription factor-6; XBP1,

X-box-binding protein 1; XBP1s, spliced XBP1 protein; S1P and S2P, site-1

and site-2 proteases; PI3KIII, Class III PI 3-kinase; Skn1, Protein skinhead-1.

to the expression of core UPR factors, pek-1 and atf-6 (68).
Loss of Skn1 inhibits upregulation of Xbp1 gene expression by
ER-stress. Chromatin immunoprecipitation studies indicate that
endogenous SKN-1 accumulates at the xbp-1 site of transcription
in the presence of ER stress (Figure 4). In the steroidogenic
cells, intracellular cholesterol is stored in an esterified form.
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In response to trophic hormone signals coming from the
pituitary (e.g., LH, ACTH), cholesterol esterase hydrolyzes
cholesterol ester into free cholesterol in target steroidogenic
cells. In luteal cells, cholesterol is converted into different
types of steroids including P4 by several steroidogenic enzymes.
The gene expression of these enzymes is tightly regulated by
several transcription factors. Interestingly, a recent study has
revealed that Nrf1 controls cholesterol homeostasis by binding to
cholesterol (69). Thus, it is important to determine whether Nrf1
controls steroidogenesis via UPP and UPRmodulation in the CL.

As an ER transmembrane protein, IRE1 is essential for UPR
and is only activated through binding to unfolded proteins
(70). Under the conditions of severe and chronic ER stress,
the UPR pathway is not able to cope and cellular dysfunction
or death ensues through the activation of both the extrinsic
and intrinsic apoptosis pathways (71). Apoptosis is initiated
by PERK/eIF2α mediated induction of proapoptotic TF CHOP
(Transcriptional factor C/EBP homologous protein), and IRE1
dependent activation of TRAF2 (TNF receptor-associated factor
2). This process stimulates the c-Jun NH2-terminal kinase (JNK)
pathway (64, 72). The role of ER stress-mediated apoptosis is
well-established inmany reproductive events, including follicular
atresia (73) and CL regression (10, 15, 63). Yang et al. (15)
demonstrated that ER stress markers like Grp78, CHOP, ATF6α
and caspase 12 are significantly expressed at the mRNA and
protein levels in the late luteal stage during spontaneous and
PGF2α induced luteolysis (15). These findings were further
supported by decreased expression of ER stress markers and
apoptosis in luteal cells treated with tauroursodeoxycholic acid,
which functions as a chemical chaperone and reduces ER stress
(15, 63). Thus, it is plausible that ER stress-mediated UPR
controls both functional and structural luteal regression although
further studies are needed to elucidate its molecular mechanism.

AUTOPHAGY AND CL REGRESSION

Redundant cellular components are recognized and transferred
to the lysosome by a mechanism known as autophagy. In
autophagy, mitophagy selectively degrades mitochondria and
pexophagy selectively degrade peroxisomes. Selective autophagy
also plays major roles in the degradation of cellular components
such as aggregated proteins (74, 75). To recognize target
components and properly bring them to the lysosome, an
adapter protein involved in autophagy requires at least two
domains. One region binds to the target protein and the
other domain is necessary for transporting the target to an
autophagy mechanism. Autophagy receptor p62 (also known
as sequestosome-1) is an adaptor protein which mediates the
interaction between selected proteins and autophagosomes.
The receptor p62 possesses a LC3-Interacting Region (LIR)
motif that interacts with LC3. This interaction allows the
receptor p62 to bind to the autophagosomal membrane
(Figure 3). p62 co-aggregates with the target at the phagophore
due to its homopolymerisation property mediated by its
PB1(Phox/Bem1p) domain. Interaction of p62 with Atg8/LC3
on the autophagosomal membrane is extremely important for

transport. An increase in the expression of LC3-II relative to
the expression of LC3-I occurs during autophagy. Although
studies on autophagy in the mammalian CL are limited, the
link between autophagy and apoptosis is well-established (76,
77). In fact, expression of various autophagy related factors
is increased in the late luteal and regression stages of the
CL. Increased expression of beclin protein during the late
luteal stage in the sow suggests a role in the removal of
unwanted proteins during luteolysis (78). LC3-II, an autophagy
marker is expressed more in the late than middle stage CL
in cattle (42). Similar results were obtained in rat CL as
well (16). These findings suggest that autophagy is highly
involved in luteal regression in several species. Lipid droplets
are unique organelles in the luteal cells enriched with cholesterol
esters, that serve as precursor for steroidogenesis. Inhibition
of autophagy in luteal cells via deletion of Becn1 causes
failure of lipid droplet formation, and leads to reduced P4
secretion, demonstrating the critical role of Becn1/ autophagy in
luteal steroidogenesis (11). Therefore, the relationship between
steroid synthesis and autophagy in the CL should be studied.
The p62 receptor exerts its physiological functions including
signal transduction regulation, intracellular protein localization
(trafficking), and selective autophagy of ubiquitinated proteins
through its interaction with various proteins (79). The p62
receptor binds to ubiquitin containing aberrantly aggregated
proteins. Since p62 has a ubiquitin associated (UBA) domain
and binds to ubiquitinated proteins, p62 plays an important
role in selective autophagy. Presently, LC3 and p62 are widely
used as autophagy markers. Interestingly, recent studies have
revealed that the p62 receptor, a primarily cytoplasmic protein,
plays an important role in the nucleus by interacting with several
nuclear factors (described below, Table 1) that are expressed in
the CL (23, 36, 38).

POSSIBLE TRANSCRIPTIONAL
REGULATION OF AUTOPHAGY THROUGH
THE AUTOPHAGY RECEPTOR
P62/SQSTM1 IN THE CL

The nuclear transcription factor GATA4 binds to p62
and is degraded through autophagy [(90), Figure 2]. The
lysosomal autophagic pathway regulates GATA4 during ionizing
radiation-induced and progerin-induced senescence in human
mesenchymal stem cells (hMSCs) and fibroblasts, respectively
(80, 81). In both fibroblast and hMSCs senescent cells, GATA4
accumulates as a consequence of the loss of physical interaction
between p62 and GATA4 (80, 81). While the various functions
of GATA factors in luteal P4 regulation are well-characterized,
their role in autophagy is yet to be elucidated (Figure 2).
Accordingly, SKN-1/Nrf1-3 and ELT-2/GATA transcription
factors may regulate the expression of proteasome subunit
genes as well as oxidative and heat-stress response genes
(91). As NRF family members play prominent roles in the
proteasome-autophagy system (61, 92), the relationship between
GATA factors and NRF family members in the CL merits
further investigation.
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TABLE 1 | p62/SQSTM1 interacting nuclear proteins in the regulation of

autophagy.

Protein Biological Process References

GATA4 GATA family of zinc-finger transcription factors (80, 81)

ARIP4 AR interacting protein 4-a Rad54 family

member and a SNF2 chromatin remodeling

factor

(82)

TP53INP1 Tumor Protein P53 Inducible Nuclear

Protein-Tumor suppressor/Autophagy

(83)

Rad51 RAD51 Recombinase-DNA damage repair (84)

PARP-1 Poly (ADP-ribose) polymerase 1-DNA repair (85)

LC3 Microtubule-associated protein 1A/1B-light

chain 3-Autophagy

(86)

AR Androgen receptor (87)

PPARα Peroxisome proliferator-activated receptor

alpha

(88)

NR4A1/Nur77 Nerve growth factor IB(NGFIB)/Nur77

/NR4A1-Transcriptional Factor

(89)

Androgen receptor-interacting protein 4 (ARIP4) interacts
with sumoylated nuclear receptors such as NR5A1, NR5A2,
NR3C1 (GR: glucocorticoid receptor) andNR3C4 (AR: androgen
receptor) (93). Multiple studies have shown that steroidogenic
genes are regulated by NR5A1. This occurs through direct
interaction with transcription factors such as GATA4 (39, 94).
The UBA domain of p62 interacts with a novel domain in
ARIP4, named SQSTM1/p62 interaction Domain (SID). This
domain possesses binding properties similar to ubiquitin. The
p62 receptor negatively regulates ARIP4 levels under starvation
induced autophagy. This indicates that the interaction between
ARIP4 and p62 is involved in the regulation of ARIP4
protein levels during autophagy (82). Considering the dual role
of ARIP4 in steroidogenic gene regulation via NR5A1 and
autophagy via p62, it will be interesting to further investigate its
role during active steroidogenesis and autophagy-mediated CL
regression (95, 96).

NR4A, a member of the nuclear receptor superfamily,
plays an important role in a variety of cellular processes
(97). NR4A1 functions as a nuclear transcriptional factor and
activates steroidogenic gene expression in gonadal cells (32, 98).
Hu et al. (89) first showed that NR4A1 physically interacts
with p62 and accumulates in the mitochondria when mouse
embryonic fibroblasts (MEFs) are treated with TNFα and
celastrol (89). This suggests that TNFα-mediated apoptosis in
the CL may be controlled by NR4A1-dependent regulation
of mitochondrial autophagy. Further studies are needed to
investigate autophagic regulation of nuclear receptors by p62 in
the CL.

TP53 INP1 (tumor protein 53-inducible nuclear protein 1) is a
tumor suppressor whose expression is reduced in various cancers.
TP53 INP1-LC3 binding occurs via its functional LC3 interaction
region (LIR). When TP53 INP1 is highly expressed, TP53 INP1-
LC3 interaction is stronger than the p62-LC3 interaction. This
inhibits the binding of LC3 to p62 and in turn enhances p62-
mediated protein degradation (83). TP53 INP1 also induces
autophagy-dependent cell death (83). Since P53 protein is an

apoptotic factor in the CL (43), functional analysis of TP53 INP1
in the CL is needed.

PARP-1 [Poly (ADP-ribose) polymerase 1], a key factor in
DNA repair, is a partner protein of p62 (85). PARP-1 also binds to
LC3 and phosphorylated Unc-51 like autophagy activating kinase
1(ULK1), which are both key factors in autophagy. Rad51 plays a
central role in DNA double strand break (DSB) repair through
homologous recombination (HR) and also interacts with p62
(84). As autophagy occurs primarily in the cytoplasm, elucidating
the role of crosstalk between nuclear localized proteins and
autophagy signaling is crucial.

It is worth noting that p62 regulates the binding between
Nrf2 and Keap1 (Kelch ECH associating protein 1) although
they interact in the nucleus (99). The Nrf2-Keap1 interaction
is known to be one of the cellular mechanisms to protect the
cells from oxidative stresses. To regulate this mechanism, Nrf2
transcription factor is continuously degraded when its partner
protein Keap1 binds. In canonical pathway, the binding of
Keap1 controls Nrf2 transcriptional activity (100). However,
in non-canonical pathway, p62 binds to Keap1, and this
interaction induces a selective autophagy pathway and prevent
the interaction between Keap1 and Nrf2 (99). Consequently,
Nrf2 transcriptional activity is enhanced and this acts as stress
sensor mechanism. To our surprise, many factors identified as
nuclear partners of p62 are transcription factors involved in gene
regulation of steroidogenic enzymes. Thus, in the near future, the
relationship between luteal functional regulation and autophagy-
controlled luteal regression will be clarified and we will have
better understanding of how luteal function (P4 production) and
regression (apoptosis/autophagy) are orchestrated.

CONCLUSION

Understanding the intracellular homeostatic mechanisms during
the maintenance and lysis of CL will pave way for addressing
infertility due to luteal dysfunction. Previous research has
suggested that dysfunction of the ubiquitin-proteasome and
autophagy systems leads to many disorders, including diseases of
the male and female reproductive system. However, its molecular
basis is not well-studied. We hope that transcriptional regulation
of proteasome and autophagy systems during luteolysis will be
unraveled in the near future. Elucidation of the transcription
factor-proteasome/autophagy axis also could enable efficient
recovery from stress situations which will lead to a significant
advancement in the field of animal reproduction.
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