
https://doi.org/10.1177/17588359231189436 
https://doi.org/10.1177/17588359231189436

journals.sagepub.com/home/tam 1

Ther Adv Med Oncol

2023, Vol. 15: 1 –18

DOI: 10.1177/ 
17588359231189436

© The Author(s), 2023.  
Article reuse guidelines:  
sagepub.com/journals-
permissions

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License  
(https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission 
provided the original work is attributed as specified on the Sage and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

TherapeuTic advances in 
Medical Oncology

Introduction
Tumor cells within identical genetic grounds vary 
in terms of growth, survival, metastasis, and treat-
ment response. The key mechanism underlying 
such heterogeneity includes the nature of the 
interaction of tumor cells with the components of 
the tumor microenvironment (TME), both locally 
and systemically.1 The precursors of stromal cells 
recruited from the bone marrow as well as infil-
trating inflammatory immune cells recruited from 
the peripheral blood or depo constitute the TME 
that supports the growth and progression of 
malignant tumors.2,3 This view of the tumor as a 
complex multicomponent system is a promising 
avenue for developing new approaches to anti-
cancer therapy and new biomarkers for disease 
prognosis based on the TME components.

Over the past 20 years, different gene signature 
assays have been developed and validated in mul-
tiple clinical trials to stratify patients into different 

risk groups. Widely used genomic tests predict 
the recurrence risk of breast cancer patients of the 
ER+HER2- subtype, including MammaPrint,4 
Oncotype DX,5 and PAM50 Prosigna Assay.6 
The application of these gene expression signa-
tures is recommended by oncological professional 
communities (e.g., American Society of Clinical 
Oncology and European Society for Medical 
Oncology) and helps physicians in clinical prac-
tice. However, the activity of the genes detected 
in these assays is restricted to the tumor cell biol-
ogy, including proliferation, apoptosis, angiogen-
esis, invasion, and metastasis. No widely used 
multi-gene expression assay utilizes immune cell 
markers.7

Accumulating evidence indicates a correlation 
between immune cells and cancer outcome. Two 
extreme functional states in the TME have been 
described: an anti-TME (Th1-like inflammatory 
response that suppresses tumor formation) or 
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pro-tumor immunosuppressive microenviron-
ment (Th2-like immune reactions that promote 
tumorigenesis).8,9

State-of-the art methods of genomic, transcrip-
tomic, and protein analysis have helped identify 
signatures associated with the disease outcome.10 
Gene signatures with high sensitivity and speci-
ficity can be used to categorize cancer patients 
into high- and low-risk groups to predict disease 
outcome and treatment response. Recently, 
diverse prognostic models have been con-
structed using patient cohorts based on the 
groups of genes associated with factors such as 
metastasis,11 epithelial–mesenchymal transition 
(EMT),12 angiogenesis,13 and ferroptosis.14

Immune-related gene signatures can predict out-
comes in numerous cancers. Inflammatory infil-
tration by lymphocytes and macrophages, which 
is a manifestation of innate and adaptive immu-
nogenesis, may be crucial for the development of 
additional risk score panels for immunotherapy 
and other combination therapies.

In this review, we collected data on immune sig-
natures based on lymphocytes and macrophages, 
which are key regulators of innate and adaptive 
immune responses in the TME. Herein, we 
describe recently identified immune signatures 
and their correlation with the follow-up period in 
patients with different solid tumors. We also ana-
lyzed immune signatures for predicting immuno-
therapy response. Finally, we present our 
perspective on the possibility of using immune 
signatures in clinical practice.

Macrophage-related immune signatures
Macrophage infiltration (macrophage-related 
genes) is associated with poor prognosis in numer-
ous human cancers, including breast, lung, pros-
tate, gastric, and ovarian cancers, as well as 
melanoma and glioblastoma.15 Tumor-associated 
macrophages (TAMs) are major components of 
the innate immune system in the TME.15,16 
TAMs are highly heterogeneous cells that origi-
nate from resident tissue-specific macrophages 
and newly recruited monocytes. Two main direc-
tions of TAM polarization are defined: classically 
activated pro-inflammatory M1 and alternatively 
activated pro-tumor, anti-inflammatory M2.17 
However, the diversity of TAMs is more com-
plex, and phenotypes are formed by surrounding 

TME interactions.15 Multiple studies have dem-
onstrated the macrophage marker gene signature 
(MMGS) as a prognostic indicator for patient 
outcome (Table 1).

Immune signatures based on macrophage-derived 
genes. MMGS was developed based on single-
cell transcriptome data from six primary triple-
negative breast cancers (TNBCs).7 The MMGS 
model consists of SERPINA1, CD74, STX11, 
ADAM9, CD24, NFKBIA, and PGK1. The 
MMGS risk score was an independent prognostic 
factor for overall survival (OS) in multivariate 
analysis, which was validated in The Cancer 
Genome Atlas (TCGA) and GSE96058 dataset 
cohorts. Patients in the high-risk group had sig-
nificantly shorter OS than those in the low-risk 
group in both cohorts.7 In another study, a signa-
ture consisting of five hub macrophage-associated 
genes (CD79A, CXCL13, IGLL5, LHFPL2, and 
PLEKHF1) divided patients with TNBC into two 
groups (Cluster A and Cluster B) based on con-
sistency cluster analysis.18 Cluster A was respon-
sible for a significantly worse prognosis than that 
associated with Cluster B.18 A gene signature 
comprising 15 genes (TNF-α, IL-1β, IL-6, 
MMP1, MMP9, TGF-β1, TGF-βRII, EGFR, 
TP53, WTAPP1, SLC12A5, PSAT1, ESR1, 
TPD52, and PRKCD) indicated an interaction 
between TAMs and breast cancer cells.19 This 
gene signature correlated with high progression 
risk and poor survival (overall, metastasis-free, 
and recurrence-free) in many breast cancer data-
sets.19 A 12-immune gene signature (IGS) was 
constructed in breast cancer patients based on the 
LCAM, CYP1B1, MYBPC2, LCN2, FAM179A, 
FAM159A, LIMD2, PIGR, RAC2, IL10, 
CHI3L1, and CCR8 genes, which are enriched in 
immune processes such as immune response, leu-
kocyte activation, and cell adhesion.20 The high-
risk immune group had a significantly worse OS. 
The level of M2 macrophages in the high-risk 
group was significantly higher than that in the 
low-risk group. Breast cancer (BC) patients with 
pathological complete response (pCR) after neo-
adjuvant chemotherapy have significantly lower 
immune gene scores than those of patients with-
out pCR.20

Glioma patients from the Chinese Glioma 
Genome Atlas and TCGA cohorts, who had high 
expression of macrophage-related genes, experi-
enced remarkably shorter OS. A TAM-based 
nine-gene signature (SOCS1, MSR1, TGFB1, 
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Table 1. Macrophage-related gene signatures.

Cancer type Immune gene signature Immune cell type/functional 
annotation

Prognosis

Triple-negative breast 
cancer7

SERPINA1, CD74, STX11, ADAM9, CD24, 
NFKBIA, and PGK1

Macrophage-based High-risk group – shorter OS

Triple-negative breast 
cancer18

CD79A, CXCL13, IGLL5, LHFPL2, and 
PLEKHF1

Macrophage-based Cluster A – worse prognosis, 
Cluster B – better prognosis

Breast cancer19 TNF-α, IL-1β, IL-6, MMP1, MMP9,  
TGF-β1, TGF-βRII, EGFR, TP53, WTAPP1, 
SLC12A5, PSAT1, ESR1, TPD52, and 
PRKCD

Macrophage-based High-risk group – poor survival 
(OS, MFS, RFS)

Breast cancer20 LCAM, CYP1B1, MYBPC2, LCN2, 
FAM179A, FAM159A, LIMD2, PIGR, RAC2, 
IL10, CHI3L1, and CCR8

Macrophage-based High-risk group – poor OS 
and no pCR after neoadjuvant 
chemotherapy

Glioma21 SOCS1, MSR1, TGFB1, CTSC, SOCS3, 
PTX3, FN1, PSME2, and CXCL9

Macrophage-based Patients who had high expression 
of these genes experienced 
shorter OS

Glioma22 ADAM12, AQP5, CA3, CHI3L1, EMP3, 
F2RL2, FERMT1, FMOD, GDF15, GPX8, 
IGFBP2, KCNK5, LIF, MAP1LC3C, 
METTL7B, NOG, PCDH15, PDPN, RAB42, 
RBP1, SAA1, SH2D4A, SLC43A3, SSTR5, 
TIMP1, TRPM8

Macrophage-based High-risk group – shorter OS

Thyroid cancer23 SPP1, CFB, DHRS3, and SLC11A1 M1 macrophages High-risk group – shorter OS

Pancreatic cancer24 KIF23, BIN1, LAPTM4A, ERAP2, ATP8B2, 
FAM118A, RGS16, ELMO1, and RAPGEFL1

Macrophage-based High-risk group – shorter OS

Gastric cancer25 FGF1, GRP, AVPR1A, APOD, PDGFRL, 
CXCR4, and CSF1R

High macrophage infiltration; 
calcium ion homeostasis, 
cellular divalent inorganic cation 
homeostasis, receptor ligand activity, 
leukocyte migration

High-risk group – shorter OS

Gastric cancer26 S100A12, DEFB126, KAL1, APOH, CGB5, 
GRP, GLP2R, LGR6, PTGER3, and CTLA4

High macrophage infiltration; 
neuroactive ligand–receptor 
interaction, Rap1 signaling pathway, 
PI3K–Akt signaling pathway, 
and cytokine–cytokine receptor 
interaction

High-risk patients – shorter OS

Gastric cancer27 CLEC11A, NRP2, TPM2, ANGPTL2, FGF7, 
and FABP4

High macrophage infiltration; 
mesenchymal phenotype-related 
pathways, including the TGF-beta 
signaling, EMT, angiogenesis, and 
focal adhesion

High-risk patients – shorter OS 
and RFS

Colorectal cancer28 PROK1, THBS1, FGF11, CRP, S100A14, 
and CCL19

High M2 macrophage infiltration, 
TGF-beta signaling, EMT, and focal 
adhesion

High-risk group – shorter OS and 
RFS

Esophageal cancer29 C1QA, C1QB, C1QC, CD86, C3AR1, CSF1R, 
ITGB2, LCP2, SPI1, and TYROBP

High M2 macrophage infiltration, 
immunoglobulin binding, immune 
receptor activity, chemokine activity, 
cytokine receptor activity, and 
chemokine receptor binding

High-risk group – shorter OS

EMT, epithelial–mesenchymal transition; MFS, metastasis-free survival; OS, overall survival; pCR, pathological complete response; RFS, 
recurrence-free survival.
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CTSC, SOCS3, PTX3, FN1, PSME2, and 
CXCL9) was constructed, and patients were 
divided into groups with high and low risks of 
progression.21 In another study, MScore included 
26 macrophage-related genes that were positively 
correlated with a lower OS probability in glioma 
patients.22

In thyroid cancer, a four-gene risk-scoring model 
is used to establish a prognostic nomogram that 
independently predicts OS. The immune signa-
ture includes SPP1, CFB, DHRS3, and 
SLC11A1, which are associated with M1 mac-
rophages. Patients in high-risk group had shorter 
OS compared to low-risk patients.23

The M1/M2 two-gene signature (IL-1β, M1 
marker, and TGF-β1, M2 marker) based on 
malignant pleural effusion macrophages of 
patients with advanced lung cancer demonstrated 
a significant association with patient outcome.30 
Univariate and multivariate Cox proportional 
analyses have revealed that the high-risk (M2) 
population have shorter OS and higher mortality 
rates than those of the M1 population.30 The 
analysis of two gene sets associated with the mac-
rophage phenotype revealed a nine-gene signa-
ture (KIF23, BIN1, LAPTM4A, ERAP2, 
ATP8B2, FAM118A, RGS16, ELMO1, and 
RAPGEFL1) in pancreatic cancer patients.24 
Based on this signature, low-risk patients have 
significantly longer OS than those of high-risk 
patients.24

Immune gene sets associated with macrophage 
infiltration. Comparison of tumor samples with 
high and low macrophage infiltration in gastric 
cancer (GC) patients has allowed the establish-
ment of a signature comprising seven genes 
(FGF1, GRP, AVPR1A, APOD, PDGFRL, 
CXCR4, and CSF1R).25 This signature predicted 
OS in five independent TCGA cohorts, wherein 
high-risk patients exhibited higher levels of M2 
macrophage infiltration and lower OS than those 
of low-risk patients.25 A total of 10 hub immune-
regulated genes (IRGs), including S100A12, 
DEFB126, KAL1, APOH, CGB5, GRP, GLP2R, 
LGR6, PTGER3, and cytotoxic T-lymphocyte-
associated protein 4 (CTLA4), are also prognos-
tic in GC.26 High-risk patients have shorter 
survival times than those of low-risk patients. The 
prognostic signature significantly correlates with 
the infiltration of macrophages but not with those 
of other immune cell.26 In another study on GC, 

M2 macrophages were also significantly enriched 
in high-risk patients, as determined by the six-
gene immune-based prognostic signature.27

To study the immune-regulating role of consen-
sus molecular subtype four in colorectal cancer 
(CRC), six immune genes (PROK1, THBS1, 
FGF11, CRP, S100A14, and CCL19) have been 
identified.28 The immune prognostic signature 
allows the classification of patients into high- and 
low-risk groups in terms of relapse-free survival 
(RFS) and OS. M2 macrophages are significantly 
enriched in high-risk patients.28

For esophageal cancer, immune- and stromal-
related genes (C1QA, C1QB, C1QC, CD86, 
C3AR1, CSF1R, ITGB2, LCP2, SPI1, and 
TYROBP) comprise a prognostic model. All 
genes are positively associated with M2 mac-
rophages.29 In head and neck squamous cell car-
cinoma patients, the activated stromal gene 
signature is associated with high expression of M2 
macrophages and other immunosuppressive com-
ponents, for example, WNT/TGF-β signaling, 
but low expression of B-cell clusters, B cell/
plasma cell metagene signatures, and cytolytic 
activity.31 In contrast, in patients with an 
‘exhausted stroma signature’, a high expression of 
the pro-inflammatory M1 macrophage signature 
is observed. Compared with the ‘exhausted 
immune class’, the ‘active immune class’ is a sig-
nificant prognostic factor for better OS and dis-
ease-free survival.31

Among analyzed gene sets from the macrophage-
based IGSs, the only single overlapping genes 
were found – CHI3L1 (two IGSs in BC and gli-
oma), TGFB1 (two IGSs in BC and glioma), 
CSF1R (two IGSs in gastric and esophageal can-
cers), and members of ADAM and SLC gene 
families (breast and thyroid cancer, glioma) 
(Summarized in Table 1, marked in bold). 
CHI3L1 (YKL-40) belongs to chitinase-like pro-
tein family and expressed by macrophages.32,33 
Multiple studies demonstrated the role of YKL-
40 in tumor angiogenesis, tumor growth, inva-
sion, and progression in several cancers, including 
BC and glioma.34–36 Targeting of YKL-40 
resulted in the suppression of tumor growth as 
well as angiogenesis in vivo and in vitro. TGFβ1 
induces M2-polarization in macrophages, while 
macrophage-derived TGFβ1 stimulates tumor 
growth and aggressiveness.37,38 Solute carrier 
(SLC) transporters regulate inflammatory 
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response and glucose-associated metabolism in 
macrophages; however, the role of SLC-
expressing TAMs in cancer is not fully investi-
gated.39,40 The clear role of macrophage-produced 
ADAM proteins in tumor is also not yet 
established.41,42

In summary, macrophage-based signatures are 
strongly correlated with tumor progression and 
poor survival. These observations correspond to 
the pro-tumor activity of M2 TAMs, as demon-
strated in numerous clinical cohorts of cancer 
patients.15

Lymphocyte-related immune signatures
In tumors, T cells play a key role in the develop-
ment of an adaptive immune response that is not 
limited to antitumor effects. The involvement of 
T-lymphocytes in the stimulation of tumor pro-
gression has been established.8 The number of 
tumor-infiltrating lymphocytes (TILs) is a widely 
used morphological parameter based on the defi-
nition of lymphocytes in tumors. However, this 
integral parameter does not provide insight into 
lymphocyte subpopulations. Nevertheless, in 
clinical practice, the TIL amount is used for the 
prognosis of the disease course in patients with 
CRC, BC, and melanoma.43–45 The prognostic 
landscape of TIL-T and TIL-B cells has been 
most comprehensively demonstrated across 30 
cancer types.46 Distinguishing between B and T 
cells is restricted to the analysis of CD20 and 
LCK expression. High LCK protein levels are 
associated with unfavorable prognosis in invasive 
breast carcinoma, prostate adenocarcinoma, 
urothelial carcinoma, thyroid carcinoma, meso-
thelioma, pheochromocytoma, and paragangli-
oma, whereas high CD20 protein levels are 
significantly associated with adrenal carcinoma, 
oral adenocarcinoma, and prostate adenocarci-
noma. TIL-T and TIL-B cells are prognostic fac-
tors only in prostate adenocarcinoma.46

To study immune signatures and their prognostic 
value, researchers frequently attempt to decipher 
the cellular composition of the TME. This indi-
cates the possible significance of certain lympho-
cyte subsets in tumor progression. In BC, the 
immune-related signature (IRS) comprising 15 
genes (NUP43, LOC220729, SNTN, 
TNFRSF18, CYP4F11, ATP6V1H, GRHPR, 
NDRG2, HES5, POM121L1P, ASAH2, CCR9, 
ARHGAP39, NUMA1, and FAM9C) was estab-
lished.47 A high IRS score is associated with a 

shorter OS. Infiltration of B lymphocytes and 
CD8+ T cells in notably higher in low IRS 
patients.47 A total of 15 immune-related genes 
(CD226, KLRD1, KLRC4-KLRK1, IL2, 
KLRK1, ITK, SPN, SLAMF1, CD1C, FASLG, 
CD40LG, TBX21, IL7, LAT, and ITGAX) in 
the TME are associated with favorable prognosis 
in BC patients, suggesting that IRS corresponds 
to effector T lymphocyte activity.48

A four-gene signature (ARNTL2, ECT2, PPIA, 
and TUBA4A), named IPSLUAD, is associated 
with unfavorable outcomes in lung cancer. In 
high-risk patients, defined by IPSLUAD, 
exhausted T cells, natural Treg и Th1 predomi-
nated, whereas Th2, Th17, and follicular helper 
T (Tfh) cells are diminished.49 A 10-gene model 
includes ARAF, HDGF, INHBE, LRSAM1, 
NR1D2, NR3C1, PLXNA1, PML, SP1, and 
TANK, which help stratify small-cell lung cancer 
patients into high- and low-risk groups. Patients 
at high risk exhibit more CD8+ T cells, helper T 
cells, mast cells, and Tfh, but fewer Treg cells 
and CD56bright cell infiltration than those of 
patients at low risk.50 These data partly contradict 
the concept of T-lymphocyte correlation with 
cancer outcome.9 In a lung cancer study, the 
prognostic model TMErisk was constructed 
based on SERPINE1, CX3CR1, CD200R1, 
GBP1, IRF1, STAP1, LOX, and OR7E47P.51 A 
high TMErisk value was a poor prognostic factor 
for OS. Despite the low immune infiltration in 
the high-TMErisk group, an increased accumula-
tion of common lymphoid progenitors, T helper 1 
(Th1) and T helper 2 (Th2) cells, was observed.51 
In that study, T helper cells with opposing activi-
ties had a unidirectional association with 
prognosis.

For GC, three immune-related subtypes 
(Immunity_H, Immunity_M, and Immunity_L), 
according to the ssGSEA score, have been identi-
fied in two independent Gene Expression 
Omnibus datasets.52 Survival analysis has con-
firmed a favorable prognosis for the Immunity_H 
subtype with predominant infiltration of CD4+ T 
cells, CD8+ T cells, and γδT cells. The ADAM 
gene decysin 1 from the Immunity_H subtype is 
highly associated with favorable prognosis.52

Whole-transcriptome analysis of pancreatic 
tumor samples has been used to identify three 
immune infiltrate scores based on CD3, CD8, 
and CD68.53 In one study, to determine whether 
infiltration of these key cell types predicts 
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outcomes, patients were divided into high or low 
infiltration groups. A high CD3 score correlated 
with improved OS, whereas CD8 and mac-
rophage scores were not associated with OS.53 
The results highlighted the lack of correlation 
between cytotoxic lymphocyte infiltration and 
disease outcome. In melanoma, CCL5, GBP5, 
GZMA, GZMH, IRF1, LAG3, NKG7, PRF1, 
and PSMB10 genes are associated with stronger 
T-cell and immune responses. Higher expression 
of the gene signature correlates with CD8+ T-cell 
infiltration and better prognosis.54 Five prognos-
tic immune cell infiltration-related module genes, 
including FPR1, CIITA, KLRC1, TNFRSF6B, 
and WFIKKN1, have been identified in bladder 
cancer patients. The gene signature shows a sig-
nificant positive correlation with several immune 
cells, including CD8+ T cells. Signatures inde-
pendently predicted 1-, 3- and 5-year survival.55

Overall, indicated T-cell-specific gene signatures 
divide cancer patients into high- and low-risk 
groups, where high expression of prognostic genes 
is associated with worse prognosis (Table 2). 
Investigated gene sets contain only few over-
lapped genes – IRF1 (in IGSs of lung cancer and 
melanoma) and class of GBP proteins (GBP1 in 
IGS of lung cancer and GBP5 in IGS of mela-
noma) (indicated in Table 2, marked in bold). 
IRF1 is one of the most important transcriptional 
factors for T-cell differentiation.56 In tumor, 
IRF1 induces the Programmed cell death ligand 1 
(PD-L1) expression and tumor escape.57,58 
Interferon γ (IFN-γ)-inducible guanylate binding 
proteins, such as GBP1 and GBP5, are regulators 
of T-cell activation. Despite the role of GBP pro-
teins in cancer remains contradictory, some stud-
ies propose to use GBP expression for predicting 
immunotherapy response.59–62

Cell non-specific immune signatures
Most studies on immune signatures, which are 
not related to specific immune cell populations, 
were identified for CRC and lung cancer.

In CRC patients, the TME score obtained using 
the CIBERSORT algorithm significantly corre-
lates with naïve B cells, resting memory CD4+ T 
cells, and M0 macrophages.63 The prognosis of 
CRC patients with high TME scores is worse 
than that of patients with low TME scores. Three 
clusters were described according to the TME 
score: TME cluster 1 (TMEC1) with resting 
memory CD4+ T cells, TMEC2 with resting NK 

cells and activated mast cells, and TMEC3 with 
activated memory CD4+ T cells.63 In one study 
on colon cancer, the IRS included genes associ-
ated with antigen processing and presentation 
(LAG3, PSMD11, and TAP2), defense response 
to infection (CEBPB, CXCL9, IRF8, and 
RNASE7), epithelial cell migration (ITGB1 and 
SPARC), and MCFD2.64 Leukocyte subpopula-
tion analysis indicates that the low-risk signature 
is enriched with cytotoxic cells (activated CD4/
CD8+ T cells and NK cells) and is reduced with 
myeloid-derived suppressor cells and regulatory 
T cells (Tregs).64 The expression of IRGs and the 
abundance of tumor-infiltrating immune cells 
(TIICs) in the TME have been compared between 
KRAS-mutant and KRAS wild-type CRC 
patients.65 An immune risk model was established 
comprising IRGs (VGF, RLN3, and CT45A1) 
and a TIIC signature including Tregs, M1 mac-
rophages, and activated CD4+ memory T cells. 
In patients with KRAS mutations, a high abun-
dance of M1 macrophages and activated CD4+ 
memory T cells is associated with better progno-
sis, while a high abundance of Tregs is associated 
with poorer prognosis.65 The additional immune-
related prognostic score consists of 36 unique 
IRGs.66 The signature significantly divides the 
patients into low- and high-risk groups in terms of 
RFS and OS.66 M2 macrophage and mast cell 
infiltration is significantly higher in the high-risk 
group than in the low-risk group, whereas plasma 
cell infiltration was significantly enriched in the 
low-risk group.66 The two-gene immune-associ-
ated RNA-binding protein signature predicts OS 
and drug sensitivity in colon cancer patients.67 
Plasma cells, CD4 memory resting T cells, mono-
cytes, and dendritic cells (DCs) are downregu-
lated in the high-risk group, whereas M0 
macrophages, M2 macrophages, stromal score, 
and immune score are significantly upregulated in 
the high-risk group compared to those in the low-
risk group.67

IRGs found in lung adenocarcinoma are associ-
ated with immune regulation and biological path-
ways such as MAPK signaling. The 10-gene 
immune signature is negatively correlated with B 
cells, CD4+ T cells, CD8+ T cells, neutrophils, 
DCs, macrophage immune infiltration, and 
immune checkpoint molecules Programmed cell 
death protein 1 (PD-1) and CTLA-4.68 In non-
small cell lung carcinoma patients, the M1 signa-
ture, peripheral T-cell signature, and high mRNA 
expression levels of CD137 and PSMB9 shows 
better predictive performance than those of 
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known biomarkers, such as PD-L1 expression, 
tumor mutation burden, or TILs.69 The M1 sig-
nature genes include CBLB, CCR7, CD27, 
CD48, FOXO1, FYB, HLA-B, HLA-G, IFIH1, 
IKZF4, LAMP3, NFKBIA, and SAMHD1, 
whereas the peripheral T-cell signature includes 
HLA-DOA, GPR18, and STAT1. The progres-
sion-free survival (PFS) is significantly longer in 

patients with high M1 and peripheral T-cell sig-
natures.69 The 10-IRG pairs signature associated 
with the tumor immune response was established 
to predict lung cancer patient prognosis 52. 
Patients in the high-risk group have poorer prog-
noses than those of patients in the low-risk group. 
In the high-risk group, M2 macrophage and neu-
trophil infiltration are higher, whereas Tfh levels 

Table 2. Lymphocyte-related gene signatures.

Cancer type Immune gene signature Immune cell type/
functional annotation

Prognosis

Breast cancer47 NUP43, LOC220729, 
SNTN, TNFRSF18, 
CYP4F11, ATP6V1H, 
GRHPR, NDRG2, HES5, 
POM121L1P, ASAH2, 
CCR9, ARHGAP39, 
NUMA1, and FAM9C

Low IRS patients –  
infiltration of B 
lymphocytes and CD8+ T 
cells is notably higher

A high IRS score – 
shorter OS

Breast cancer48 CD226, KLRD1, KLRC4-
KLRK1, IL2, KLRK1, ITK, 
SPN, SLAMF1, CD1C, 
FASLG, CD40LG, TBX21, 
IL7, LAT, and ITGAX

Effector T lymphocytes Associated with 
favorable prognosis

Lung cancer49 ARNTL2, ECT2, PPIA, 
and TUBA4A

In high-risk patients –  
exhausted T cells, 
natural Treg и Th1 
predominated, whereas 
Th2, Th17, and Tfh cells 
are diminished

High-risk group – with 
shorter OS

Lung cancer50 ARAF, HDGF, INHBE, 
LRSAM1, NR1D2, 
NR3C1, PLXNA1, PML, 
SP1, and TANK

In high-risk patients –  
more CD8+ T cells, 
helper T cells, mast 
cells, and Tfh, but fewer 
Treg cells and CD56bright 
cell infiltration

High-risk group – with 
shorter OS

Lung cancer51 SERPINE1, CX3CR1, 
CD200R1, GBP1, IRF1, 
STAP1, LOX, and 
OR7E47P

In high-risk patients – 
increased accumulation 
of common lymphoid 
progenitors, Th1 and 
Th2 cells

High-risk group – with 
shorter OS

Melanoma54 CCL5, GBP5, GZMA, 
GZMH, IRF1, LAG3, 
NKG7, PRF1, and 
PSMB10

CD8+ T lymphocytes Associated with 
better cancer-specific 
survival; low expression 
of these genes – 
worse prognosis on 
immunocheckpoint 
inhibitor therapy

Bladder cancer55 FPR1, CIITA, KLRC1, 
TNFRSF6B, and 
WFIKKN1

CD8+ T lymphocytes High-risk group – with 
shorter OS

OS, overall survival; Tfh, follicular helper T.
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are significantly lower.70 Based on the five-gene 
immune score (ANGPTL4, LIFR, SHC3, PLK1, 
and C6), lung cancer patients in the high-risk 
group have more CD4+ memory-activated T 
cells, activated NK cells, M0 macrophages, M1 
macrophages, and activated mast cells, whereas 
CD4+ memory-resting T cells, monocytes, rest-
ing DCs, and resting mast cells were more abun-
dant in the low-risk subgroup. Tumor immune 
dysfunction and exclusion analysis determined 
that patients in the high-risk group would benefit 
from treatment with immune checkpoint inhibi-
tors (ICIs) more than those in the low-risk 
group.71 In accordance with the above data, not 
only lymphocytes, but also NK cells and M1 
macrophages, demonstrate an association with a 
poor prognosis in contrast to the basic knowledge 
on their antitumor activity.3

GC patients have been stratified into high- and 
low-risk groups according to 16 prognostic IRGs 
(HSPA1A, HSPA1B, HSPA5, MICB, PSMC3, 
TAP2, KIAA0368, RBP1, APOD, VDR, PPP3R1, 
IL11RA, LGR4, NRP1, PLCG1, and GZMB). The 
percentages of CD4 memory resting cells and M2 
macrophages are significantly higher in the high-
risk group than in the low-risk group. In the low-
risk group, activated NK cells, memory activated 
CD4+ T cells, and CD8+ T-cell infiltration are 
abundant.72 The eight-IRG signature is an inde-
pendent prognostic factor for OS in GC patients. 
In the high-risk group, the fractions of CD4+ T 
cells, M2 macrophages, and monocytes are higher. 
The low-risk group has a higher ‘immunophe-
noscore’, reflecting a better response to ICIs.73

In hepatocellular carcinoma (HCC), a risk score 
composed of eight metabolic genes (G6PD, 
GNPDA1, LDHA, ELOVL1, SLC25A24, CAD, 
GTDC1, and AMD1) predicted OS in a training 
cohort (TCGA) and a testing cohort. The high-
risk group exhibited obviously higher macrophage 
accumulation, together with a positive correlation 
with the expression levels of immune checkpoint 
molecules (PD1, PDL1, and CTLA4).74 A five-
gene risk score (ATG10, IL18RAP, PRKCD, 
SLC11A1, and SPP1) was constructed to deter-
mine the prognosis of HCC. In the high-risk 
group, the scores of M1 macrophages, resting 
mast cells, and CD8+ T cells were significantly 
lower than those in the low-risk group.75

An immune signature based on 13-mRNA 
(SULT1C2, EGFL6, DUSP2, BLNK, BATF, 
PPFIBP2, HES1, THBS4, CPA3, NEFL, VWF, 

LRP8, and PDGFD) was established in bladder 
cancer.76 Macrophages and Tregs exhibit a strong 
positive correlation with the immune signature 
score (ISS), whereas neutrophils show a negative 
correlation with ISS. Patients with the high-risk 
subtype have a significantly worse prognosis than 
that of low-risk patients.76 Seven identified blad-
der cancer-specific IRGs (RBP7, PDGFRA, 
AHNAK, OAS1, RAC3, EDNRA, and SH3BP2) 
have prognostic significance for OS, cancer-spe-
cific survival, and PFS.77 Increased infiltration of 
CD4+ T cells, CD8+ T cells, macrophages, neu-
trophils, and DCs was observed in the high-risk 
group. In contrast, a higher B cell level was indic-
ative of a low-risk group.77

Eight immune genes (ITGA7, RBM14, 
DENND4B, LQK1, ZNF709, COL7A1, SP1, 
and NCBP2) have been identified as independent 
prognostic factors for OS in pancreatic cancer 
patients. The infiltration levels of diverse immune 
cells, including DC, iDC, pDC, B cells, T cells, 
Tcm, Tem, Tfh, Th17 cells, and cytotoxic cells, 
in the low-risk group were significantly higher 
than those in the high-risk group.78

A low-risk group of squamous cell carcinoma 
(SCC) patients, who had high proportions of 
naïve B cells and resting mast cells, experienced 
better OS than those of a high-risk group.61 
Genes-immune checkpoint modulators (CD27, 
TNFRSF14, CD276, IDO1, TIGIT, CTLA4, 
ICOS, and LAG3) have prognostic value for SCC 
patients.79

Five IRGs (BUB1B, NDN, NID1, COL4A6, 
and FLRT2) constitute the risk signature for 
prostate adenocarcinoma. The infiltration level of 
CD4+ memory-activated T cells and Tregs was 
higher, whereas the infiltration levels of plasma 
cells, monocytes, activated mast cells, and neu-
trophils were significantly lower in the high-risk 
group than in the low-risk group.80

A four-parameter tumor immune signature based 
on the infiltration of CD8+ T cells, galectin-9+ 
DCs, or DC-like macrophages, a high M1/M2 
ratio, and a high expression of galectin-3 by the 
tumor cells formed a positive prognostic factor for 
long-term survival in patients with stage IV mela-
noma patients.81 IRGs (CHIT1, GTSF1L, 
PLA2G2D, and GNG8) in cervical cancer were 
positively correlated with OS and immune infil-
tration, including activated B cells, effector mem-
ory CD8+ T cells, eosinophils, and plasmacytoid 
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DCs.82 In another study, eight immune cells 
(activated B cells, activated CD8+ T cells, eosin-
ophils, monocytes, activated CD4+ T cells, effec-
tor memory CD8+ T cells, immature B cells, and 
plasmacytoid DCs) were protective factors against 
OS in cervical cancer patients.83

Mixed cell-derived immune signatures should 
provide more comprehensive and stronger prog-
nostic value due to combining the significance of 
diverse cell types. In most of analyzed IGSs com-
prised of mixed cell types, high risk correlated 
with the presence of M2-macrophages, neutro-
phils, CD4+ T lymphocytes, and Tregs, whereas 
low risk correlated with CD8+ T cells, B cells, 
DCs, and NK cells. However, in some IGSs high-
risk group included also M1 macrophages, CD8+ 
lymphocytes, NK cells, and other cytotoxic 
immune cells (Table 3). It means that the unidi-
rectional functions of used cell types, including 
innate and adaptive immune cells, should be 
considered.

Among overlapped genes, we found increased 
expression of LAG3 in SCC, colon cancer (Table 
3) and melanoma (Table 2). LAG3 contributes to 
T-cell exhaustion and is one of the main FDA-
approved ICI targets.84,85 The presence of SLC 
family genes in mixed cell IGSs correlated with 
high macrophage infiltration and was also found 
in macrophage-associated gene signatures (Tables 
1 and 3, marked in bold). At the same time, IGSs 
containing IRF genes positively correlated with 
T-cell infiltration, whereas T-cell-specific gene 
sets also include these genes (Tables 2 and 3, 
marked in bold).

Universal immune signatures not associated 
with specific cancer type
Extensive immunogenomic analysis of more than 
10,000 tumors comprising 33 diverse cancer types 
was performed using six molecular platforms: 
mRNA, microRNA, exome sequencing, DNA 
methylation, copy number, and reverse-phase 
protein arrays.86 Across cancer types, authors 
identified six immune subtypes: ‘Wound Healing’, 
‘IFN-γ Dominant’, ‘Inflammatory’, ‘Lymphocyte 
Depleted’, ‘Immunologically Quiet’, and ‘TGF-β 
Dominant’, which were characterized by differ-
ences in macrophage or lymphocyte signatures, 
Th1/Th2 ratio, extent of intratumoral heteroge-
neity, aneuploidy, extent of neoantigen load, 
overall cell proliferation, expression of immu-
nomodulatory genes, and prognosis. Lymphocyte 

expression signature A high number of unique T 
cell receptor (TCR) clonotypes, cytokines of acti-
vated Th1 and Th17 cells, and M1 macrophages 
were strongly associated with improved OS, 
whereas wound healing, macrophage regulation, 
and TGF-β were associated with worse OS. C3 
immune subtype, defined by elevated expression 
of Th17 and Th1 genes, correlated with better 
OS in six tumor types, and C4 with more promi-
nent macrophage signature, suppressed Th1, and 
a high M2 response correlated with poor OS in 
three cancer types.86

A large associative study including 7007 arrays 
from 32 types of cancers revealed a new T-cell 
signature, named signature-H cells.87 The identi-
fied signature-H included the following 15 genes: 
CD2, CD247, CD28, CD3D, CD3G, CD6, 
GPR171, GZMK, ICOS, ITK, KLRB1, 
PYHIN1, TIGIT, TRAT1, and TRBC1, overex-
pressed by T cells. Interestingly, ‘hot’ cancers 
(lung, stomach, and pancreatic cancers) were 
highly infiltrated with signature-H cells, but not 
with signature-B and signature-C cells, which 
also corresponded to T cells.87

CD8-based signatures consisting of CCL4, 
CCL5, CD27, CD276, CD3D, CD8A, CXCR1, 
CXCL9, CXCL10, HLA-DMB, HLA-DRA, 
HLA-DRB1, LGALS9, NKG7, TNFSF18, and 
STING1 were developed for 12 cancer types. 
The CD8 signature score correlated with the 
CD8 IHC score across all tumor types, except for 
pancreatic and prostate cancer.88

The authors identified a transcriptomic set of 55 
differentially expressed genes highly conserved 
across melanoma, GC, bladder cancer, and renal 
cell carcinoma (RCC) undergoing T-cell attack 
(TuTack focused gene set).89 The 84% of the 
TuTack-focused gene sets consisted of IFN-γ-
related genes. TuTack scores were associated 
with significantly better OS in melanoma, gastric, 
and bladder cancer, but no clear correlations were 
found in RCC.89 However, the roles of interfer-
ons in cancer are contradictory. Type I IFN can 
protect cancer cells from T-cell-mediated cyto-
toxicity through the regulation of Serpinb9.90

Single-cell RNA sequencing (scRNA-seq) of 
tumors, paracancerous tissues, and blood sam-
ples across 21 cancer types was performed.91 The 
abundance of exhausted T cells varied dramati-
cally depending on the cancer type. Minimal lev-
els of exhausted CD8+ T cells was noted in basal 
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Table 3. Cell-mixed immune gene signatures.

Cancer type Immune gene signature Immune cell type/functional annotation Prognosis

Colon cancer64 LAG3, PSMD11, TAP2, CEBPB, 
CXCL9, IRF8, RNASE7, ITGB1, 
SPARC, and MCFD2

Low-risk signature is enriched with 
cytotoxic cells (activated CD4/CD8+ T 
cells and NK cells) and is reduced with 
myeloid-derived suppressor cells and 
Tregs

High-risk group – 
shorter RFS

Colorectal cancer66 CD1D, CXCL16, CXCL11, CCL8, 
DEFA6, S100A2, MMP9, FABP6, 
IDO1, ZYX, F2R, APOBEC3C, 
C5AR1, CCRL2, EDNRA, BMP2, 
NUDT6, TNFSF15, APOBEC3A, 
IRF1, TNFRSF10D, GAL, IL18, 
APOBEC3G, PLAU, LTBP3, 
NEDD4, BIRC5, PTGER4, LIF, 
FGFRL1, IL20RA, GZMB, OSMR, 
NR2F1, and TNFSF9

High-risk group – more M2  
macrophage and mast cell infiltration; 
low-risk group – more plasma cell 
infiltration

High-risk group – 
shorter OS and RFS

Lung cancer68 TRIM58, PDGFB, FPR2, ANO6, 
TLR7, PTGDR2, NR3C2, LIFR, and 
ANOS1

Correlates with B cells, CD4+ T 
cells, CD8+ T cells, neutrophils, DCs, 
macrophage immune infiltration, and 
immune checkpoint molecules PD-1 and 
CTLA-4

High-risk group – 
shorter OS

Lung cancer70 CD19/CXCL16, CD19/CXCL11, 
CD19/TNFSF8, CD79B/TLR4, 
IGLV1-44/S100P, CD28/CD1E, 
CR2/PTX3, TLR7/PTX3, CCL23/
PTX3, and HLA-DQA1/CXCL10

High-risk group – M2 macrophage and 
neutrophil infiltration are higher, while 
Tfh levels are lower

High-risk group – 
shorter OS

Lung cancer71 ANGPTL4, LIFR, SHC3, PLK1, and 
C6

High-risk group – more CD4+ memory-
activated T cells, activated NK cells, 
M0 macrophages, M1 macrophages, 
and activated mast cells; low-risk 
group – CD4+ memory-resting T cells, 
monocytes, resting DCs, and resting 
mast cells

High-risk group – 
shorter OS

Gastric cancer72 HSPA1A, HSPA1B, HSPA5, MICB, 
PSMC3, TAP2, KIAA0368, RBP1, 
APOD, VDR, PPP3R1, IL11RA, 
LGR4, NRP1, PLCG1, and GZMB

High-risk group – CD4 memory resting 
cells and M2 macrophages; low-risk 
group – activated NK cells, memory 
activated CD4+ T cells, and CD8+ T-cell 
infiltration

High-risk group – 
shorter OS

Gastric cancer73 CLIC3, MMD, TMPRSS3, CCL14, 
CDH2, LAMC1, FAM198B and 
UPP1

High-risk group – the fractions of CD4+ 
T cells, M2 macrophages, and monocytes 
are higher

High-risk group – 
shorter OS; the low-risk 
group has a higher 
‘immunophenoscore’ 
reflecting a better 
response to ICIs

Hepatocellular 
carcinoma74

G6PD, GNPDA1, LDHA, ELOVL1, 
SLC25A24, CAD, GTDC1, and 
AMD1

High-risk group – higher macrophage 
accumulation, positive correlation 
with the expression levels of immune 
checkpoint molecules (PD1, PDL1, and 
CTLA4)

High-risk group – 
shorter OS

(Continued)
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cell carcinoma and BC, maximal levels – in head 
and neck, esophagus, and liver carcinomas. For 
CD8+ T cells, the major tumor-reactive T cells 
are exhausted T cells.91 Patients with a higher 
proportion of terminally exhausted CD8+ T cells 
had better survival rates than those with a higher 
proportion of tissue-resident memory CD8+ T 
cells.

Analysis of 10,062 tumor samples obtained from 
32 different cancer types demonstrated that the 
immune signature based on 382 genes was repre-
sented by genes of the Th2 and Th1 pathways. 
The authors mapped signatures with known clus-
ters and revealed that 20% of the genes refer to 
T_Cell_cluster, 5% overlap with B_Cell_cluster, 
and 27% overlap with Th1 cells and macrophages. 
This signature correlated with a favorable prog-
nosis only in melanoma patients.92

Interestingly, the results obtained in multiple types 
of cancer are much stronger criteria that do not 
contradict the postulates of tumor immunology.

Immune signatures predicted immunotherapy 
efficacy
Immunotherapy is the most widely implemented 
therapy in oncological practice, targeting compo-
nents of TME.93 Immunotherapy is based on the 
activity of immune cells in the TME.94 Immuno-
therapy is aimed at reactivating immune compo-
nents suppressed via checkpoints, such as 
CTLA-4 and PD-L1).95 Almost 10 years after the 
introduction of therapeutic options based on 
ICIs, it became clear that there are limitations to 
the effectiveness of this class of drugs.96 This clin-
ical obstacle has encouraged the search for addi-
tional predictors to achieve a complete response. 

Cancer type Immune gene signature Immune cell type/functional annotation Prognosis

Hepatocellular 
carcinoma75

ATG10, IL18RAP, PRKCD, 
SLC11A1, and SPP1

High-risk group – lower scores of M1 
macrophages, resting mast cells, and 
CD8+ T cells were significantly lower

High-risk group – 
shorter OS

Bladder cancer76 SULT1C2, EGFL6, DUSP2, BLNK, 
BATF, PPFIBP2, HES1, THBS4, 
CPA3, NEFL, VWF, LRP8, and 
PDGFD

Positive correlation with macrophages 
and Tregs; negative correlation with 
neutrophils

High-risk group – 
shorter OS

Bladder cancer77 RBP7, PDGFRA, AHNAK, OAS1, 
RAC3, EDNRA, and SH3BP2

High-risk group – CD4+ T cells, CD8+ 
T cells, macrophages, neutrophils, and 
DCs; low-risk group – higher B cells

High-risk group –  
shorter OS, cancer-
specific survival, and 
PFS

Pancreatic cancer78 ITGA7, RBM14, DENND4B, LQK1, 
ZNF709, COL7A1, SP1, and NCBP2

Low-risk group – DC, iDC, pDC, B cells, 
T cells, Tcm, Tem, Tfh, Th17 cells, and 
cytotoxic cells

High-risk group – 
shorter OS

Squamous cell 
carcinoma79

CD27, TNFRSF14, CD276, IDO1, 
TIGIT, CTLA4, ICOS, and LAG3

Low-risk group – high proportions of 
naïve B cells and resting mast cells

High-risk group – 
shorter OS

Prostate 
adenocarcinoma80

BUB1B, NDN, NID1, COL4A6, and 
FLRT2

High-risk group – higher infiltration level 
of CD4+ memory-activated T cells and 
Tregs; and lower infiltration levels of 
plasma cells, monocytes, activated mast 
cells, and neutrophils

High-risk group – 
shorter DFS

Cervical cancer82 CHIT1, GTSF1L, PLA2G2D, and 
GNG8

Correlates with activated B cells, 
effector memory CD8+ T cells, 
eosinophils, and plasmacytoid DCs

High-risk group – 
shorter OS

CTLA-4, cytotoxic T-lymphocyte-associated protein 4; dendritic cell, DC; DFS, disease-free survival; ICI, immune checkpoint inhibitor;  
PD-1, Programmed cell death protein 1; PDL1, Programmed cell death ligand 1; PFS, progression-free survival, RFS, recurrence-free survival;  
Tfh, follicular helper T; Tregs, regulatory T cells.

Table 3. (Continued)
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The critical point is that the immune system is 
not sufficient to eliminate tumor cells by itself; 
otherwise, spontaneous regression would be 
observed more often in tumors without blockade 
of the immune response.97 Therefore, the signifi-
cance of immune signatures should be considered 
in the context of immunotherapy.

To date, most studies have focused on CD8+ 
T-cell infiltration as a predictive biomarker for 
response to immune checkpoint blockade ther-
apy.98,99 In patients with urothelial carcinoma, the 
CD8 signature score was an additional significant 
prognostic parameter for improved PFS and OS, 
along with PD-L1 expression on tumor cells, 
serum hemoglobin levels, and presence of liver 
metastases.88 The ImmuCellAI study indicated 
that 24 immune cell types, particularly different 
T-cell subsets, can serve as predictive biomarkers 
for a better immunotherapy response.100

In a cohort of patients with advanced urothelial 
cancer treated with atezolizumab (an anti-PD-L1 
agent), patients with a low-risk ISS exhibited mark-
edly beneficial clinical outcomes and significantly 
prolonged survival rates compared to high-risk 
group.64 The aforementioned immune signature 
TuTack based on T cells demonstrated that a low 
score was expected to be associated with elevated 
tissue immune responsiveness in melanoma and 
gastric, kidney, and bladder cancers.89 T-cell-based 
immune signature-H favorably predicted the 
response of patients with melanoma to the anti-
PD-1 antibody nivolumab.87 Patients with urothe-
lial carcinoma treated with a PD-L1 inhibitor 
(atezolizumab), belonging to the high-risk group, 
had a higher complete response/partial response 
rate than those in the low-risk group. The risk score 
was established based on the immune thirteen-
mRNA signature (SULT1C2, EGFL6, DUSP2, 
BLNK, BATF, PPFIBP2, HES1, THBS4, CPA3, 
NEFL, VWF, LRP8, and PDGFD).76

A macrophage-related gene signature consisting 
of 12 genes (ANPEP, DPP4, PRRG1, GPNMB, 
TMEM26 related to TAMs, and PXDN, CDH6, 
SCN3A, SEMA6B, CCDC37, FANCA, NETO2 
related to tumor cells) was developed based on 
RNAseq results of TAMs and tumor cells from 
mouse gliomas treated with BLZ945 (a CSF1R 
inhibitor).101 The results were validated in 
patients with glioma from the CGGA and TCGA 
cohorts. A total of 12-gene signature predicted 
the response to anti-CSF1R therapy based on 3- 
and 5-year survival rates.101

Conclusions and future perspectives
The prognosis of the disease is important to iden-
tify groups of patients that require more frequent 
monitoring and treatment adjustments. The 
prognosis is based on the time of survival with-
out metastasis or recurrence or the OS of cancer 
patients during the follow-up period. This means 
that prognostic factors can be considered as cri-
teria for predicting resistance to existing postop-
erative (adjuvant) therapy manifested in the 
follow-up period.

In this study, we collected multiple examples of 
IGSs that are indicative of cancer patient out-
comes. IGSs are constructed using genes associ-
ated with immune system regulation or by a 
composite of immune cells themselves (Figure 1). 
Almost all discovered immune-associated gene 
sets do not have rigorous specificity for immune 
cell types; therefore, their interpretation becomes 
a challenge (Figure 1). The use of machine-learn-
ing algorithms can introduce errors in the recog-
nition of cell types, and consequently, the 
significance of immune signatures can be inter-
preted as uncertain. Moreover, analyzing signa-
tures using not only specific cell types but also the 
combination of innate and adaptive immune cells, 
the unidirectional functions of used cell types 
should be considered. Some of the detected IGSs 
contradict previously obtained data on the signifi-
cance of particular cell subpopulations and their 
known functions in the adaptive and innate 
immune responses.8 However, this is a fairly nat-
urally determined trend, as the same cells can 
have opposite functions in different tumor con-
texts. This trend was most clearly demonstrated 
by Sharonov et al.,102 who described the dual role 
of B-lymphocytes in cancer.

Furthermore, described IGSs are not uniform; 
they do not contain overlapping genes or contain 
genes with different or even opposite activities 
(e.g., genes involved in Th1 and Th2 immune 
responses). They are not properly validated nei-
ther in independent cohorts nor in another cancer 
types. Here, we raise the following question: 
Should IGSs be uniform or specific for cancer 
type? (Figure 1).

Tumors are complex and heterogeneous sys-
tem.103 However, IGSs do not consider the het-
erogeneity of the TME along with the 
heterogeneity of the tumor. By neglecting this 
fact, we run risks of missing meaningful clinical 
significance of individual cell populations and, as 
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a consequence, of predicting the course of the 
disease. Distinguishing more specific subpopula-
tions can help clarify the mechanisms underlying 
tumor regression or relapse/progression. For 
example, recently single-cell RNA sequencing 
revealed a subpopulation of TREM2+ TAMs 
that were an independent indicator of adverse 
clinical outcomes in patients with hepatocellular 
carcinoma.104

The next question is ‘What is more important – 
the predominance of particular cell types in the 
TME or the overall state of the antitumor immune 
response?’ Unfortunately, this question remains 
unanswered, and existing immune signatures are 
not strong enough to address it. Despite the suc-
cessful application of cancer immunotherapy, 
clinical experience has shown that even particular 
patients can respond well to immunotherapy by 
ICIs, and a large percentage (>50%) do not 
respond to this therapy.96 This indicates that the 

mechanisms of immune escape underlie the 
incomplete immune response against tumors. 
The state of the immune system at the onset of 
treatment and after treatment completion can be 
a marker of sufficient or insufficient immune 
response. Spontaneous tumor regression occurs 
in a state of complete antitumor immune response 
that has been described in all types of tumors.105 
Microbial infection plays an important role in 
spontaneous tumor regression accompanied by 
fever, cytokine release, and immune cell polariza-
tion. Th1 cytokines are among the major factors 
of spontaneous regression of melanoma,106 while 
increased amounts of NK cells, as well as CD4- 
and CD8-positive T cells, are observed in BC.97

Studying IGSs in terms of their predictive value, 
efforts should be made primarily to identify pos-
sible mechanisms underlying the low potential of 
the spontaneous antitumor immune response. It 
is important to understand whether innate and 

Figure 1. The role of immune signatures in the prognosis of cancer patient outcome. Overall, IGSs can be 
considered as criteria for predicting the resistance to existing post-operation (adjuvant) therapy manifested 
in the follow-up period. Should IGSs be uniform for all cancers or specific for cancer type is an open and 
important question. One of the main limitations of immune signatures is that existing IGSs do not take into 
account the heterogeneity of the TME, including tumor cell heterogeneity and type of immune response (Th1 or 
Th2). These parameters together with cancer localization should be considered in IGSs. The use of machine-
learning algorithms can introduce errors in the recognition of cell types, and consequently, the significance 
of immune signatures can be interpreted as uncertain. Unified machine-learning algorithms and appropriate 
validation should be used. Only after including all these parameters IGSs can get high prognostic value and 
accuracy. Finally, immune signatures reflecting terminal immune system state in the particular time point can 
be utilized as criteria to stratify patients for immunotherapy.
IGS, immune gene signature; TME, tumor microenvironment.
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adaptive immune cells in the TME have specific-
ity against tumor cells; otherwise, interventions 
based on their targeting will not be effective. 
Restoration of the depleted state of lymphocytes, 
which is considered the main obstacle for achiev-
ing a complete response to immunotherapy, 
remains unresolved issue.107

All the aforementioned evidence brings into ques-
tion the concept that existing immune signatures 
can serve as robust criteria for prognosis. 
However, any immune signature can be utilized 
as a marker of the immune system state at a par-
ticular time point during the treatment course. 
Nevertheless, IGSs associated with a favorable 
outcome should be considered a distinctive fea-
ture of the terminal status of the TME, which 
must be clinically achieved when immunomodu-
latory therapy is administered.
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