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A B S T R A C T

Knowledge of the exact tumor location and structures at risk in its vicinity are crucial for neurosurgical inter-
ventions. Neuronavigation systems support navigation within the patient's brain, based on preoperative MRI
(preMRI). However, increasing tissue deformation during the course of tumor resection reduces navigation
accuracy based on preMRI. Intraoperative ultrasound (iUS) is therefore used as real-time intraoperative imaging.
Registration of preMRI and iUS remains a challenge due to different or varying contrasts in iUS and preMRI.
Here, we present an automatic and efficient segmentation of B-mode US images to support the registration
process. The falx cerebri and the tentorium cerebelli were identified as examples for central cerebral structures and
their segmentations can serve as guiding frame for multi-modal image registration. Segmentations of the falx and
tentorium were performed with an average Dice coefficient of 0.74 and an average Hausdorff distance of
12.2 mm. The subsequent registration incorporates these segmentations and increases accuracy, robustness and
speed of the overall registration process compared to purely intensity-based registration. For validation an expert
manually located corresponding landmarks. Our approach reduces the initial mean Target Registration Error
from 16.9mm to 3.8mm using our intensity-based registration and to 2.2mm with our combined segmentation
and registration approach. The intensity-based registration reduced the maximum initial TRE from 19.4mm to
5.6mm, with the approach incorporating segmentations this is reduced to 3.0mm. Mean volumetric intensity-
based registration of preMRI and iUS took 40.5 s, including segmentations 12.0 s.

1. Introduction

In glioma surgery residual tumor has a great impact on the overall
survival rate but also on progression-free survival (Coburger et al.,
2016; Moiyadi, 2016; Petridis et al., 2015). For the optimal outcome
after surgery a balance has to be established between maximization of
surgical cytoreduction and minimization of new permanent neurolo-
gical deficits to preserve and prolong the patient's resulting quality of
life (Prada et al., 2016; Renovanz et al., 2014; Yong and Lonser, 2011).
Preoperative image data are acquired a few days before surgery.
However, the difference between these preoperative scans and the
current intraoperative situation, due to brain-shift after craniotomy and
tissue deformation, increases with the extent of tumor tissue removal

(Prada et al., 2015b; Prada et al., 2015a; Reinertsen et al., 2014). The
preoperative MRI (preMRI) data set, usually shown on a separate screen
in the operating room for the medical staff, is now merely a rough es-
timate. For this reason, intraoperative imaging is crucial to maximize
the gross-total resection but with greatest accuracy, precision and care
of eloquent brain areas. Therefore, intraoperative imaging, such as MRI,
have great importance during surgery but are not affordable or avail-
able in every neurosurgical department. On the contrary, intraoperative
ultrasound (iUS) offers real-time information, it is widely available at
relatively low costs, and does not cause radiation (Prada et al., 2015a).
Moreover, tumor boundaries are even better distinguishable within iUS,
which is an enormous benefit compared to other intraoperative imaging
for safe gross-total resection (Moiyadi et al., 2017; Selbekk et al., 2013;
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Unsgård et al., 2011). However, several factors during resection de-
grade the quality of iUS. For example, additional structures or tissue
boundaries are visible in iUS imaging than in preMRI, which are in-
duced during surgery through creating and extending the resection
borders, by filling the resection cavities with saline water, by small air
bubbles, and by blood clotting agents. Moreover, this increases reflec-
tion that diminishes the general ultrasound penetration depth. All the
above-mentioned gravely impedes a solely intensity-based iUS and
preMRI registration.

Registration algorithms in this field of ultrasound and MRI fusion
can be categorized in non-deformable (Coupe et al., 2012; Prada et al.,
2015a; Presles et al., 2014; Schneider et al., 2012) or deformable
(Farnia et al., 2015; Laurence et al., 2013; Reinertsen et al., 2014; Rivaz
et al., 2015; Rivaz et al., 2014b; Rivaz et al., 2014a; Rivaz and Collins,
2015a, 2015b) approaches that further split into feature-based and in-
tensity-based methods. Feature-based methods find corresponding
points or structures in both modalities and use correspondences to
conclude the registration transformation (Modersitzki, 2003). Intensity-
based methods rely on similarity measures, methods commonly used
are: sum of squared differences (SSD), normalized mutual information
(NMI), normalized cross-correlation (NCC), and normalized gradient-
field (NGF) measures (Boehler et al., 2011; Modersitzki, 2009;
Modersitzki, 2003; Nesch et al., 2001). Proposed solutions in the con-
text of this registration problem are landmark-based methods that
register points (Gobbi et al., 2000), lines or tubes, e.g. of vasculature
(Bucki et al., 2012; Porter et al., 2001; Reinertsen et al., 2007) or sur-
faces (King et al., 2000), and methods that attempt to transform and
simulate the intensities within preMRI to iUS in order to make both
imaging modalities more comparable for a subsequent registration
(Kuklisova-Murgasova et al., 2013; Letteboer et al., 2003; Wein et al.,
2013). For instance, segmentations are used for this by Arbel et al.
(Arbel et al., 2004) and by Mercier et al. (Mercier et al., 2012) who
registered preMRI to a probabilistic atlas. The atlas was used to segment
the preMRI and they assigned different intensity transformations to
different regions within the MRI to create a pseudo-US image. Our
proposed combined segmentation and registration approach would fit
into this registration category where segmentations are used to transfer
additional information to the overall registration process.

Most 2D segmentation methods can be expanded to 3D segmenta-
tion approaches. (Mozaffari and Lee, 2018) describe them as being as
powerful as 3D methods. For slice-wise US acquisition 2D image seg-
mentation relies on contrast and image resolution, whereas 3D ap-
proaches add the supplementary issue of reconstruction quality. This is
why we chose 2D image segmentation in order to segment the slice-
wise acquired, thin and line-type structures of the falx and tentorium in
highest image resolution. (Mozaffari and Lee, 2018) distinguish none of
the reviewed segmentation strategies as gold standard or even trend-
setting for every purpose in image processing. It is even more empha-
sized that this is an active field with numerous methods and segmen-
tation strategies that are tailored for each scope of application.

Based on this account, we propose a novel approach that combines
automatic segmentations of central anatomical structures that can act
as guiding-frame for a subsequent registration approach. The falx cer-
ebri and the tentorium cerebelli as prominent, corresponding, and central
anatomical structures of the perifalcine region are just examples of
structures fulfilling the above prerequisites as both structures are
visible in gadolinium-enhanced T1-weigthed preMRI and in B-mode iUS
images (Fig. 1). The segmentations are utilized as additional spatial
information for the registration to enable an alignment of selected
structures – and, respectively, for masking out possible disruptive
structures – for supporting fast, automatic, and robust iUS/preMRI fu-
sion in order to improve real-time image guidance during neurosurgery.

This paper has two main contributions. First, we propose a 2D re-
gion-based segmentation method in order to segment the acquired iUS
scans slice-wise and a Random Forest classifier is used to classify the
candidate regions. To our best knowledge our paper publishes the first

iUS segmentation approach applicable within the process of glioma
surgery in order to increase registration accuracy, speed, and robustness
of preMRI and iUS images for improving intraoperative image guided
therapy (IGT).

The second contribution of this paper is the introduction of an initial
registration approach which demonstrates how valuable an incorpora-
tion of segmentations is in reducing the overall computation time and
in increasing registration accuracy.

2. Material and methods

2.1. Data sets used for preMRI and iUS image fusion

For this work we acquired corresponding preMRI and iUS images
from 11 patients with low-grade and high-grade gliomas who under-
went tumor resection in the neurosurgical department at Essen
University Hospital. Each patient had at least one T1-weighted gado-
linium-enhanced preMRI for surgical planning acquired a few days
before tumor surgery. In Fig. 2. an overview of our entire method for
preMRI and iUS image fusion is given. Navigated and tracked freehand
B-mode iUS sweeps were made in a parallel, non-fan-like manner, be-
fore tumor resection. The iUS scans were acquired using an US system
(Alpha 10, Hitachi Aloka Medical, Japan) connected to a neuronavi-
gation system (Curve, Brainlab AG, Munich, Germany) via a video
cable. We used a micro-convex multifrequency probe with a mean
frequency of 7.5MHz and a fixed penetration depth for all patients of
8 cm. For navigated freehand US acquisition an adapter was mounted
onto the US probe for optical tracking. The navigation system saved 200
2D B-mode US images (slices) per sweep together with their tracking
information. The slices were reconstructed to a 3D volume for volu-
metric preMRI and iUS image registration, but the original 2D slices
were used for iUS image segmentation.

Our registration approach incorporates segmentations of the falx
cerebri and the tentorium cerebelli. Additionally, for further reduction
of the computation time needed for multi-modal image registration, a
skull stripping is performed on the preMRI. In the following the
aforementioned segmentation algorithms for preMRI and iUS image
segmentation are described separately, before we introduce our seg-
mentation-based registration approach.

2.2. Automatic segmentation of Falx Cerebri and Tentorium cerebelli with
adjacent gyri and sulci

As central anatomical structures within the perifalcine region of the
brain the falx cerebri and the tentorium cerebelli are almost always
visible within the operative field or at least visible in part. The falx is a
thin meningeal fold of the dura mater that separates the hemispheres.
The tentorium is an arched, meningeal fold that is partly connected to
the falx, separating the cerebrum from the cerebellum. Therefore,
segmentations of these structures are chosen for our approach to sup-
port the proposed multi-modal image registration. To add supplemental
spatial image information to the otherwise line-type falx and tentorium
segmentations, these structures are also segmented together with ad-
jacent sulci and gyri (see Fig. 1).

In T1-weighted gadolinium-enhanced MRI the falx and tentorium
are filled with contrast agent and are highlighted with high intensities.
Fig. 1 shows the falx and the tentorium in both modalities. In the
subsequent section the falx and tentorium segmentation algorithm for
B-mode iUS is described.

As mentioned above, the input data for our segmentation method
are freehand and tracked series of 2D US scans which are segmented
slice-wise. The delicate anatomical structures of the falx, tentorium,
and their adjacent sulci and gyri are segmented in 2D in order to pro-
vide a segmentation within images of maximal resolution and quality
which would be reduced by a previously applied reconstruction. For
each patient US scans with 200 slices are acquired and subsequently
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segmented prior to volume reconstruction. The image extent of each
slice is 531×376 pixels. Basically, the method described here is an
object-based image analysis approach that classifies candidate regions
within the US image series (Homeyer et al., 2010). Compared to pixel-
based classification it is advantageous that a region-based approach
offers more expressive features describing the specific target structures
or objects within the image. Especially if differences between target
objects and background are subtle – as they are for falx, tentorium,
sulci, and gyri –it is important to define sufficiently specific features to

characterize the target objects. This is the reason why we chose the
object-based image analysis approach because the target structures here
appear line-like for the human eye but are in fact discontinuous lines
with enormous changes in their intensity along their extent even within
the same iUS slice. Classic segmentation algorithms rely on homo-
geneous regions within and/or similar strong edges around the target
structure. Both of these criteria are not given in this particular seg-
mentation task. The object-based image analysis approach is a powerful
method to locate different, discontinuous regions of the target structure

Fig. 1. Anatomical structures of falx cerebri, tentorium cerebelli, and adjacent gyri (sg. gyrus) and sulci (sg. sulcus) in MRI and US imaging. This figure also gives an
impression about the central position and thinness of these anatomical structures.

Fig. 2. Overview of the entire segmentation and registration method for preMRI and iUS image fusion. Basically, the method consists of three steps: 1.) Image
Acquisition (see Chapter 2.1): Acquisition of preoperative T1-weighted gadolinium-enhanced MRI and intraoperative B-mode ultrasound images. The iUS images are
acquired freehand with a micro-convex US probe. 2.) Segmentation: 2.a) iUS segmentation (see Chapter 2.2): The falx cerebri and the tentorium cerebelli with their
adjacent gyri and sulci are segmented slice-wise in 2D before the segmentation results are reconstructed to a 3D volume. Each US volume consists of 200 slices. For
iUS segmentation an object-based image analysis approach is used that classifies objects into regions; 2.b) Skull stripping (see Chapter 2.3): The brain segmentation is
essentially used to reduce complexity within the registration task in order to speed-up the computation and to prevent erroneous registrations. The skull stripping
could be done prior to surgical intervention to avoid adding intraoperative computation time. 3.) iUS and preMRI registration (see Chapter 2.4): The masked preMRI
brain image and the corresponding reconstructed iUS volume masked with the falx, tentorium, and adjacent gyri segmentations are used for registration in order to
solely employ these anatomical structures for an initial alignment of both modalities.
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within an over-segmented image. Accordingly, the region-based seg-
mentation requires a good initial over-segmentation of the whole image
that captures the boundaries of the target structures. To facilitate a
good initial clustering of image regions the US image slices are pre-
processed with two subsequently applied stick filters by adopting
(Nitsch et al., 2015). The stick filters sustain and strengthen line-type
structures, while smoothing homogeneous regions and reducing char-
acteristic speckles in US images. The falx and the tentorium may be
scanned from different angles but the line-type character remains still
present. Fig. 3 shows the falx and the tentorium and their different
representation in iUS images.

In order to generate the over-segmentation, watersheds – as sug-
gested by Schwier et al. (Schwier et al., 2013) – and the SLIC Superpixel
(Achanta et al., 2012) approach are tested and compared, resulting in
the conclusion that the SLIC Superpixel approach provides a more
precise and robust parcellation of target objects of the falx, tentorium,
gyri, sulci, and their boundaries. An example of an initial over-seg-
mented US image can be seen in Fig. 4. For the classification process a
Random Forest classifier with 25 trees is used to classify the candidate
regions. The classifier is trained with 686 positive samples and 824
negative samples from characteristic iUS slices of patient 1 that were
excluded from the test data set. The training samples were selected
manually by a human expert in order to guarantee that different ex-
amples with changing intensities as well as different perspectives of the
target structures are covered by the training data. The scanned iUS
volume of patient 1 was especially acquired as training data set to fit
these criteria and almost every slice within the US sweep represents an
example of falx and tentorium with adjacent gyri and sulci. In the first
step of the segmentation algorithm, all objects generated by the initial
over-segmentation are classified. Hereafter, the region-based features
are listed that are used for initial classification of these objects as ori-
ginally proposed by Schwier et al. (Schwier et al., 2013): Intensity-
based features (lower and upper quartile, mean, median, minimum,
maximum, standard deviation), shape-based features (size, eccentricity,
elongation, circularity), and direct neighbor relation features (con-
nectivity to other objects and their features). In addition to those, a
subsequent classification process is applied that uses the initial classi-
fication result as basis to further analyze the connectivity of objects
classified as potential candidate objects of the structures to be seg-
mented and takes their neighbor relations to further analyze their
probability of being part of the falx and tentorium in order to generate a
more precise characterization of the overall anatomical structures of
falx, tentorium, and their adjacent gyri and sulci. This hierarchical
segmentation approach first classifies objects and then merges objects
into regions and is described in pseudo code and visualized in Fig. 4.

2.3. Skull stripping of MRI as preprocessing prior registration

To prevent initial fitting to prominent pressure artifact or other
artifacts of the US probe in iUS images onto the skull or brain surface in
gadolinium-enhanced preMRI and in order to reduce the total compu-
tation time, a skull stripping is performed on the head and neck scans of
the 11 patients prior to registration. A profound review of methods on
skull stripping on non-contrast-enhanced images is given by Kalavathi
et al. in (Kalavathi and Prasath, 2016) in which methods are dis-
tinguished in five different categories: mathematical morphology-
based, intensity-based, deformable surface-based, atlas-based, and hy-
brid methods. Kleesiek et al. (Kleesiek et al., 2016) used Convolutional
Neural Networks (CNNs) trained for skull stripping of 53 patient data
sets consisting of T1-weighted images with and without contrast agent,
T2-weighted and FLAIR images. For our field of application of image
guidance during glioma surgery, contrast-enhanced T1-weighted
images are used as basic preMRI for navigation and were acquired a
couple of days prior to surgery for planning and intraoperative image
guidance. These contrast-enhanced images come with additional diffi-
culties such as varying uptakes of contrast agents due to different time
points the MRI scan was performed after exposition to the contrast
agent and also varying contrast uptakes of pathological brain tissues,
creating patient specific-boundaries within the brain to be skull-
stripped.

According to Kalavathi et al. (Kalavathi and Prasath, 2016) the
proposed segmentation method for brain extraction can basically be
categorized as a hybrid method using mathematical morphology-based
as well as intensity-based segmentation methods. As initial step a non-
parametric method for automatic correction of intensity non-uniformity
is used as described by Sled et al. (Sled et al., 1998). Afterwards, a
threshold is applied that focuses on filtering out lower intensities such
as the cerebrospinal fluid and partly gray matter in order to increase the
immediate gap between the center of the brain and the skull. Subse-
quently, a morphological opening is employed that separates the thre-
sholded image roughly in two different components: Brain and skull/
neck. Successionally, a 3D connected components analysis is performed
using a 3D-18-neighborhood. Simultaneously, the center of gravity is
calculated and the component that is closest to it is taken as a rough
estimate of an initial coarse brain segmentation. The previously men-
tioned threshold, that roughly separates the brain from the skull and
neck, is adaptive, increasing continuously, starting from the experi-
mentally determined value of 200 with a step size of 10 as long as there
are less than two components after connected component analysis. The
non-uniformity intensity corrected image is then smoothed with a 3D
Gauss smoothing using a sigma of 1 voxel on which the gradient
magnitude is calculated with identical sigma before it serves as input

Fig. 3. Falx and Tentorium in iUS images showing their different representation as line-type structures scanned from different angles by the US probe.
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image for a seeded watershed transformation. The applied watershed
transformation method was proposed by Hahn et al. (Hahn and Peitgen,
2000). In our case, the previously attained, jagged segmentation of the
brain serves as seed region. Remaining gaps within the brain mask are
removed after watershed segmentation and are shut by morphological
closing with a kernel of 3×3×3. Finally, a rolling ball closing with a
radius of 5mm is applied to remove residual holes and to smooth the
overall surface of the segmented brain. Fig. 5. shows the main image
processing steps of the skull stripping approach.

2.4. Registration of iUS with preMRI

Before both imaging modalities can be registered, the iUS scans of
200 slices per patient and the corresponding 2D segmentations must be
reconstructed into a 3D volume. The reconstructed volumes are at-
tained through accumulating the scanned or segmented 2D slices/vo-
lumes. Besides trilinear interpolation, intersecting volumes are com-
bined by means of weighted averaging. For multi-modal image fusion
we used the MERIT registration framework (Boehler et al., 2011). As a
preprocessing step, the original gadolinium-enhanced T1-weighted
image is resampled with a Lanczos filter to an isotropic voxel size of
1mm. The corresponding reconstructed iUS volume is masked with the
falx, tentorium and adjacent gyri segmentations to solely use these
anatomical structures for an initial alignment of both imaging mod-
alities. Simultaneously, the head scan is masked by its skull stripping
segmentation result to reduce the image content and computations
needed for registration. Prior to registration all images masked by
segmentations are resampled to the same isotropic voxel size of 1mm.

The MERIT framework includes multiple significantly different image
similarity measures. For our purpose we used the local cross-correlation
(LCC) similarity measure that evaluates the local cross-correlation in a
local window of 3×3×3 around each voxel. LCC is robust to non-
linear intensity relations which proved advantageous for our rigid iUS
and preMRI registrations and has similar properties as the Normalized
Mutual Information (NMI) similarity measure which is considered a
standard similarity measure for robust multi-modal image registration.
Furthermore, we used a multi-level registration approach consisting of
three levels which allows a downscaling of the image to be registered
with the following scaling factors 0.632, 0.63 and 1. This allows the
deformed image to be registered from coarse to finer resolutions.

2.5. Evaluation methods for segmentation and registration results

In this section we shortly describe the methods for quality mea-
surement of the segmentation and registration results that are applied
in the following results chapter.

2.5.1. Evaluation of segmentation results
The employed similarity criteria are here briefly described that are

used to measure the quality of our results. The Dice coefficient and the
Hausdorff distance are established and commonly used methods for the
evaluation of 2D and 3D segmentation results. The two methods pro-
vide numerical values that allow both a comparison of different seg-
mentation results as well as an immediate assessment of the achieved
quality of the segmentation at hand in regard to a reference segmen-
tation. The following formula determines the calculation of the Dice

Fig. 4. Pseudo code of the hierarchical classification and segmentation process. The segmentation approach first classifies objects and then objects into regions.
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coefficient, where P and Q represent the sets of pixels or voxels of two
compared segmentation masks:

=
+

C 2 |P Q|
|P| |Q|Dice

According to the formula the Dice coefficient represents the size of
the union of two sets divided by the average size of the two sets. The
coefficient is a value between 0 and 1, where a value of 0 indicates no
overlap of the sets of two compared segmentation masks and a value of
1 indicates an exact match between two sets.

The Hausdorff distance quantifies the maximum distance between
two 2D or 3D segmentations and allows a comparison of contours or
surfaces of the segmented objects. Subsequently, the formula defines
the Hausdorff distance, where S and T are the two different sets of
pixels or voxels of the compared segmentations:

=H S T d S T d T S( , ) max{ ( , ), ( , )}maxmax

The maximum distance dmax is defined as:

=d max min s t .max
s S t T

According to the previously given formula the maximum calculated
distance is not symmetric, because the following applies:

d S T d T S( , ) ( , ).max max

The Hausdorff distance is a symmetric measurement of both dis-
tances by considering the maximum of both distances. The Hausdorff is
measured in mm and should be as small as possible by measuring the
distance between a segmentation result and the corresponding re-
ference masks of an expert or other gold standard.

2.5.2. Evaluation of the iUS and preMRI registration
In order to quantitatively measure the performance of our regis-

tration approach in comparison with the initial registration provided by
the navigation system and a solely intensity-based registration, we use
the commonly applied mean target registration error (mTRE) as metric.
The mTRE measures the average distance between landmarks x (here:

landmarks within the iUS that represent the ground truth landmarks)
and x′ (here: landmarks after multi-modal image registration within the
deformed preMRI). The mTRE can be computed as follows for a number
of landmarks n:

=
=

mTRE 1
n

x x .
i 1

n

i i

3. Results

In the following we evaluate the previously described segmentation
methods of the falx cerebri, the tentorium cerebelli, and adjacent gyri
and sulci in 2D B-mode US images and the skull stripping method on
gadolinium-enhanced T1-weighted preMRI. To assess the quality of the
segmentation, we use standard quality measurements by means of the
Dice coefficient and Hausdorff distance. Furthermore, we analyze our
implemented registration approach for multi-modal image fusion of iUS
and preMRI with distance measurements to landmarks placed by a
human expert. We evaluate our registration results by comparing the
initial registration from the navigation system with a solely intensity-
based registration and with our segmentation-based registration ap-
proach that incorporates the prior attained segmentation results. An
overview of the whole segmentation and registration approach is given
in Fig. 2.

3.1. Evaluation of segmentation results

In this chapter we first evaluate the segmentation results before we
measure the quality of preMRI and iUS iamage fusion.

3.1.1. Evaluation of segmentations in 2D B-mode US images
Table I shows the 2D segmentation results of the 11 patients for

segmenting the falx cerebri and the tentorium cerebelli in B-mode US
images which is illustrated in Fig. 4. The automatic segmentation re-
sults are compared to reference segmentations attained by segmenting
the falx and the tentorium manually by an expert in 2D B-mode US

Fig. 5. Shows the main image processing steps within the outlined skull stripping approach. At the end of the processing pipeline the resulting brain mask of patient 4
is shown and overlayed on the original preMRI in sagittal, axial, and coronal view.
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slices. Consequently, the segmentations are also evaluated slice-wise.
Average Dice coefficient and Hausdorff distances per US scan (set of
200 slices) or patient, respectively, are shown in Table I. The proposed
method achieved an average Dice coefficient of 0.74 and an average
Hausdorff distance of 12.2 mm over all 11 patients with an average
computation time of 79 s for processing 200 US slices.

3.1.2. Evaluation of the automatic skull stripping for gadolinium-enhanced
T1-weighted MRI

Furthermore, we evaluated our skull stripping method (Fig. 5) and
compared it to a reference segmentation by an expert. The subsequent
Table II gives an overview of the segmentation results and the com-
putation times for each patient. We focused our segmentation approach
on a balance between speed and accuracy. A manual correction can be
done as post-processing step in which the resulting mask is interpolated
between two indicated corrections. Corrections are only necessary if the
segmentation is not accurate enough in the required region where the
acquisition of B-mode US scans is planned during the intervention.
Automatic and manual correction times are also displayed in Table II.
The skull stripping method attained an average Dice coefficient of 0.82
and an average Hausdorff distance of 33.8 mm with an average com-
putation time of 106 s.

3.2. Evaluation of the iUS and preMRI registration

Results of the different registrations methods are compared in Table
III. For each patient ten to twelve corresponding landmarks between
iUS and preMRI were defined by an expert. Moreover, we compare the

computation time of the purely intensity-based method and the regis-
tration using the prior attained segmentations of the falx cerebri and
the tentorium cerebelli in US images and the skull stripping from
preMRI. An overview is given in Table IV. Registration results for iUS
and preMRI image fusion are illustrated in Fig. 6. All segmentations and
registrations are performed on an Intel Core i7 PC with 2.60 GHz and a
16 GB RAM.

3.3. Evaluation of inter-observer variability of Falx and Tentorium
reference segmentations

Moreover, we analyzed the inter-observer variability of the com-
bined falx, tentorium, sulci, and gyri reference segmentations in iUS
images. For this we compared the reference segmentations from three
different experts and used the Dice coefficient to access similarities. We
included this comparison in our evaluation in order to spotlight how
complex the segmentation task is even for human experts for these
central anatomical structures within iUS images. The Dice coefficient in
Table V is calculated between our segmentation result and the three
different references. In Table VI the Dice coefficient is computed be-
tween the references of Expert 1 and Expert 2 as well as between Expert
1 and Expert 3 in order to determine the resemblance of the expert's
segmentations.

Table I
Automatic falx cerebri and tentorium cerebelli segmentation OF 2D B-mode US
images.

Patient Dice coefficient Hausdorff Distance (mm) Computation time (s)

1 0.89 6.3 103
2 0.69 15.9 88
3 0.67 12.0 84
4 0.88 7.3 96
5 0.86 7.8 93
6 0.72 14.2 70
7 0.65 15.9 75
8 0.63 16.0 62
9 0.65 15.2 58
10 0.73 13.0 65
11 0.77 11.1 78
Mean 0.74 12.2 79

Segmentation results of the implemented automatic 2D segmentation approach
for falx cerebri and tentorium cerebelli segmentation.

Table II
Automatic skull stripping of gadolinium-enhanced T1-weighted MRI images.

Patient Dice
coefficient

Hausdorff
distance (mm)

Computation time
(s)

correction (s)

1 0.86 28.4 112 *
2 0.79 33.8 100 118
3 0.72 54.9 104 45
4 0.82 32.9 92 *
5 0.84 25.1 118 *
6 0.82 48.2 110 58
7 0.83 19.7 90 11
8 0.83 27.9 124 *
9 0.84 34.8 108 67
10 0.87 38.6 113 *
11 0.83 27.7 99 *
Mean 0.82 33.8 106

Segmentation results of the automatic 3D skull stripping method for gadoli-
nium-enhanced T1-weighted MRI. * Indicates that no manual correction was
needed.

Table III
MTRE values with initial registration, Intensity-based Registration, and with
Registration incorporating segmentations.

Patient Initial registration Intensity-based
registration

Registration with
Segmentations

1 10.3(9.6–11.2) 3.3(2.5–5.6) 2.3(1.9–3.1)
2 5.8(3.0–8.0) 3.0(2.0–4.3) 1.7(1.0–2.3)
3 4.8(2.7–5.6) 3.2(2.3–4.0) 2.0(1.6–2.6)
4 6.2(4.0–8.3) 5.9(3.8–7.6) 3.2(2.2–4.3)
5 16.1(11.8–19.9) 3.0(2.4–4.3) 2.1(1.8–2.8)
6 24.3(22.0–25.7) 3.7(2.1–5.6) 2.1(1.7–2.7)
7 10.5 (7.9–13.1) 3.6(2.6–5.5) 2.0(0.9–2.5)
8 31.1(30.1–34.0) 4.5(2.3–6.3) 2.2(0.9–3.0)
9 22.8(19.2–28.2) 3.0(1.3–4.8) 1.5(0.5–2.6)
10 36.1(31.9–40.1) 5.7(4.2–7.5) 3.1(2.0–4.3)
11 17.6(15.9–19.3) 3.6(1.7–5.7) 2.2(1.3–3.2)
Mean 16.9(14.4–19.4) 3.9(2.5–5.6) 2.2(1.5–3.0)

Overview of registration results of the proposed registration approach. For each
patient ten to twelve landmarks were used to evaluate the registration accuracy.
Within the brackets the lowest and the highest landmark distances within each
patient are displayed.

Table IV
Computation time for intensity-based registration and registration approach
incorporating segmentations.

Patient Intensity-based registration Registration with Segmentations

1 32 9
2 31 9
3 45 19
4 30 7
5 28 11
6 30 12
7 84 20
8 30 13
9 45 15
10 48 8
11 42 9
Mean 41 12

Comparison of computation time (s) needed in order to compute the registra-
tions.
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4. Discussion

In general, the automatic segmentation of the perifalcine region is
especially challenging due to the variance of tumor locations and

neighboring anatomical structures, size, and image representation that
correlates with the number of tumor patients. Nevertheless, we pro-
posed two segmentation methods that are used to support multi-modal
image registration of preMRI and iUS images and showed that we can

Fig. 6. Registration results represented in a coronal view with a colored overlay (preMRI in red; iUS in green) within the left column. Furthermore, an additional view
for image fusion is proposed within the right column of images. Here the clinical staff can move the lens over the region of interest in order to inspect the registration
result and image fusion. Patient 1 and patient 3 show average registration results with a mTRE of 2.3(1.9–3.1) and a mTRE of 2.0(1.6–2.6). Patient 4 shows the
registration with highest mTRE of 3.2(2.2–4.3) which is due to immediate tissue deformation during the iUS scan after dura opening. This causes initial deformations
the here presented non-deformable registration approach cannot compensate. Patient 2 shows one of the best alignments of iUS and preMRI with a mTRE of
1.7(1.0–2.3).
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reduce the overall computation time needed for registration from
40.53 s to 18.38 s. One could argue that the computation time for the
segmentation of the scanned iUS images with on average 79 s must be
added to the 18.38 s but the slice-wise segmentation can be performed
in parallel to the volume reconstruction process of the 2D US images,
which is essentially needed to register the scanned iUS volume to the
corresponding region within the preMRI volume. In our case, no ad-
ditional computation time is needed to perform the segmentations that
would prolong the overall registration process. The automatic skull
stripping could be accomplished during surgical planning prior to sur-
gery. The overall methods achieved an average Dice score of 0.82,
which leaves some areas (especially in regions adjacent to the eyes and
areas nearing the brain stem and spinal cord) within the brain seg-
mented incorrectly. However, in half of our 11 cases no manual cor-
rection was needed because the segmentation errors are not in the same
brain region as the iUS scans are expected later during the neuro-
surgical intervention and these errors could be neglected.

The segmentation of the iUS images revealed another important
issue that seriously influenced our evaluation and the here represented
results: The inter-observer variability of the slice-wise segmentations of
the perifalcine region. All experts have more than 10 years' experience
in image analysis of cerebral structures. In Table V and in Table VI the
variabilities can be seen between the three different experts. The ex-
perts discussed their segmentation strategy before each of them gen-
erated reference segmentations in order to find rules to which extent

they would segment the structures of the perifalcine region. Expert 3
tends to segment more volume of the target structures than Expert 1
and 2 which includes regions Expert 1 and 2 were uncertain of be-
longing to the target structures. A slightly better correlation between
the segmentations of Expert 1 and 2 can be observed. It can be seen that
the results may differ based on which reference is used. To evaluate our
segmentation results we used solely the references from Expert 1 who
segmented the target structures more reproducibly than the other ex-
perts, which can be observed by inspecting segmentations of adjacent
slices within the overall scanned iUS volume. Finding merging criteria
to generate a ground truth from all three experts was discussed but it
would lead to inconsistencies in how the structures would be segmented
from slice to slice. This would lead to further conflicts in training the
machine learning algorithm how to segment the structures of interest.
According to the presented variabilities between the expert segmenta-
tions, the overall segmentation results of the perifalcine region with a
Dice coefficient of 0.74 and an average Hausdorff distance of 12.2 mm
is a reasonable and acceptable segmentation result.

The segmentation of patient 1 is evaluated as the best segmentation
result which is due to the fact that the training slices are drawn from
this patient data set by using iUS data sets from during and after surgery
in order to train the Random Forest classifier. With our proposed ap-
proach we show a significant benefit by integrating segmentations into
the registration process. The solely intensity-based registration de-
creases the mTRE comparing the initial registration from 16.9mm to
3.9 mm which is further reduced by the segmentation-based registra-
tion to 2.2mm. The maximum initial mTRE is reduced from 19.4mm to
5.6 mm by the intensity-based registration and further decreased to
3.0 mm by the segmentation-based registration. In Fig. 6 characteristic
registration results of the segmentation-based registration are shown.
Nonetheless, the mTREs of the proposed registration may seem high
with 2.2mm on average to the ground truth landmarks. But this is due
to the fact that the ground truth registration is deformable whereas the
here proposed algorithms for registration used a non-deformable re-
gistration approach to initially demonstrate the usefulness of segmen-
tations within the registration process of this use case in glioma surgery.

5. Conclusions

IUS is an imaging modality of low cost and usually already present
in many neurosurgical units, iUS holds great potential in improving
intra-operative image guidance and would improve considerably the
quality of treatments of a large number of patients, i.e. higher survival
rate or improved patient's quality of life. Being able to calculate the
correct brain shift and tissue deformation from iUS and transferring this
deformation to preMRI will support additional surgery planning. For
instance, the deformation could also be applied to preoperative fMRI or
DTI sequences and the shift of structures at risk within the operative
field could be displayed on a screen within the operating room during
glioma surgery.

The here described approach showed to increase robustness, accu-
racy, and speed of the registration process. It is demonstrated that the
proposed segmentation-based registration can serve as initial registra-
tion right after craniotomy and before dura opening. The proposed
approach could be used for further refinements with additional affine
registrations to adapt and update the preMRI to local deformations
within the operational field during the process of glioma resection.
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