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Abstract
Preeclampsia is a hypertensive disorder of pregnancy. Many studies have shown that epigenetic mechanisms may play a role in 
preeclampsia. Moreover, our previous study indicated that the differentially methylated genes in preeclampsia were enriched 
in the Wnt/β-catenin signaling pathway. This study aimed to identify differentially methylated Wnt/β-catenin signaling path-
way genes in the preeclamptic placenta and to study the roles of these genes in trophoblast cells in vitro. Using an Illumina 
Infinium HumanMethylation 850 K BeadChip, we found that the Wnt signaling pathway was globally hypermethylated in 
the preeclamptic group compared with the term birth group, but hypomethylated in the preeclamptic group compared with 
the preterm birth group. Among all Wnt/β-catenin signaling pathway factors, WNT3 was the most significantly differentially 
expressed gene and was hypomethylated in the preeclamptic group compared to the nonhypertensive groups, namely, the 
preterm birth group and term birth group. This result was confirmed by pyrosequencing. Through quantitative real-time PCR 
and western blot analysis, the WNT3 gene was found to be highly expressed in preeclamptic placental tissues, in contrast to 
other WNT factors, which were previously reported to be expressed at low levels in placental tissues. Additionally, in the 
HTR8/SVneo cell line, knockdown of WNT3 suppressed the Wnt/β-catenin signaling pathway, consistent with the findings 
for other WNT factors. These results prompted us to speculate that the WNT3 gene counteracts the low activation state of 
the Wnt signaling pathway in the preeclamptic placenta through methylation modification.
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Abbreviations
APC  Adenomatous polyposis coli
CK1  Casein kinase 1
Dvl  Disheveled
DMS  Differential methylated site
EVT  Extravillous trophoblasts
GSK3β  Glycogen synthase kinase 3β
IHC  Immunohistochemistry
LRP  Lipoprotein receptor-related protein
PB  Preterm birth
PCP  Planar cell polarity
PE  Preeclampsia
TB  Term birth
TCF/LEF  T-cell factor/lymphocyte enhancer factor
TSS  Transcription started site
VT  Villous trophoblasts
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Introduction

Preeclampsia (PE) is a common gestational complica-
tion that is characterized by hypertension, proteinuria, 
and other systemic disorders, and affects approximately 
2–8% of pregnant women worldwide. It is the second 
leading cause of maternal death and can lead to serious 
maternal complications, including stroke, eclampsia, pla-
cental abruption, disseminated intravascular coagulation, 
and organ failure [1]. PE is also associated with adverse 
perinatal risks such as intrauterine growth restriction, low 
birth weight, and stillbirth [2]. Although many mecha-
nisms of PE have been proposed, the etiology and patho-
genesis of PE remain unclear. It is generally believed that 
insufficient trophoblast invasion leading to placental dys-
plasia plays a significant role in the development of PE 
[3]. Normal placental development is crucial during preg-
nancy, and multiple signaling pathways, including the Wnt 
signaling pathway, have been reported to be involved in 
regulating the proliferation, differentiation, and apoptosis 
of trophoblasts [4, 5]. Many recent studies have shown that 
epigenetic mechanisms may play a role in PE. Addition-
ally, our previous study confirmed that the methylation 
levels in preeclamptic placental tissues were altered com-
pared to those in control tissues and that the differentially 
methylated genes were significantly enriched in the Wnt 
signaling pathway [6].

The Wnt signaling pathway is an essential pathway in 
the regulation of cell proliferation, migration, and death 
in humans, and numerous studies have shown that the Wnt 
signaling pathway is involved in the development of many 
diseases and conditions, such as birth defects, cancers, 
and PE [7–9]. There are three Wnt signaling pathways: 
the canonical Wnt/β-catenin pathway, the noncanoni-
cal Wnt/Ca2+ pathway, and the Wnt/planar cell polarity 
(PCP) pathway [10]. Abnormal activation of the canoni-
cal Wnt/β-catenin pathway plays an important role in 
the pathogenesis of various human diseases [11]. The 
Wnt/β-catenin signaling pathway comprises 19 ligands, 
10 membrane receptors, and many transcription factors 
and inhibitors [12], each of which mediates a different 
cellular function. β-Catenin is an important link in the 
Wnt/β-catenin signaling pathway. In the absence of Wnt 
signaling, cytoplasmic β-catenin is phosphorylated by 
active (non-phosphorylated) glycogen synthase kinase 3β 
(GSK3β) and is then degraded through the ubiquitin–pro-
teasome pathway [13]. In the presence of Wnt ligands, 
the receptors Frizzled and lipoprotein receptor-related 
protein 5/6 (LRP5/6) recruit Disheveled (Dvl) and Axin 
proteins in the cytoplasm, and GSK3β is phosphorylated. 
Then, active (non-phosphorylated) β-catenin accumulates 
in the cytoplasm and enters the nucleus to interact with 
members of the T-cell factor/lymphocyte enhancer factor 
(TCF/LEF) family of transcription factors and regulate the 
expression of downstream target genes [14–16] (Fig. 1).

Fig. 1  The canonical Wnt/β-catenin pathway. A Without Wnt ligand, 
β-catenin in the cytoplasm is phosphorylated and then degraded by 
ubiquitination. B With Wnt ligand, phosphorylated GSK3β and 
β-catenin increase in the cytoplasm, and the latter enters the nucleus 

to regulate gene expression. LRP lipoprotein receptor-related protein, 
Dvl disheveled, APC adenomatous polyposis coli, GSK3β glycogen 
synthase kinase 3β, CK1 casein kinase 1, TCT/LEF T-cell factor/lym-
phocyte enhancer binding factor
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Many factors have been reported to be abnormally 
expressed in preeclamptic placental tissues, and their expres-
sion levels can be regulated by DNA methylation. The 
expression of WNT1, WNT2, WNT2b, WNT5a, and β-catenin 
was shown to be decreased in preeclamptic placental tissues, 
while the expression of inhibitors such as DKK1, WIF1, and 
SFRP4 was increased [17–20]. Moreover, in our previous 
study, we found that WNT2 was hypermethylated and down-
regulated and that DKK1 was hypomethylated and overex-
pressed in early onset PE [17]. Analysis of the differentially 
methylated genes in the Wnt/β-catenin pathway will improve 
our understanding of the pathogenesis of PE and provide 
valuable information for researchers and clinicians.

The purpose of this study was to analyze the methylation 
levels of Wnt/β-catenin signaling pathway genes, to verify 
the differentially methylated genes and their expression lev-
els in placentas, and to study the roles of these genes in 
trophoblast cells in vitro, thus possibly revealing the involve-
ment of candidate genes in the pathogenesis of PE.

Materials and methods

Study subjects

Subjects were recruited from the Third Affiliated Hospital 
of Zhengzhou University from August 2017 to February 
2019 and were divided into three groups: early onset PE 
(PE, n = 30), preterm birth (PB, n = 30), and term birth (TB, 
n = 30). Early onset PE was diagnosed according to the crite-
ria of the American Congress of Obstetricians and Gynecol-
ogists [21]. Women who delivered at or after 37 weeks of 
gestation without complications during pregnancy were 
recruited as the TB group. Women with spontaneous pre-
term delivery between 28 weeks + 0 days and 36 weeks + 6 
days of gestation were defined as the PB group. The etiolo-
gies included premature membrane rupture, oligohydram-
nios, and cervical incompetence. Pregnant women with 
chronic hypertension, diabetes mellitus, renal disease, fetal 
malformations, or multiple pregnancies were excluded from 
the study. All participants signed informed consent forms. 
The study was approved by the Human Ethics Committee 
of the Third Affiliated Hospital of Zhengzhou University. 
The procedures used in this study adhere to the tenets of the 
Declaration of Helsinki.

Sample collection

Placental tissues (5 × 5 × 5 mm) were obtained within 15 min 
after delivery, avoiding necrotic, infarcted, and calcified 
areas. Then, the tissues were washed with cold PBS to 
remove maternal and fetal blood. The placental tissues used 
for RNA extraction were stored in an RNA bank (CWBIO, 

China). Placental tissues were snap frozen in liquid nitrogen 
for 10 min and were then stored at − 80 °C until use.

Genomic DNA methylation profiling

Genomic DNA was extracted with a DNeasy Blood & Tis-
sue Kit (Qiagen, Germany). The concentration and purity 
of the DNA were determined with a NanoDrop 2000 spec-
trophotometer (Thermo Fisher Scientific). A260/A280 is 
between 1.8 and 2.0, and A260/A230 is greater than 2.0. 
Then, DNA was bisulfide converted with a Qiagen EpiTect 
Bisulfite Kit (Qiagen, Germany). Illumina Infinium Human-
Methylation850 K BeadChip (Illumina Inc, USA) was used 
to assess genome-wide DNA methylation according to the 
manufacturer’s standard protocol. Differential gene expres-
sion was determined using unpaired t test, implemented in 
the R (version 2.14.0) package. CpG sites |∆β|≥ 0.10 (test 
group vs. control group) and P < 0.05 was considered as 
differentially methylated site (DMSs). Gene ontology (GO, 
http:// www. geneo ntolo gy. org) and Kyoto encyclopedia of 
genes and genomes (KEGG, http:// www. kegg. jp/) pathway 
enrichment analysis are used to clarify the function and bio-
logical pathways of differentially expressed methylation sites 
from our data.

Pyrosequencing

Genomic DNA was extracted with a DNeasy Blood & Tissue 
Kit (Qiagen, Germany). DNA was bisulfide converted with 
a Qiagen EpiTect Bisulfite Kit (Qiagen, Germany). Prim-
ers were designed with PyroMark Assay Design 2.0 and 
run in a Qiagen PyroMark Q96 MD (Qiagen). According 
to our previous study on the methylation levels of PE using 
an Illumina Infinium HumanMethylation850K BeadChip, 
the identified differential sequences of WNT3 were verified 
by pyrosequencing. The sequences contained 4 CpG sites: 
ACGGCGGGCGTTTTA CGAGG TGA GGG TTA TGG TTG 
AAG GAA . The sequences of the WNT3 primers were as fol-
lows: forward primer, TTG TGT AGG GAA TTG TGG TAG; 
reverse primer, ACC AAA AAT ATC TAA CCC CCT AAC; 
sequencing primer, AGT TTT ATA GAG GTT TGG A. The 
reverse primer was labeled with biotin at the 5’ end.

RNA extraction and quantitative real‑time PCR

RNA was extracted from 90 placental tissues and cells with 
TRIzol Reagent (CWBIO, China). The concentration and 
purity of the RNA were determined with a NanoDrop 2000 
spectrophotometer (Thermo Fisher Scientific), and ethidium 
bromide staining of nucleic acids before agarose gel elec-
trophoresis was used to evaluate the RNA integrity. Less 
than 1 μg of mRNA was reverse transcribed into cDNA with 
ReverTra Ace® qPCR RT Master Mix (TOYOBO, Japan). 

http://www.geneontology.org
http://www.kegg.jp/
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The sequences of the WNT3 primers were as follows: for-
ward primer, TTC GGC GTG TTA GTG TCC AG; reverse 
primer, AGG CGC TGT CAT ACT TGT CC. The sequences of 
the GAPDH primers were as follows: forward primer, AGA 
ACG GGA AGC TTG TCA TC; reverse primer, CAT CGC CCC 
ACT TGA TTT TG. The relative mRNA expression levels of 
the genes were evaluated using the  2−ΔΔCt method.

Immunohistochemistry (IHC)

Immunohistochemical staining was used to evaluate the 
location and expression of WNT3 proteins in placental tis-
sues. Placental tissue sections were heated for 2 h at 60 °C, 
deparaffinized by immersion in xylene two times for 10 min 
each, and dehydrated through a series of graded ethanol 
solutions (100, 95, 85 and 75%).

Sections were immersed in the prepared antigen retrieval 
solution and were then sequentially heated to greater than 
90 °C in a microwave oven and then quenched at a low tem-
perature for 20 min. Furthermore, the sections were incu-
bated with an anti-Wnt3 antibody (1:200; ab116222; Abcam) 
at 4 °C overnight. After washing with PBS three times, the 
sections were incubated with a biotin-conjugated second-
ary antibody (1:200; OriGene Technologies, Inc.) for 1 h 
at room temperature. The sections were stained with DAB 
reagent, counterstained with hematoxylin, and finally sealed 
with neutral balsam. The slides were examined by inverted 
fluorescence microscopy (OLYMPUS IX-71, Tokyo, Japan). 
The staining of the sections was independently evaluated by 
two pathologists.

Western blotting analysis

RIPA lysis buffer containing a protease inhibitor (CWBIO, 
China) was used to extract protein from placental tissues and 
cells. The total protein concentration was measured with a 
BCA assay kit (Thermo Fisher Scientific, Inc.). For western 
blot analysis, approximately 40 μg of protein was separated 
on an 8% SDS-PAGE gel and electrophoretically transferred 
to PVDF membranes. The membranes were blocked for 2 h 
at room temperature with blocking buffer (5% nonfat milk, 
0.1% Tween 20). Then, the membranes were incubated at 
4 °C overnight with anti-Wnt3 (1:1000; ab116222; Abcam), 
anti-β-catenin (1:1000; Cell Signaling Technology, Inc.), 
anti-phospho-β-catenin (1:1000; Cell Signaling Technology, 
Inc.), anti-GSK3β (1:1000; Cell Signaling Technology, Inc.), 
anti-phospho-GSK3β (1:1000; Cell Signaling Technology, 
Inc.), and anti-β-actin (1:2000; ab8227; Abcam) antibodies 
separately. The membranes were then incubated with fluo-
rescent secondary antibodies (1:15,000; LI-COR, USA) for 
2 h at room temperature. An infrared laser scanning imaging 
system (Odyssey CIX, LI-COR, USA) was used to deter-
mine the fluorescence intensity.

Cell culture and treatment

HTR8/SVneo and JAR cells, which were provided by Amer-
ican Type Culture Collection (USA), were cultured in high-
glucose DMEM (HyClone; GE Healthcare Life Sciences) 
containing 10% fetal bovine serum (FBS), 100 U/ml ampi-
cillin, and 100 U/ml streptomycin at 37 °C in humidified 
incubators with 5%  CO2. After adherence, the next day, the 
culture medium was changed to fresh medium-containing 
5 μM 5-aza-2'-deoxycytidine (5-aza-dC; A3656, Sigma, 
USA) and was replaced daily thereafter. The control group 
was treated with 0.1‰ DMSO.

Cell transfection

Plasmids were obtained from GeneCopoeia (USA). ShRNA 
oligos were ligated into the pUC Ori-shRNA-CMV expres-
sion vector containing the U6 promoter (GeneCopoeia, 
USA). Transfection was performed according to the manu-
facturer’s protocols (Invitrogen; Thermo Fisher Scientific). 
Cells were divided into three groups: The control group 
(untreated), shRNA-WNT3 group (transfected with WNT3-
shRNA), and sh-negative control group (transfected with 
an unrelated sequence). Transfection was performed at a 
cell confluence of approximately 60% (approximately 14 h 
after seeding), and 5 µl of shRNAs were transfected into 
cells using 5 µl of Lipofectamine 3000 reagent (Invitrogen; 
Thermo Fisher Scientific). The transfection efficiency was 
assessed 48 h after transfection.

Cell proliferation assay

Cells were inoculated into 96-well plates (1000–5000 
cells/well), and a Cell Counting Kit-8 (CCK-8; Dojindo 
Molecular Technologies, Inc.) assay was used to determine 
cell viability. The inoculated cells were placed in a 37 °C 
incubator for 2–4 h to allow adherence to the plate walls. 
Subsequently, 10 µl of CCK-8 solution was added to each 
well and incubated at 37 °C for 1 h. Absorption values were 
obtained using a microplate reader (Bio-Rad Laboratories, 
Inc.) at 450 nm.

Statistical analysis

SPSS (Version 25.0, IBM, New York, USA) and Graph-
Pad Prism (Version 8.4.2, Inc, San Diego, CA, USA) were 
used for statistical analysis. The quantitative data were 
expressed as the mean ± standard deviation values. One-
way ANOVA or the Kruskal–Wallis test was performed to 
compare data among the three groups, and Student’s t test 
or the Mann–Whitney test was performed to compare data 
between two groups. Welch’s ANOVA and Welch's t tests 
were used for correction when variance was inconsistent. 
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Pearson correlation analysis was performed to analyze the 
relationship of two continuous variables. R2 represents the 
contribution of an independent variable to the regression 
relationship, and r is defined as the correlation coefficient. 
The immunohistochemical staining intensity of the WNT3 
protein was determined using the Chi-square test. The 
Kruskal–Wallis test with the Bonferroni correction was used 
to analyze differences among multiple groups. *P < 0.05, 
**P < 0.01. ***P < 0.001, ****P < 0.0001.

Results

Clinical characteristics of the study subjects

The clinical characteristics of the recruited women were 
shown in Table 1. The mean gestational age at delivery in 
the PE and PB groups was significantly lower than that in the 
TB group (P < 0.01), but did not differ significantly between 
the PE and PB groups. The systolic and diastolic blood pres-
sures in the PE group were significantly higher than those in 
the PB and TB groups (P < 0.01). The neonatal birth weight 
in the PE group was significantly lower than that in the PB 
group, and proteinuria was significantly more severe in the 
PE group than in the other two groups (P < 0.01). The mater-
nal age and fetal sex did not differ significantly among the 
three groups.

DNA methylation levels in the Wnt signaling 
pathway are altered in PE

The distribution of probe sites in all ligands in the Wnt/
β-catenin signaling pathway with the Illumina Infinium 
HumanMethylation 850 K BeadChip was shown in supple-
mental Fig. 1. Then, we mapped the methylation levels at 
detected sites in all ligands in the Wnt/β-catenin signaling 
pathway (Fig. 2). The Wnt/β-catenin signaling pathway was 
globally hypomethylated in the PE group compared to the 

PB group but hypermethylated in the PE group compared 
with the TB group.

WNT3, WNT5b, WNT11, SFRP2, and SFRP5 displayed 
the greatest differences in methylation levels according to 
the 850 K BeadChip analysis results (∆β ˃ 5%) (Table 2). We 
then analyzed these genes for differential methylation sites 
(Supplemental Fig. 2 and Supplemental Table 1). Finally, 
based on data consistency and the significance of the differ-
ences, WNT3 was selected for functional study in trophoblast 
cell lines.

The DNA methylation level of the WNT3 gene 
is decreased in the preeclamptic placenta

Among the differentially methylated genes in the Wnt/β-
catenin signaling pathway, WNT3 was the most significantly 
differentially expressed gene in the PE group compared to 
the PB group. The promoter region of WNT3 was hypometh-
ylated in the PE group compared to the PB group, while 
there was no significant difference between the TB and PE 
groups. The change in the methylation level of the WNT3 
promoter was confirmed by pyrosequencing. The sequence 
of the methylation site CG24114556 with the most signifi-
cant difference is ACGGCGGGCGTTTTA CGAGG TGA 
GGG TTA TGG TTG AAG GAA  (∆β ≥ 10% and P < 0.05) 
(Table 3). The methylation levels of the four CpGs and the 
mean methylation level were shown in Fig. 3. The promoter 
region of WNT3 was significantly hypomethylated in the PE 
group compared to the other two groups. In the PE group, 
the methylation levels of CpG2, CpG3, and CpG4 were 
significantly reduced compared with those in the other two 
groups, while there was no significant difference in CpG1 
among the three groups. 

WNT3 mRNA and protein expression are 
upregulated in the preeclamptic placenta

We next examined the mRNA and protein levels of WNT3 
and analyzed the relationship of these levels with its 

Table 1  The clinical 
characteristics of the three 
groups

TB term birth, PB preterm birth, PE preeclampsia
a Compared with TB group, P < 0.05
b Compared with PB group, P < 0.05. Unpaired t test

Characteristics TB (n = 30) PB (n = 30) PE (n = 30)

Maternal age (years) 32.45 ± 4.29 31.33 ± 4.95 32.61 ± 5.04
Gestational age (weeks) 39.09 ± 0.72 34.37 ± 1.91a 33.12 ± 1.92a

Systolic pressure (mmHg) 117.68 ± 10.06 115.93 ± 10.12 168.16 ± 18.42ab

Diastolic pressure (mmHg) 75.63 ± 10.13 71.44 ± 8.11 102.36 ± 8.48ab

Proteinuria (g/24 h) 0.205 ± 0.130 0.134 ± 0.025 3.567 ± 0.651ab

Neonatal birth weight (g) 3505.54 ± 396.74 2296.30 ± 509.52a 1711.48 ± 499.87ab

Fetal gender (male/female) 18/12 13/17 15/15
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methylation level. The mRNA expression level of WNT3 
was shown in Fig. 4A. The mRNA expression level of 
WNT3 in the PE group was significantly higher than that in 
the other two groups. We analyzed the correlation between 
the methylation level and mRNA expression level of WNT3 
(Fig. 4B), and found that the expression level of WNT3 
mRNA increased as its DNA methylation level decreased. 

The mRNA expression level of WNT3 was negatively 
correlated with its DNA methylation level (r = − 0.525, 
R2 = 0.2071, P < 0.05). While, there was no correlation 
between the mRNA expression level of WNT3 and meth-
ylation level with donor age (Supplemental Fig. 3). The 
protein expression level of WNT3 in placental tissues was 
evaluated by western blotting (Fig. 4C, D) and was found 

Fig. 2  The global methylation level of Wnt signaling pathway among 
three groups detected by Illumina 850  K Beadchip. A Comparison 
between TB and PE; B Comparison between PE and PB; C Compari-
son between TB and PB. Blue color represents hypomethylated sites, 

while red color represents hypermethylated sites. TB term birth, PB 
preterm birth, PE preeclampsia. β value represents the methylation 
levels of detected sites
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to be significantly higher in preeclamptic placentas than in 
the placentas of the other two groups. Immunohistochemi-
cal staining showed that the WNT3 protein was localized 
in villous trophoblasts (VTs) and extravillous trophoblasts 
(EVTs) (Fig. 5). In preeclamptic placentas, the WNT3 
protein levels in both VTs and EVTs were higher than 
those in the other two groups. The level of phosphorylated 
β-catenin in preeclamptic placentas was increased, which 
indicated that the activity of the Wnt/β-catenin signaling 
pathway was decreased. 

Demethylation treatment increases WNT3 
expression

According to our study on placental tissues, WNT3 was 
hypomethylated and its expression level was increased in 
PE. We used a human first-trimester EVT cell line and 
a human choriocarcinoma cell line to further analyze 
whether changes in WNT3 expression are due to changes 
in its methylation status. In both cell lines, treatment with 
5-aza-dC, which decreases the methylation level, caused 
a significant increase in WNT3 expression (P < 0.05) 
(Fig. 6).

Silencing the WNT3 gene decreases trophoblast cell 
proliferation

We transfected shRNA-WNT3 (Fig.  7) into the HTR8/
SVneo cell line to evaluate Wnt/β-catenin signaling path-
way activity and assess cell viability and proliferation. As 
shown in Fig. 8, after silencing WNT3, the relative protein 
expression of WNT3 and phosphorylation of GSK3β were 
decreased, and phosphorylation of β-catenin was increased 
after silencing WNT3, suggesting that low expression of 
WNT3 suppresses the Wnt/β-catenin signaling pathway in 
PE. A CCK-8 assay was performed to evaluate trophoblast 
cell viability, and the results revealed that silencing WNT3 
decreased the viability and proliferation of HTR8/SVneo 
cells compared with control cells (Fig. 9a).

Discussion

PE is a systemic disorder that involves multiple factors, 
complex mechanisms, and many signaling pathways. PE 
can progress rapidly to serious complications, including 
death of both the mother and fetus. The pathogenesis is still 
controversial, and several theories have been proposed. PE 
is recognized to be a disease of placental origin: the inva-
sion ability of trophoblasts is decreased in early pregnancy, 
resulting in shallow placental implantation, which is the key 
link in the pathogenic mechanism [22].

Depending on the gestational week in which clinical 
symptoms appear, PE is classified as early-onset (< 34 weeks 
of gestation) or late-onset (≥ 34 weeks of gestation) PE. 
Studies have shown that the pathogenesis of early- and 
late-onset PE is different [23, 24]. Early-onset PE is likely 
to be a placenta-related disease and caused by insufficient 
perfusion of the spiral artery, while late-onset PE seems to 
be a manifestation of metabolic disorders. The condition 
of early-onset PE is exacerbated with increasing gestational 
week, and multiple organ failure may occur earlier than in 
late-onset PE. In the present study, the gestational age in the 
PE group was 33.12 ± 1.92 weeks, thus, the preeclamptic 
subjects enrolled in this study were considered early-onset 
PE patients.

DNA methylation, as a classical mechanism of epigenetic 
regulation, is widely involved in placental development and 
trophoblast differentiation. Many factors affect the level of 
DNA methylation in placental tissues, including gestational 
age, intrauterine environment, fetal sex, and so on [25, 26]. 
Several studies have indicated that among these factors, ges-
tational age is an important factor affecting the level of DNA 
methylation in placental tissues. Novakovic et al. found sig-
nificant differences in methylation levels among the first, 
second and third trimesters of pregnancy [27]. In the current 
study, the subjects were divided into three groups: the PE, 

Table 2  The Wnt signaling pathway factors with significant differ-
ence in methylation levels

β value was used to represent the methylation levels of all the probes
∆β is the difference in β value between the two groups
TB term birth, PB preterm birth, PE preeclampsia
P < 0.05

∆β  > 0%  > 5%

PE vs TB WNT2b, WNT4, WNT5b, WNT6, 
WNT7b, WNT8b, WNT9a, WNT9b, 
WNT10b, WNT11, WNT16, DKK1, 
DKK3, SFRP1, WIF1

SFRP2, SFRP5

PB vs TB WNT2b, WNT4, WNT5b, WNT6, 
WNT7b, WNT8a, WNT8b, WNT9a, 
WNT9b, WNT10a, WNT10b, WNT16, 
DKK1, DKK3, SFRP1, WIF1

WNT11, SFRP2

PE vs PB WNT2b, WNT9b, WNT11, WNT16 WNT3, WNT5b

Table 3  The differential methylated sites of WNT3 gene between PE 
and PB

DMS differential methylated site, TSS transcription started site
P < 0.05

DMS Gene ∆β (%) Location

cg24114556 WNT3 10% TSS1500
cg16340130 WNT3 6% Gene body
cg02721983 WNT3 3% Gene body
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PB, and TB groups. In most previous studies, the TB group 
was used as a control group, however, the large gestational 
age difference between the subjects in this group and sub-
jects in the other groups can be an important factor affecting 
DNA methylation in placentas. Therefore, we added the PB 
group to eliminate the influence of gestational age, as there 

was no significant difference in gestational age between the 
PE and PB groups. Fetal sex is another important factor 
affecting gene methylation, and methylation alterations are 
more frequently observed in female placentas [26]. In our 
study, there was no significant difference in the fetal sex ratio 
among these three groups.

Fig. 3  The methylation levels of WNT3 gene by pyrosequencing. A 
The average levels of the four CpGs in PE (12.4% ± 2.2%) compared 
with TB (14.5% ± 2.2%) and PB (14.3% ± 2.5%) groups. B–E The 

methylation levels of the four CpGs. TB term birth, PB preterm birth, 
PE preeclampsia. Unpaired t test. *P < 0.05, **P < 0.01
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In the present study, we found that the global methyla-
tion level of the Wnt/β-catenin signaling pathway in the 
PE group was higher than that in the TB group and lower 

than that in the PB group (Fig. 2). The methylation lev-
els of WNT3, WNT5b, WNT11, SFRP2, and SFRP5 were 
the most different among the three groups of placental 

Fig. 4  The expression levels of WNT3 gene in placentas of the three 
group and its correlation with methylation levels. A The mRNA 
expression levels of WNT3 in placentas in the three groups. B The 
correlation between mRNA expression and methylation levels. 
r = − 0.525, R2 = 0.2071, P < 0.05. C, D The relative protein expres-

sion of WNT3 in placentas of the three groups by western blotting. 
TB term birth, PB preterm birth, PE preeclampsia. Unpaired t test, 
Welch's t test, Mann–Whitney test, and Pearson correlation analysis. 
*P < 0.05, **P < 0.01. ***P < 0.001, ****P < 0.0001
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tissues (Table 2). To exclude the effect of gestational age, 
we selected significant differentially expressed genes with 
statistically in the PE and PB groups. Ultimately, WNT3 
was selected for functional study in trophoblast cell lines. 
Then, it was confirmed by pyrosequencing that the average 

methylation level of the WNT3 promoter region in the PE 
group was lower than that in the other two groups (Fig. 3).

The WNT3 gene is a member of the WNT gene family, and 
its encoded protein plays an important role in many diseases 
as a ligand of the Wnt/β-catenin signaling pathway. Studies 

Fig. 5  Immunostaining of 
WNT3 protein in placental tis-
sue sections of the three groups 
WNT3 protein was located in 
the villous trophoblasts (VT) 
and extravillous trophoblasts 
(EVT). TB term birth, PB 
preterm birth, PE preeclampsia. 
Original magnification 400 × for 
A, C, E, 200 × for B, D and F 

Fig. 6  The mRNA expression 
levels of WNT3 after demethyla-
tion by 5-Aza-dC in JAR and 
HTR8/Svneo cell lines. A The 
expression of WNT3 in JAR cell 
line. B The expression of WNT3 
in HTR8/Svneo cell line. 5-Aza-
dC: 5-Aza-2'-deoxycytidine. 
Unpaired t test and Mann–Whit-
ney test. *P < 0.05; **P < 0.01
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have shown that WNT3 is upregulated in human breast, rec-
tal, lung, gastric, and hepatocellular cancer tissues and plays 
a key role in the occurrence and development of these tumors 
by activating the Wnt/β-catenin signaling pathway [28–34]. 
WNT3 also plays an important role in embryonic develop-
ment and regulates trophectoderm differentiation in blas-
tocysts [35]. Kaloglu C et al. found that WNT3 is involved 
in regulating decidualization, stromal cell proliferation, 
and trophoblast cell infiltration in the rat uterus [36]. In the 
present study, we found that the promoter region of WNT3 
was hypomethylated and that its expression was increased 
in preeclamptic placentas. Highly expressed WNT3 ligand 

binds to surface receptors on trophoblast cells to activate 
the Wnt/β-catenin signaling pathway. Western blot analysis 
of placental tissues indicated that the level of phosphoryl-
ated β-catenin was increased in preeclamptic placental tis-
sue (Fig. 4C, D) and that Wnt/β-catenin signaling pathway 
activity was decreased in PE. Subsequently, we verified the 
function of WNT3 in trophoblast cell lines in vitro. After 
silencing WNT3, the level of phosphorylated β-catenin in 
HTR8/SVneo cells was increased compared with that in the 
control group, and the Wnt/β-catenin signaling pathway was 
suppressed. In addition, the proliferation ability of tropho-
blast cells was reduced (Fig. 9a). In addition, after transfec-
tion of the WNT3 overexpression plasmid into trophoblast 

Fig. 7  The shRNA sequence of 
WNT3 gene

Fig. 8  Loss of WNT3 sup-
pressed the Wnt/β-catenin 
signaling pathway. A Expres-
sion of Wnt/β-catenin signaling 
pathway proteins in HTR8/
SVneo cell line after transfec-
tion with shRNA. 1–3, Control; 
4–6, sh-WNT3 (cells were trans-
fected with shRNA-WNT3); 
7–9, sh-NC. B The relative 
protein expression of WNT3, 
β-catenin, phosphorylated 
β-catenin, GSK3β, phospho-
rylated GSK3β, and ratio of 
phosphorylated and non-phos-
phorylated protein in HTR8/
SVneo cell line. One-Way 
ANOVA. *P < 0.05, **P < 0.01, 
***P < 0.001



7006 L. Zhang et al.

1 3

cells, cell proliferation was increased (Fig. 9b). However, 
Pollheimer et al. found that WNT3A overexpression did not 
affect the proliferation of trophoblast cells [45]. Thus, more 
experiments are needed to explore the effect of WNT3 over-
expression on trophoblast proliferation. Some researchers 
have found similar phenomena in breast cancer cell lines, 
esophageal squamous cell carcinoma cell lines, and osteoar-
thritic chondrocyte cell lines, in which expression of nuclear 
β-catenin was decreased and the Wnt/β-catenin signaling 
pathway was suppressed after knockdown of WNT3 [37–39]. 
Thus, WNT3 may be an activator of the Wnt/β-catenin sign-
aling pathway. Xing et al. found that knockdown of WNT3 
expression in tumor cells significantly blocked cell prolif-
eration, delayed cell cycle progression, and suppressed cell 
invasion and metastasis, accompanied by increased apop-
tosis [31]. In addition, increasing the expression of WNT3 
accelerated the invasion and migration of trophoblast cells 
[40]. The results of this study revealed high expression of 
WNT3.

In the preeclamptic placenta, the high expression level 
of WNT3 is inconsistent with the decrease in Wnt/β-catenin 
signaling pathway activity. The results of our previous stud-
ies indicated that the expression levels of WNT1, WNT2, 
and WNT2B in preeclamptic placental tissue are decreased 
[4, 7, 17, 19]. The WNT3 gene may play an active role by 
counteracting the low activity of the placental Wnt/β-catenin 
signaling pathway in PE. In addition, WNT3 gene was also 
essential in human tooth development, limb development, 
male fertility, and antidepressant effects [41–44].

In conclusion, we analyzed Wnt/β-catenin signaling 
pathway-related factors in the placental tissues of women 
with PE, PB, and TB, and confirmed that the factor with 
the greatest difference in methylation was the WNT3 gene. 
The WNT3 gene was hypomethylated in PE, and its expres-
sion level was significantly higher than that in the other 
two groups of tissues. The results of in vitro cell studies 
emphasized that WNT3 was an activator of signaling path-
ways. However, signaling pathway activity was reduced in 

preeclamptic placental tissues. Our results prompted us to 
speculate that the WNT3 gene counteracts the low activa-
tion state of the Wnt signaling pathway in the preeclamptic 
placenta through methylation modification. This informa-
tion deepens researchers’ and clinicians’ understanding 
of PE pathogenesis. However, the mechanism by which 
WNT3 plays its unique role in PE remains unclear and 
requires further research.
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