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It has been estimated that 10% of acute liver failure is due to “idiosyncratic hepatotoxicity”. The inability to
identify such compounds with classical preclinical markers of hepatotoxicity has driven the need to discover a
mechanism-based biomarker panel for hepatotoxicity. Seven compounds were included in this study: two
overt hepatotoxicants (acetaminophen and carbon tetrachloride), two idiosyncratic hepatotoxicants (felbamate
and dantrolene), and three non-hepatotoxicants (meloxicam, penicillin and metformin). Male Sprague–Dawley
rats were orally gavaged with a single dose of vehicle, low dose or high dose of the compounds. At 6 h and 24 h
post-dosing, blood was collected for metabolomics and clinical chemistry analyses, while organs were collected
for histopathology analysis. Forty-one metabolites from previous hepatotoxicity studies were semi-quantified
and were used to build models to predict hepatotoxicity. The selected metabolites were involved in various
pathways, which have been noted to be linked to the underlying mechanisms of hepatotoxicity. PLS models
based on all 41 metabolite or smaller subsets of 6 (6 h), 7 (24 h) and 20 (6 h and 24 h) metabolites resulted in
models with an accuracy of at least 97.4% for the hold-out test set and 100% for training sets. When applied to
the external test sets, the PLS models predicted that 1 of 9 rats at both 6 h and 24 h treated with idiosyncratic
liver toxicants was exposed to a hepatotoxic chemical. In conclusion, the biomarker panel might provide
information that along with other endpoint data (e.g., transcriptomics and proteomics) may diagnose acute
and idiosyncratic hepatotoxicity in a clinical setting.

© 2014 Sun et al. Published by Elsevier B.V. on behalf of the Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
1. Introduction

Drug-induced liver injury (DILI) is amajor reason fordrug failure inpre-
clinical and clinical trials, and drug recall from themarketplace. DILI, there-
fore, is of major concern to the FDA and consumers [1]. In the USA, more
than 50% of all cases of acute liver failure are attributed to DILI, among
which idiosyncratic DILI (iDILI) accounts for over 10% of the reported
cases [2]. While there is no standard definition, the term “idiosyncratic”
generally refers to adverse reactions with a relatively low incidence
(0.7–1.3per 100,000) inpatients; iDILI is individual-dependent and cannot
bepredictedusingclassical toxicityendpoints incommonlyusedpreclinical
testing species [3]. The FDA's Guidance for Industry (http://www.fda.
gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/
Guidances/UCM174090.pdf) suggests testing blood levels of alanine
aminotransferase (ALT), aspartate aminotransferase (AST), alkaline
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phosphatase (ALP) and bilirubin to diagnose liver injury during clinical
trials. ALT is a biomarker for hepatocyte injury, however, other factors
like exercise or muscle injury can also influence its blood levels [4,5]
thus it is not necessarily specific for liver injury [6–9]. Furthermore,
some drugs (such as fialuridine and troglitazone) do not cause serum
ALT elevation at the initiation of treatment but can induce progressive
damage in hepatocytes, and the resulting cumulative damage may
lead to liver failure [10]. AST is a liver damage biomarker, but it is also
present in heart, muscle and red blood cells and is also used as a cardiac
marker in the clinic [11]. Bilirubin is a functional liver marker but
generally does not increase until severe liver injury occurs [12]. ALP
levels in blood increase when bile ducts are obstructed; however, levels
are also elevated when active bone formation occurs or the bacteria
population changes [13]. The currently used biomarkers do not identify
idiosyncratic hepatotoxicants in preclinical species and, as noted above,
the standard clinical markers are not specific to liver injury. Therefore, a
new biomarker or a panel of biomarkers is needed to provide regulatory
agencies information regarding chemicals thatmay cause drug-induced
idiosyncratic hepatotoxicity in humans.

It is known that chemical-induced toxicity is a multiple-step process
[14] as shown in Scheme 1. After the chemical compound is absorbed,
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Scheme 1. Scheme of the subsequent response stages after drug/toxicants exposure to a biosystem. As end-point products of genes and proteins, metabolic profiles can represent its cor-
responding response status. ADME is an abbreviation for chemical absorption, distribution, metabolism and excretion.
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distributed, andmetabolizedwithin an organism, the parent compound
or its reactive metabolites can cause cellular damage. Once toxic injury
occurs, a cell can try to recover before apoptosis or necrosis, or it may
go through apoptosis or necrosis if the injury is beyond repair. We hy-
pothesize that perturbations in biochemical pathways may occur with
or without observable injury and those biomarkers could be exploited
to provide more specific indicators of potential for toxicity. Similar to
transcriptomic biomarkers [15], these metabolite biomarkers might be
defined as “prodromal,” i.e., changing prior to liver injury unlike classi-
cal biomarkers. Most importantly, the metabolic profile (end-point
products of genes and proteins) of a biosystem is highly sensitive to
drug/toxicant exposure. The goal of these studies is to discover ametab-
olite biomarker panel in blood which is able to reflect animal responses
to a toxicant prior to or during overt liver injury. The hypothesis is that
drugs of an idiosyncratic nature cause disruption in some of these same
biological pathways yet the rats, and most humans, can reverse the ef-
fect before classical signs of injury are seen.

Efforts have been undertaken to discover novel genetic [16,17],
microRNA [18] and proteomic biomarkers [19,20] for DILI prediction
and/or diagnosis.Most recently, Mattes et al. predicted DILI potential
using a database of rat plasma metabolite profiles – MetaMap®Tox
developed by metanomics GmbH and BASF SE [21]. Yang et al. [18]
evaluated microRNA profiles in rat urine 24 h after a single oral
dose of 1250 mg acetaminophen (APAP)/kg, 2000 mg carbon tetra-
chloride (CCl4)/kg, or 2400 mg penicillin (PEN)/kg. It was reported
that the urinary levels of ten microRNAs were increased by APAP
and CCl4 (hepatotoxicants), whereas for the group treated by PEN,
they remained unchanged. The potential diagnostic microRNA bio-
markers of hepatotoxicant-induced liver injury are involved in a
range of biological functions including cell death, lipid metabolism,
and drug metabolism. The present metabolomics study was de-
signedwith the intent to identify metabolic biomarkers of idiosyncrat-
ic toxicity in the blood of rats dosed with compounds that have been
shown to be overt hepatotoxicants, idiosyncratic hepatotoxicants, and
non-hepatotoxicants. The overt hepatotoxicants were APAP and CCl4.
Five additional compoundswere studied and included the idiosyncratic
compounds, felbamate (FEL) and dantrolene (DAN), and the non-
hepatotoxicants, meloxicam (MEL), PEN and metformin (MET). In the
present study, results from the semi-targeted metabolomics study of
the overt hepatotoxicants, APAP [22] and CCl4 [23] and non-
hepatotoxicant PEN [24], were extended to identify a panel of bio-
markers for idiosyncratic hepatotoxicity prediction based upon analysis
of the blood samples collected after dosing with the seven compounds
listed above.

2. Materials and Methods

2.1. Chemicals

Optima LC/MS grade acetonitrile and water were purchased from
Fisher (Pittsburgh, PA). Penicillin V potassium tablets (1600 units/mg)
were purchased from Teva Pharmaceuticals (Sellersville, PA), MEL
tablets (15 mg) were from BI Pharmaceuticals (Ridgefield, CT), FEL tab-
lets (600 mg) were from Meda Pharmaceuticals (Somerset, NJ), MET
tablets (1000 mg) were from Bristol-Myers Squibb (Princeton, NJ),
and DAN capsules (100 mg) were purchased from JHP Pharmaceuticals
(Rochester, MI). All the tablets were ground to a fine powder for dosing.
APAP, methylcellulose, CCl4, formic acid, leucine-enkephalin, imidazole,
pentadecafluorooctanoic acid, L-tryptophan and all the MS standards
were obtained from Sigma-Aldrich (St. Louis, MO). Fig. S1 displays
structures of APAP, CCl4, FEL, DAN, MEL, PEN and MET.

2.2. Animal Care and Treatment

Six- to seven-week-old male Sprague–Dawley rats were obtained
from the FDA National Center for Toxicological Research (NCTR)
breeding colony. Animals were housed individually at a room tempera-
ture between 19 and 23 °C, 40–70% relative humidity, and with a 12 h
dark/12 h light cycle. Animals accessed feed ad libitum for all compound
studies except APAP. Rats in the APAP studywere fasted overnight for at
least 12 h prior to dosing, and feed returned 4 h post-dosing. All exper-
iments were conducted in accordance to the National Institutes of
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Health (NIH) guidelines and reviewed and approved by the Testing
Facility's Institutional Animal Care and Use Committee (IACUC).

Groups of rats were orally gavaged with the vehicle or a single
dose of the compound at the following dose levels: 100 or 1250 mg
APAP/kg, 50 or 2000 mg CCl4/kg, 300 or 1920 mg FEL/kg, 100 or
1000 mg DAN/kg, 100 or 1500 mg MET/kg, 0.4 or 12 mg MEL/kg, or
100 or 2400 mg PEN/kg. Corn oil was used as the vehicle control in
the CCl4 study and 0.5% methylcellulose was used as the vehicle
control for all other compound studies. For the APAP study, there
were 4 rats in the control groups and 7 rats in the treated groups.
For all other studies, 5 animals were used in both the control and
treated groups. The total number of animals used in this study as
well as the group size and number of groups is the minimum re-
quired to properly characterize the response to individual chemicals.
This determination was based on statistical power calculations using
SigmaStat v. 3.1, Build 3.11.0. The “Difference in Means” and “Stan-
dard Deviation” were set based upon historical data obtained from
similar animal experiments. Based on the calculation, a group num-
ber of 4, 5 or 7 provided adequate power for the study. The dose
levels were selected based on the results of range-finding studies
(data not shown). The high doses of all 7 compounds were chosen
to induce mild to moderate adverse effects, while the low doses
were chosen because these doses are similar to the maximum
human doses when scaled on a body surface area basis.

2.3. Sample Collection, Clinical Chemistry and Histopathology Analyses

Rats were anesthetized with carbon dioxide; blood was with-
drawn via cardiac puncture. Rats were then euthanized with carbon
dioxide asphyxiation. Terminal blood was collected at 6 and 24 h
after dosing into serum separator tubes for the APAP study and
EDTA tubes for the other compound studies. The blood samples
were centrifuged (10 °C, 2000 ×g, 10 min) and the serum as well as
the EDTA plasma were removed and frozen at −80 °C until analysis.
Analytes in the clinical chemistry panel included ALT, AST and ALP.
Sections of liver were fixed in 10% neutral buffered formalin, routine-
ly processed and embedded in paraffin, sectioned at 5 μm, stained
with hematoxylin and eosin, and examined by light microscopy. Le-
sions were scored on a 4-point scale [25] (1 = minimal, 2 = mild,
3 = moderate and 4 = marked) by a board-certified Veterinary Pa-
thologist. Food consumption was recorded for all animals.

2.4. Open Metabolic Profiling by LC/QTof-MS

A quality control (QC) sample comprised of 40 common chemicals
for LC/MS open profiling was evaluated. Pooled blood for each study
and the QC sample were run every 10 sample runs by LC/MS tomonitor
the analytical equipment variability, while the samples from each study
were run in a randomized manner.

A 3 μL aliquot of blood supernatant after methanol precipitation
was introduced into a Waters Acquity Ultra Performance Liquid
Chromatography (UPLC) system (Waters, Milford, MA) equipped
with a Waters bridged ethyl hybrid (BEH) C8 column with a dimen-
sion of 2.1 mm × 10 cm and 1.7 μm particle size. The separation
methods were the same as our previous reports [22–24]. The mass
spectrometric data were collected with a Waters QTof Premier
mass spectrometer (Waters, Milford, MA) operated in positive and
negative ionization electrospray modes as reported previously [26,
27]. Briefly, MSE analysis was performed on a QTof mass spectrome-
ter set up with 5 eV for low collision energy and a ramp collision en-
ergy file from 20 to 30 eV. Full scan mode from m/z 100 to 900 and
from 0 to 22 min was used for data collection for serum analysis in
both positive ion and negative ion modes.

Raw UPLC/MS data were analyzed using Micromass MarkerLynx
XS Application Version 4.1 (Waters, Milford, MA) with extended sta-
tistical tools. The same parameter settings for peak extraction from
the raw data were used as previously reported [26,27]. The aligned
data from MarkerLynx analysis for QTof-MS data was filtered using
the pooled QC samples based on the following criteria: i) ions with
% RSD less than 30% in the pooled QC samples were included; ii)
ions present in ≥70% of QC samples were included. In total, 41
metabolites (overlapping metabolite biomarkers from toxicity
studies of the overt hepatotoxicants, APAP [22] and CCl4 [23], that
were also detected in spectra from the other 5 studies) were semi-
quantitated and their intensity was exported from MarkerLynx for
normalization detailed below.

2.5. Statistical and Modeling Analysis

For the clinical chemistry, histopathology and metabolomics data,
the values in the treated groups were compared to their respective con-
trol group and analyzed by a Student's t-test (MS EXCEL). A value of
p b 0.05 was considered statistically significant. The intensity data for
the 41 metabolites was exported from MarkerLynx and were further
normalized in the same dynamic dimension scale. By doing so, all of
the detected ion features are on the same “scale”, which had a variety
of intensity dynamic dimension ranging from 0 to 2000. Data was nor-
malized using the formula: x0 ¼ x

Controlavg
; where x′ is the normalized

data, x is original data, and Controlavg is the average value in the corre-
sponding control rats. Normalizing by the Controlavg reduced the noise
and errors associated with the samples of the seven studies being col-
lected and analyzed over a three-year period. The resulting normalized
data for all 41 metabolites was further subjected to partial least squares
discriminant analysis (PLS-DA) using SIMCA v. 13 (MKS Umetrics AB,
Sweden). Further, SIMCA PLSwas used to buildmodels for themodeling
sets, which were then used to predict the samples in the external test
sets (high dose). At 6 h, the modeling set was comprised of a total of
36 animals (3 of the controls and high dose samples from each non-
hepatotoxicant study (PEN, MEL, and MET) and all controls and high
dose samples from the APAP and CCl4 studies). The prediction set
consisted of a total of 30 animals (the remaining controls and high
dose samples from each study (PEN, MEL and MET) as well all the con-
trol and high dose animals in the DAN and MEL studies). For 24 h, the
modeling set contained a total of 38 animals (3 control and 3 high
dose PEN and MEL samples and 2 control and 3 high dose samples for
MET as well all the control and high dose APAP and CCl4 samples).
The external test set (high dose) consisted of 29 animals (the remaining
control and high dose PEN,MEL andMET samples as well all the control
and high dose DAN and FEL samples). Details about these two subsets
for each time-point are shown in Table 1. The variable importance in
projection (VIP) values generated by SIMCA using 41 metabolites
were used to select subsets of metabolites explaining most of the vari-
ance in the experimental data.

2.5.1. Matlab PLS modeling
An ensemble modeling PLS algorithm written in Matlab (see

Scheme2)was used to build 100 fully randomizedmodels for the training
set (90% of themodeling set size), eachofwhichwas thenused to predict:
i) the hold-out test set (10% of the modeling set), ii) the external high
dose test set of non-DILI and iDILI treated animals and iii) the external
test set comprised of the low dose treated animals from all seven studies.
Details of the modeling and external test sets (high and low dose) are
listed in Table 1. At the end, all aggregated predicted values were aver-
aged and a threshold of 0.5 was used to convert the quantitative predic-
tions to categorical (predicted values ≥ 0.5 were defined as hepatotoxic,
while these b0.5 were defined as non-hepatotoxic). To improve the
flow of the manuscript, predicted “hepatotoxic” is sometimes referred
to hepatotoxicant or hepatotoxicity and non-hepatotoxicant or non-
hepatotoxicity for predicted “non-hepatotoxic”.

Probability density functions describing the distribution of the
quantitative averaged predicted values for the hold-out and the
external test sets (Matlab) were used for risk analysis.



Table 1
Number of animals used for model building and prediction at 6 and 24 h.

Modeling set External test set (high dose) External test set (low dose)⁎

Treatment Non-liver
toxicants:
MEL, MET,
PEN + controls

Liver
toxicants:
APAP, CCl4

Non-liver
toxicants:
MEL, MET,
PEN + controls

Idiosyncratic
toxicants:
DAN, FEL

Non-liver
toxicants:
MEL, MET, PEN

Liver
toxicants:
APAP, CCl4

Idiosyncratic
toxicants:
DAN, FEL

Time point 6 h 9 + 18 9 6 + 15 9 15 10 10
24 h 9 + 17 12 5 + 15 9 15 10 9

⁎ External test set (low dose) was modeled by Matlab PLS.
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The 41 metabolites and the panels of metabolites were subjected
to the pathway analysis (http://www.metaboanalyst.ca). In addition,
the effect of food consumption on the metabolome changes was
elucidated through correlation analysis. Correlations between
metabolite levels and food consumption were calculated using
Pearson's correlation ranking analysis in Statistica v. 9 (StatSoft Inc,
OK, USA).

3. Results and Discussion

An overdose of APAP, a widely used over-the counter analgesic and
antipyretic drug, frequently leads to acute liver failure associated with
hepatic centrilobular necrosis [28]. However, it has been reported that a
therapeutic dose of APAP can cause idiosyncratic acute hepatic injury
[29]. CCl4, a highly toxic chemical agent, is commonly used to elicit exper-
imental liver damage [30]. FEL, an anti-epileptic drug, has been reported
to cause hepatic failure with a risk of 1 in 18,500 to 1 in 25,000 [31].
This has resulted in a black box warning label by the FDA to limit its use
only to patients whose epilepsy is so severe that the benefit of therapy
outweighs the risk of liver failure [31]. DAN, a muscle relaxant, has a
potential for hepatotoxicity at the incidence of 0.35% [32,33]. FEL and
DAN are classified as idiosyncratic hepatotoxicants based on the fact
that the drugs are safe at therapeutic doses for the majority of patients
while a small subset is susceptible to DILI. There are no reports indicating
thatMEL (a nonsteroidal anti-inflammatory drug) and PEN (an antibiotic
widely used for bacterial infection treatment) alone can cause liver injury.
However, other side effects can be induced by these drugs including
gastrointestinal toxicity by MEL [34] and hypersensitivity and diarrhea
by PEN [35].MET is an oral anti-diabetic drug to suppress glucose produc-
tion in the liver, but MET-induced hepatotoxicity is extremely rare.
Scheme 2. Flowchart of the PLSmodeling process. The initial set contained APAP, CCl4, MET, PEN
their corresponding controls.
By 2012, fewer than 10 cases of liver injury have been reported to be as-
sociated with MET and these cases involved concomitant intake of MET
with other potential hepatotoxicants; only one hepatotoxicity case has
been related to MET alone [36]. Therefore, one must be cautious when
using MET as one of the non-hepatotoxicants in the study.

3.1. Clinical Chemistry and Tissue Observations

No gross pathology was observed in kidneys from rats treated with
any of the agents at 6 h or 24 h. Histopathology findings (hepatocyte
vacuolization, hepatocyte necrosis) and clinical chemistry data (ALT,
AST and ALP) specifically related to liver injury are reported in Table 2.

As previously noted for rats in the APAP study [22], there was het-
erogeneity in the degree of hepatic necrosis at the 24 h timepoint in
the high dose group (1250 mg APAP/kg); three animals showed no ev-
idence of hepatic necrosis, one animal had minimal hepatic necrosis,
one had mild hepatic necrosis and two had moderate hepatic necrosis.
ALT and AST levels increased to N1000 U/L in the two rats with moder-
ate hepatic necrosis, while the other 5 animals had ALT and AST levels
similar to controls. Hepatocyte glycogen depletion was observed in all
seven rats 24 h after dosing. The severity ranged fromminimal to mod-
erate. No hepatocyte vacuolization was observed in any of the animals
treated with APAP. The low dose APAP animals had a minor decrease
in ALT at 24 h.

Clinical chemistry data and histopathology results after dosing with
CCl4 have been published previously [18]. All 5 animals in the high dose
treated group had hepatic vacuolization (ranging fromminimal tomild)
and hepatic necrosis (ranging from mild to marked). ALT, AST and ALP
were increased in the treated group (N2 fold). All 5 high dose animals
hadmild tomarked hepatic necrosis (average score of 2.6) andminimal
, MEL and their corresponding controls, while the external test set included DAN, FEL and

http://www.metaboanalyst.ca
image of Scheme�2


Table 2
Clinical chemistry and liver histopathology data (mean ± SD) in rats 6 h and 24 h after a single oral dose of APAP, CCl4, FEL, DAN, MEL, PEN or MET. Bold numbers denote significant
changes at p b 0.05 level relative to their corresponding control.

Compound Dose
(mg/kg)

Hepatocyte
vacuolization

Hepatocyte
necrosis

ALT (U/L) AST (U/L) ALP (U/L)

APAP
6 h 0 0 0 32.5 ± 4.04 110.2 ± 17.0 195.3 ± 42.7

100 0 0 36.4 ± 4.0 106.2 ± 24.9 21.4 ± 77.7
1250 0 0 36.8 ± 0.96 92.8 ± 8.42 184.3 ± 24.2

24 h 0 0 0 67.5 ± 3 98.0 ± 14.1 353.0 ± 89.2
100 0 0 55.4 ± 5.0 102.8 ± 19.6 309.6 ± 47.5

1250 0 1.3 ± 1.4 459.9 ± 673.5 3006.6 ± 5166.3 365.4 ± 63.2

CCl4
6 h 0 0 0 56.4 ± 6.1 109.0 ± 25.3 416.8 ± 49.1

50 0 0.4 ± 0.5 52.2 ± 4.5 122.2 ± 46.5 385.8 ± 39.8
2000 0 1.6 ± 0.5 78.8 ± 32.3 164.0 ± 50.2 331.8 ± 97.3

24 h 0 0 0 59.6 ± 3.1 92.4 ± 7.8 341.2 ± 44.6
50 0 0 68.6 ± 7.8 111.2 ± 53.9 390.8 ± 96.6

2000 1.8 ± 0.4 2.6 ± 0.9 391.0 ± 494.2 1166.6 ± 1612.0 608.0 ± 120.2

Felbamate
6 h 0 0 0 43.8 ± 5.6 96.8 ± 32.1 350.8 ± 50.0

300 0 0 45.2 ± 8.8 88.8 ± 7.9 359.2 ± 78.8
1920 0 0 38.2 ± 5.4 85.4 ± 5.0 254.4 ± 19.3

24 h 0 0 0 49.4 ± 8.2 88.8 ± 14.5 404.6 ± 82.0
300 0 0 51.4 ± 5.6 90.0 ± 2.9 359.0 ± 53.7

1920 0 0 48.0 ± 10.1 95.6 ± 12.8 387.0 ± 69.0

Dantrolene
6 h 0 0 0 48.0 ± 6.2 86.4 ± 7.1 351.4 ± 76.6

100 0 0 40.6 ± 2.4 79.8 ± 14.7 254.6 ± 67.5
1000 0 0 40.6 ± 3.6 79.4 ± 22.7 214.0 ± 55.3

24 h 0 0 0 52.2 ± 11.6 95.2 ± 13.8 333.2 ± 38.2
100 0 0 42.4 ± 5.0 75.6 ± 16.3 269.2 ± 47.7

1000 0 0 31.2 ± 7.5 68.0 ± 5.7 252.6 ± 51.4

Meloxicam
6 h 0 0 0 54.6 ± 9.6 96.2 ± 15.7 499.8 ± 98.7

0.4 0 0 56.6 ± 10.9 95.2 ± 9.4 396.0 ± 84.6
12 0 0 63.6 ± 4.5 101.0 ± 5.0 427.8 ± 71.5

24 h 0 0 0 52.4 ± 3.8 90.8 ± 9.6 421.6 ± 66.1
0.4 0 0 60.6 ± 10.3 106.6 ± 9.5 455.8 ± 80.0

12 0 0 81.0 ± 16.2 111.8 ± 22.8 421.0 ± 92.2

Penicillin
6 h 0 0 0 43.2 ± 4.1 94.2 ± 6.4 309.0 ± 102.0

100 0 0 52.0 ± 7.5 95.8 ± 14.6 397.0 ± 29.3
2400 0 0 51.4 ± 4.0 107.2 ± 12.1 371.6 ± 45.7

24 h 0 0 0 59.4 ± 10.8 103.4 ± 10.2 371.8 ± 58.8
100 0 0 64.4 ± 15.9 102.6 ± 15.8 352.8 ± 100.4

2400 0 0 51.4 ± 9.1 96.0 ± 13.8 326.8 ± 96.3

Metformin
6 h 0 0 0 34.8 ± 16.5 81.2 ± 5.1 254.2 ± 32.2

100 0 0 47.6 ± 11.7 92.6 ± 12.9 292.0 ± 88.4
1500 0 0 70.4 ± 29.8 89.6 ± 13.6 215.0 ± 26.4

24 h 0 0 0 54.4 ± 7.6 125.6 ± 57.1 393.4 ± 127.0
100 0 0 49.8 ± 10.5 92.0 ± 10.6 341.6 ± 134.3

1500 0 0 37.2 ± 6.4 84.6 ± 9.3 237.6 ± 43.7
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to mild hepatic vacuolization (average score of 1.8) at 24 h. There was a
low degree of hepatocyte necrosis reported for animals given the low
dose of CCl4 at the 6 h timepoint.

Low and high doses of FEL, DAN, MEL, PEN and MET caused neither
hepatic vacuolization nor hepatic necrosis at 6 or 24 h. However, for
rats treated with MEL for 24 h, inflammation was observed in the cap-
sule of kidney (1 out of 5), liver (2 out of 5) and other organs including
spleen, stomach, intestine and abdominal cavity with different per-
cent incidences. No other significant increases were observed in
other treated animals at 6 h. Low dose FEL, PEN and MET rats did
not have any clinical chemistry changes at 6 or 24 h. High dose FEL
caused a decrease in ALP at 6 h. Dosing withMEL resulted in elevated
ALT at 24 h in the high dose group (b2 fold increase of the ALT value
of the control group), and elevations in AST at 24 h in the low dose
group. High dose DAN treatment induced significant decreases in
ALT and ALP at 6 and 24 h and AST at 24 h, while low dose DAN
caused a significant decrease in ALT at 6 h and a significant decrease
in ALP at 24 h. High doseMET caused significant decreases in ALT and
ALP at 24 h and a significant increase in ALT (b3 fold increase of ALT
value in control group) at 6 h.

3.2. SIMCA PLS-DA Analysis

It has been recognized that the diagnosis of certain diseases based
upon one individual marker might yield false prediction due to low
sensitivity or low specificity [37,38]. The level of serumALT is a routinely
used clinical biomarker for hepatocellular injury. However, ALT can
markedly increase (N20 fold of the upper limit of normal) in drug
treatments with no liver cell injury, for example after treatment with
tacrine [39] and statins [40]. Tacrine and statins have induced transient



Fig. 1.The scores plot at 6 h (A) and 24 h (B) from the SIMCAPLS training setmodeling using the 41metabolites. VIP plots display the contribution of eachmetabolite to themodeling at 6 h
(C) and 24 h (D). Each dot in the score plots represents one animal labeled as dose compound followed by high dose (H), time point (1 for 6 h and 2 for 24 h) and animal number, for
example APAPH14 is animal #4 in the APAP high dose group at 6 h; while APAPH27 is animal #7 in the APAP high dose group at 24 h.
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elevations in ALT but the liver injury can be self-resolved during chronic
treatment. Thus, although ALT is a sensitive liver injury biomarker, it
alone is impractical for differentiating drugs that cause ALT elevations
where liver injury is self-resolved from drugs that cause liver
injury that progresses to hepatocellular injury. A biomarker panel
based on pathways or common mechanisms of hepatotoxicity would



Fig. 2. The scores plot from the Simca PLS training set modeling using 6metabolites at 6 h (A), 7 metabolites at 24 h (B), and 20metabolites at both 6 h (C) and 24 h (D). Themetabolites
were chosen based on the VIP value from the Simca PLS modeling (Fig. 1C & D). Animal labeling is the same as Fig. 1.
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be ideal for the prediction of liver injury [41]. Themetabolic profiling has
been successfully used to predict drug induced kidney injury in a pre-
clinical study [42]. Hence, our efforts to discover a metabolic biomarker
panel for prediction of liver injury will be based on the common path-
ways underlying hepatotoxicity: i) bile acid metabolism; ii) oxidative
stress, iii) energy pathways related to mitochondrial impairment
and iv) other hepatic cell regeneration pathways [41]. Forty-one blood
metabolites, which were previously detected as commonly altered by
APAP [22] and CCl4 [23], were semi-quantified. The normalized levels
of these metabolites are reported in Supplemental Table S1 for the
24 h samples and Supplemental Table S2 for the 6 h samples.

3.3. SIMCA Hepatotoxic Modeling Results

Fig. 1 shows the scores plot at 6 h (A) and 24 h (B) from the SIMCA
PLS modeling of the sets using all 41 metabolites. Individual metabolite
contributions expressed as VIP values are shown in Fig. 1C & D for 6 h
and 24 h, respectively. Two well distinguished clusters can be observed
in Fig. 1A & B. The animals with negative values on component 1 (t[1])
are those dosedwith overt-hepatotoxicants,while those havingpositive
values on t[1] are either control animals or animals dosed with non-
hepatotoxicants. The predicted values from the 41 metabolite SIMCA
models at 6 h and 24 h are listed in Table S3. The classification accuracy
for the 6 hmodeling set was 94%,while the accuracy for 24 hmodelwas
89%. In the external test set (high dose) for 41metabolitemodeling, one
rat treated with DAN was classified as being exposed to a
hepatotoxicant and twoDAN-treated ratswere ambiguously (highlight-
ed in orange in Table S3) classified at both 6 h and 24 h; while one rat
treated with FEL was predicted as hepatotoxic and two rats treated
with FEL were ambiguously classified at 24 h (Table S3).

The natural drops observed in the VIP plots (Fig. 1C & D) were used
to select a subset of 6 metabolites at 6 h, 7 metabolites at 24 h, and 20
metabolites at both 6 h and 24 h that were further used to build new
SIMCA and Matlab PLS models with a reduced number of metabolites.
Fig. 2 shows the PLS-DA scores plot using 6metabolites at 6 h (A), 7me-
tabolites at 24 h (B), and 20 metabolites at 6 h (C) and 24 h (D). The 6
metabolites in the 6 h model included the following metabolites:
PC(36:4), palmitoylcarnitine, lysoPC(20:1), indoxyl sulfate, lysoPC(20:2)
and lysoPC(18:2). The 7 metabolites at 24 h were as follows: cholic acid,
chenodeoxycholic acid isomer, chenodeoxycholic acid, lysoPC(18:1),
lysoPC(17:0), lysoPC(18:0) and homocysteine. Alternative models using
the top 20 metabolites at both 6 and 24 h, (shown in Fig. 1C & D) were
also explored. A total of 9 metabolites were common to both 6 h and
24 h models (Fig. S2). The common metabolites were: lysoPC(17:0),
lysoPC(18:1), lysoPC(20:0), lysoPC(20:1), lysoPC(20:2), lysoPC(22:5),
oleoylcarnitine, taurocholic acid and oxidized glutathione (GSSG). Similar
to ourmodels using all 41metabolites, the PLS-DA scores plots (Fig. 2) in-
dicate the presence of two distinct clusters; the animals with negative
values on t[1] were those dosed with overt-hepatotoxicants while those
on the positive axis of t[1] were from the control and those treated
with high dose non-hepatotoxicants. Three animals were identified as
outliers in Fig. 2: one rat treatedwith PEN (Fig. 2A & C) and one rat treat-
ed with MET (Fig. 2D) are located within the hepatotoxic cluster, while
one rat treated with APAP (Fig. 2B) is located within the non-
hepatotoxic cluster. The classification accuracy for the 6 h training set
model using 20metaboliteswas 100%,while the 24 hmodelmisclassified
two rats treatedwith APAP and CCl4 resulting in 95% accuracy. Three rats
from the external test set (high dose) based on 20 metabolites were am-
biguously classified including one treated with DAN at 6 h and two rats
treatedwith FEL at 24 h (Table S3). One of the FEL treated ratwas predict-
ed as being exposed to hepatotoxicant at 24 h. The accuracy for the 6me-
tabolite SIMCAmodel at 6 hwas 94%. Two rats treatedwith a high dose of
eitherDANor FELwere ambiguously classified at 6 h. The accuracy for the
7metabolite for 24 h SIMCAmodelwas 89%. One rat treatedwith FELwas
positively predicted as experiences hepatotoxicity while one rat treated
with a high dose of DAN and two rats treatedwith FELwere ambiguously
classified at 24 h (Table S3).

3.4. Matlab PLS Modeling and Risk Estimation Analysis

Alternatively, Matlab PLS models based on the algorithm shown in
Scheme 2 were developed to predict the liver toxicity of FEL and DAN

image of Fig.�2
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and a subset of the non-DILI compounds forming the external test set.
The performance metrics of these models are shown in Table 3. For
three of these datasets (6 h with 6 and 20 metabolites; and 24 h with
7 metabolites), one latent variable (LV) was sufficient to generate
models with accuracy for the training and the hold-out test sets exceed-
ing 97.4%. It was impossible to estimate the accuracy of the external test
as it contained chemicals displaying idiosyncratic behavior (i.e. cannot
be classified as either hepatotoxic or non-hepatotoxic). One out of 4
rats treated with a high-dose of DAN at 6 h was classified as experienc-
ing hepatic injury by both 6 and 20 metabolites models; while no rats
treated with FEL at 6 h were classified as such. At 24 h, one out of five
rats treated with a high-dose of FEL was classified as hepatotoxic;
while no rats treated with DAN were classified as hepatotoxic. Thus, it
can be concluded that both FEL and DAN displayed toxicity patterns
that were time-dependent and had low incident rates. To further esti-
mate the ability of these models to predict hepatotoxic potential, an
external test set (low dose) comprised of animals treated with low
doses of DILI, non-DILI and iDILI compounds were examined. For the
low doses at 6 h, one out of 5 rats dosed with CCl4 or FEL was classified
as hepatotoxic using 6 and 20 metabolites Matlab PLS models, respec-
tively. For the low doses at 24 h, 2 out of 5 samples from rats treated
with APAP and 1 out of 5 samples from rats treatedwithMETwere clas-
sified as experiencing hepatotoxicity using the 6 metabolites model;
while 1 out of 5 samples from MEL or FEL were classified as experienc-
ing hepatotoxicity using the 20 metabolites model. These predictions
indicate that low doses of both APAP and CCl4 have the potential to in-
ducemetabolites changes that are predictive of liver injury before overt
clinical chemistry signs are observed. However, this effect can be ob-
served earlier (at 6 h) in the case of CCl4, while up to 24 h might be
needed to observe metabolic changes in animals treated with low
doses of APAP. An interesting finding in the external test was that
some samples from high and low doses of MET were predicted as
being exposed to a hepatotoxicant. Although MET is classified as a
non-hepatotoxicant in this study, MET has been reported to cause
liver injury in patients [36]. The Matlab PLS external test set (low
doses) showed that the model predictions were below or near the 0.5
cutoff and it has not determined that 0.5 is the optimal cutoff for a hep-
atotoxic prediction in the Matlab PLS models.
Table 3
Matlab PLS model predictions based on the algorithm from Scheme 2.

6 h

Training Hold-out
test

Ext. test
high dose

Ext. tes
low do

6 metabolites (1LV)
PEN 3− 3− 2− 5−
MEL 3− 3− 2− 5−
APAP 4+ 4+ 5−
CCl4 5+ 5+ 4−/1+
MET 3− 3− 2− 5−
FEL 5− 5−
DAN 3−/1+ 5−
Control 18− 18− 15−
Accuracy
(%)

100 100

20 metabolites (1LV)
PEN 3− 3− 2− 5−
MEL 3− 3− 2− 5−
APAP 4+ 4+ 5−
CCl4 5+ 5+ 5−
MET 3− 3− 2− 5−
FEL 5− 4−/1+
DAN 3−/1+ 5−
Control 18− 18− 15−
Accuracy 100 100

+ and − noted as hepatotoxic and non-hepatotoxic; HO = hold out.
To further understand the limitations of the temporalmetabolic pat-
terns used in the PLS models, a cross time examination was performed.
The 7 metabolites model at 24 h was used to predict all animals with
high doses at 6 h and the prediction accuracy (DAN and FEL excluded)
was 78.9% (Table S3 cross time examination). High dose PEN at 6 h
had 3 false positives. We reported that PEN had multiple bile acids
released at 6 h [23] thatmay be due to efficacy of PEN on the gutmicro-
flora when taken orally. Very few APAP and CCl4 samples were predict-
ed as toxic using the 7metabolites 24 h pattern on 6 h samples and this
may be due to that the pattern at 24 h represents a later toxic response
that is not present early in toxicity. The prediction accuracy was 96.2%
when the 6 metabolites panel at 6 h was used to predict all animals
with high doses at 24 h. The false predictions included the 5 rats treated
with APAP that did not show signs of toxicity and two rats treated with
CCl4 clearly indicating that the 6 h pattern at 24 hwas not as sensitive as
the 24 h pattern at 24 h. We then used the 20 metabolites 6 h model to
predict 24 h samples and 20metabolites 24 hmodel to predict 6 h sam-
ples. The results of the 20metabolites 6 and 24 hmodels cross examina-
tion are shown in Table S3. The prediction accuracy at 6 h was 84.2%
using 20 metabolites modeling of 24 h, while the prediction accuracy
at 24 h was 84.5% using 20 metabolites modeling of 6 h. The false-
positive prediction (rats treatedwith PENorMEL) and lack of predicting
APAP as hepatotoxic at 6 h using the 24 hmodelingwere similar to the 7
metabolites model cross time examination. This clearly demonstrates
that the pattern at 24 h represents a later toxic response that is not pres-
ent early in toxicity (6 h). The results of the 20metabolites 6 hmodel at
24 h were very similar to the 6 metabolites 6 h model at 24 h with one
less APAP predicted as hepatotoxic. Thus, the results show that the 6 h
pattern is only seen in some of the later (24 h), more toxic APAP and
CCl4 samples but not all hepatotoxicant samples; the early metabolic
changes canpersist through an extended time and both 6 and 20metab-
olites 6 h models did predict 24 h non-hepatotoxicant or control sam-
ples except for the one MET sample that has consistently predicted as
toxic.

The hepatotoxicity risk of each compound at high doses can be esti-
mated by analyzing the probability density functions of the predicted
quantitative values from the hold-out and external test sets (Fig. 3).
The width and the height of the probability density curve can serve as
24 h

t
se

Training Hold-out
test

Ext. test
high dose

Ext test
low dose

7 metabolites (1LV)
3− 3− 2− 5−
3− 3− 2− 5−
6+/1− 6+/1− 3−/2+
5+ 5+ 5−
3− 3− 1+ 4−/1+

4−/1+ 5−
4− 4−

17− 17− 15−
97.4 97.4

20 metabolites (2LV)
3− 3− 2− 5−
3− 3− 2− 4−/1+
7+ 7+ 5−
5+ 5+ 5−
3− 3− 1+ 5−

4−/1+ 4−/1+
4− 4−

17− 17− 15−
100 100
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an indicator of the range of biological responses. It is interesting to note
that the probability density function of APAP at 24 h is characterized by
a verywide curve, which is consistentwith the observation that two an-
imals had high degrees of necrosis, a few hadminimal injury and a cou-
ple had no injury. The maximum peak of the distribution function may
be related to average hepatotoxicity potential with a peak near 0mean-
ing no injury and a peak near 1.0 having overt injury. Animals treated
with high doses at 24 h (Fig. 3C & D), showed that CCl4 and APAP
were the most toxic agents followed by FEL and DAN; MET, PEN and
MEL were less toxic than other compounds. The results were consistent
with the histopathology data that high dose CCl4 caused more liver
damage than did APAP, while other compounds did not cause hepato-
cyte necrosis (Table 1). Fig. 3A & B also show that CCl4 and APAP are
the most hepatotoxic compounds in both the 6 and 20 metabolites
models. However, it is worth noting that a cutoff of 0.5 was used in
the PLS model (≥ 0.5 as hepatotoxic, b0.5 as non-hepatotoxic), while
all injured animals from the APAP and CCl4 treatments had an average
hold out predicted value of 0.936 at 24 h (when maximum injury oc-
curred). Thus, it is not clear whether N0.5 is the optimal choice for a
cut-off value of predicting whether hepatotoxicity occurred. The proba-
bility density functions of the idiosyncratic compounds may provide a
better hepatotoxicity prediction in the clinic rather than a hard-cutoff
value of 0.5 but more studies are needed before this can determined.
Probability density function analysis was also employed to assess the
hepatotoxic risk of each compound at low doses 6 h and 24 h post-
dosing (Fig. S3). No Gaussian peak probability value was observed
greater than 0.5 for any low dose hepatotoxic prediction in any of the
Matlab PLS models.
Fig. 3. Probability density functions of the average prediction values to assess the risk of each c
tabolites (C) and 20 metabolites (D).
Nine metabolites were common to both 6 h and 24 h (Fig. S2)
models. These common metabolites are classified as energy-related
metabolites (oleoylcarnitine, lipids (lysoPC(17:0), lysoPC(18:1),
lysoPC(20:0), lysoPC(20:1) lysoPC(20:2), and lysoPC(22:5)), bile acids
(taurocholic acid) and oxidative stress-related metabolites (oxidized
glutathione, GSSG). The 9 metabolites are involved in common path-
ways underlying liver injury initiation and response to injury. Bile
acids are synthesized in the liver, thus bile acid flux is a well-known
liver function biomarker [43]. Blockade of bile flow from the liver to
the intestine is one of the characteristics of liver diseases or liver injury.
The rate of bile flow has been reported as an indicator for the recovery
process post liver transplantation [43]. Acylcarnitines have been report-
ed as potential biomarkers for APAP-induced hepatotoxicity, which
could be caused by the disruption of fatty acid β-oxidation due to mito-
chondrial damage [44,45]. It has been reported that oxidative stress is
involved in an animal model of idiosyncratic hepatotoxicity and anti-
oxidant treatments have protective effects against hepatotoxicity in
this model [46,47]. Glutathione has been reported to play an important
role in detoxifying many reactive metabolites from hepatotoxicants.
In humans, 1-lysoPC is produced from phosphatidylcholine by
phospholipase A1 in the liver, brain and mitochondrion. LysoPC(17:0),
lysoPC(18:1), lysoPC(20:0), lysoPC(20:1) lysoPC(20:2), and
lysoPC(22:5) are included in the biomarker panel for both timepoints.
Consistent with the findings in this study, altered lipid metabolism
has been predicted based on the ten urinary microRNAs detected as
potential biomarkers of hepatotoxicity-induced liver injury from the
same APAP, CCl4 and PEN studies [18]. The altered microRNAs, whose
biological functions are related to the lipidmetabolism, are significantly
ompound at 6 h using 6 metabolites (A) and 20 metabolites (B); and at 24 h using 7 me-
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increased in APAP and CCl4 treated animals but decreased in PEN dosed
animals.

Fig. 4 shows the average blood levels of select metabolites including
oleoylcarnitine, palmitoylcarnitine, lysoPC (20:1), and taurocholic acid
for the treated groups of each compound and control at the 6 h and
24 h timepoints. Oleoylcarnitine (Fig. 4A) was significantly increased
in rats treated with APAP and CCl4 at 6 h and 24 h, and also in rats treat-
ed with MET at 6 h. Palmitoylcarnitine (Fig. 4B) was significantly
increased in CCl4-dosed rats and also appeared to be increased by
APAP and FEL although the change was not significant at 24 h. At 6 h,
palmitoylcarnitine was significantly increased in APAP, CCl4, DAN and
MEL treated rats. LysoPC(20:1) (Fig. 4C) appeared to be decreased by
APAP and MEL and was significantly decreased by CCl4, FEL and DAN
at 24 h. At 6 h, lysoPC(20:1) was significantly decreased for APAP, CCl4
and FEL treatments. Taurocholic acid (Fig. 4D) was significantly in-
creased in CCl4-dosed rats at 24 h and significantly decreased in MET-
dosed rats at 6 h.

The 41metabolites and20metabolites at 6 h and24 hwere analyzed
to examine the pathway perturbations using MetaboAnalyst (http://
www.metaboanalyst.ca/MetaboAnalyst/). Results (Fig. S5) showed
that the 41 metabolites were primarily involved in the following path-
ways (p b 0.05): bile acid biosynthesis and glycerophospholipid, phe-
nylalanine, and taurine metabolism were the major impacted
pathways. In the 6 h 20metabolitesmodel, glycerophospholipidmetab-
olism was significantly impacted (p b 0.01). The significantly impacted
pathways by the 20 metabolites in the 24 h model were related to bile
acid and glycerophospholipid metabolism.
3.5. Pearson's Correlation Results

Pearson's correlation was employed to evaluate the effects of food
intake changes on the metabolite levels (Supplemental Table S4). All
metabolites had correlations to dietary intake that were less than 0.5
(|r| b 0.5) except hippuric acid which had strong correlation
(r = 0.61) at 24 h. At 6 h, lysoPC(18:1) and lysoPC(22:5) were signifi-
cantly correlated to food intake (p b 0.05). At 24 h, lysoPC(18:1),
lysoPC(20:2), lysoPC(22:5), oleoylcarnitine,palmitoylcarnitine, PC (38:6)
Fig. 4. Bar graphs of the normalized data of oleoylcarnitine (A), palmitoylcarnitine (B), lysoPC(2
hepatotoxicants (APAP and CCl4), idiosyncratic hepatotoxicants (FEL andDAN), or non-hepatoto
with their corresponding control values.
and phenylalanine were significantly (p b 0.05) correlated to the food
intake.

This preclinical study discovered biomarkers associated with drugs/
toxicants that caused liver injury to predict hepatotoxicity of some
drugs that are known to cause idiosyncratic liver injury in clinical stud-
ies even though there was no significant alteration in ALT, AST and ALP
levels. This can be explained by the nature of the toxicity process in an
organism. As indicated in Scheme 1 and as noted by Gregus [14],
chemical-induced toxicity is a multiple-step process. First, the chemical
compound is absorbed, distributed, metabolized and finally excreted
(ADME) from the biosystem. The toxicant, which may be the parent
compound or its metabolite(s), may interact with macro-biomolecules
(DNA, RNA, proteins) as well as with endogenous metabolites, and re-
sult in varying degrees of harm to the cells. The result of the toxicant in-
teraction with a target or targets is cellular dysfunction/destruction or
neoantigen formation [14]. N-acetyl-p-benzoquinone imine, the reac-
tive metabolite of APAP is known to bind to proteins [48,49] and this
is believed to be the primary mechanism for hepatic necrosis. In much
the same manner, the trichloromethyl radical generated from CCl4
binds tomicrosomal triglyceride transfer protein and disrupts triglycer-
ide exportation from the liver causing steatosis [50]. FEL has been
shown to metabolize to the reactive metabolite, 3-carbamoyl-2-
phenylpropionaldehyde derivative, and this has been hypothesized to
be involvedwith the iDILI induced by this drug [51]. DAN ismetabolized
to the electrophilic metabolite aminodantrolene and this has been sug-
gested to play a role in iDILI [52]. This is consistent with the report that
structural alerts for reactive metabolites were reported for 78–86% of
the top 200 DILI causing drugs including FEL and DAN [53]. The total
amount of injury depends on the amount of the reactive toxicants in
the cell, what type of cellular disruption the toxicants induce, and
other factors such as genetics, disease status and environment. Further,
some drugs or their reactive metabolites can form immunogenic hap-
tens and subsequently stimulate immune reactions. Therefore, human
leukocyte antigen (HLA) polymorphisms have been explored as risk fac-
tors for iDILI. The conduct of genome-wide association studies in a geno-
typed population has identified strong association of HLA-B*57:01 allele
with flucloxacillin toxicity [54]. In the current study, there is no report
indicating HLA or genetic factors are a risk factor for FEL- or DAN-
0:1) (C), and taurocholic acid (D) in animals 6 h and 24 h post-dosing with vehicle, overt-
xicants (MEL, PEN andMET). * indicatesp b 0.05 level compared the values from treatment

http://www.metaboanalyst.ca/MetaboAnalyst/
http://www.metaboanalyst.ca/MetaboAnalyst/
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induced toxicity. Therefore, the model may not be applicable to predict
drugs interacting with HLA variants.

Once toxic injury occurs, the cellmay try to avoid apoptosis or necro-
sis by protective or repair mechanisms. For example, toxicant-induced
changes in mitochondria permeability are usually injuries that cause
cell death but there are occasions that a cell can go through lysosomal
autophagy limiting the injury and promoting survival [55]. These phe-
nomena can be explained by self-protection of anorganism,where reac-
tive metabolites or parent compounds can be deactivated through
conjugation to glutathione, which protects a cell from oxidative stress
[56,57]. Glutathione can also bind to proteins in a process named as
“glutathionylation”, which potentially can protect them from additional
damage due to toxicant binding to cysteine groups in the proteins [57,
58]. The cell can also protect itself from DNA adducts by removing the
modified DNA from the biosystem [59]. The system's response is to re-
pair and protect damaged cells or to adapt to the insult then return to
homeostasis. If the damage is beyond repair, the cellmay go through ap-
optosis or necrosis and release cellular biomarkers like ALT [38]. If the
toxic injury continues to persist and many cells in the liver are not
able to recover, the liver may fail. The metabolic biomarkers discovered
in this study at 6 h were not exactly the same as those discovered at
24 h, whichmight be caused by the temporal corresponding toxicity re-
sponse status after drug/chemical exposure to a biosystem. Of note, no
signs of liver damage were observed in animals treated with iDILI com-
pounds which caused metabolome changes.

The biomarkers observed in these studies were changed upon expo-
sure to DILI compounds (rats with elevated ALT from APAP and CCl4
treatments) and were used to predict iDILI compounds (rats with nor-
mal ALT, DAN and FEL treatments). The metabolic biomarker panel in-
volving multiple pathways has promise in predicting the response
status of the biosystem to toxicants. Although the correlation results
of metabolites with food consumption showed that changes in food in-
takewere correlated to somemetabolite levels, the combinedmetabolic
biomarker panel can shed some light on DILI prediction. In this particu-
lar case, taurocholic acid (r=−0.20), deoxycholic acid (r= 0.15) and
taurodeoxycholic acid (r=−0.11) were not affected by dietary intake
over the seven studies, while the lysoPCs (0.04 b r b 0.40) and
acylcarnitines (−0.04 b r b −0.12) showed some small correlations
but they were in opposite directions. Palmitoylcarnitine and
oleoylcarnitine were negatively correlated to diet, meaning when diet
decreased during toxicity its levels increased. This is the opposite of
what would be expected and has been reported [60] in acute calorie re-
striction inmice. The study inmice indicated that increased β-oxidation
of fatty acids and lower levels of de novo fatty acid synthesis should
lower the levels of palmitoylcarnitine and other medium chain
acylcarnitines. These phenomena indicated that changes in
acylcarnitines could be very likely due to toxicity instead of altered die-
tary intake. LysoPC(22:5) showed significant positive correlations to di-
etary intake and may be related to lower dietary intake during toxicity
or to some lipid metabolism that reduced the levels that occur during
toxicity. To further evaluate the potential of the metabolic biomarker
panel, more drugs or chemicals, more animals and longer chronic dos-
ing of idiosyncratic compounds studies should be tested in dietary con-
trolled studies.

4. Conclusions

In order to discover ametabolic biomarker panel, forty-onemetabo-
lites previously observed in APAP and CCl4 studieswere semi-quantified
in the 7 compound studies. The SIMCA PLS modeling results showed
89% accuracy in the modeling set. This model was further used to pre-
dict rats that were treated with non- (MET, PEN, MEL) or idiosyncratic
(DAN or FEL) hepatotoxicants at 6 and 24 h. Two animals (one dosed
with DAN at 6 h and one dosed with FEL at 24 h) were predicted as
being exposed to hepatotoxicants (Table S3). The Matlab PLS algorithm
generated models with 100% accuracy for the training, and 97.4%
accuracy for the hold-out test sets (Table 3). Both, SIMCA and Matlab
models predicted identical rats treated with a high dose of DAN at 6 h
or FEL at 24 h as being exposed to hepatotoxicants. This is a higher
rate than the false positive prediction rate for control animals in the ex-
ternal test and hold-out training sets where there were no false nega-
tives at 6 h or 24 h. Interestingly, one rat treated with high dose of
MET at 24 h was predicted after hepatotoxicant exposure although
MET was considered as non-hepatotoxic in the experimental design.
This phenomena supported the clinical report that MET could cause
hepatotoxicity alone [36]. The common metabolites observed in the
models at 6 h and 24 h are involved in fatty acid β-oxidation, bile acid
metabolism and glycerophospholipid metabolism, which have been
noted to be linked to the underlying mechanism of hepatotoxicity. The
panel showed its potential to distinguish idiosyncratic hepatotoxicants
prior to liver damage. Based on a 0.5 cutoff, the Matlab PLS model pre-
dicted one DAN at 6 h and one FEL at 24 h animals as being exposed
to hepatotoxicants. The metabolic profile is related to injury and re-
sponse of the animals to the drug/toxicant administration. For example,
the APAP rats at 24 h that did not show overt liver injury were able to
repair their injury but still had similar changes in the metabolites as
the animals with liver injury. This may also be the case for one dosed
with FEL or DAN. It is very challenging to predict howmany clinical pa-
tients or previous preclinical studies on FEL or DAN would be classified
in this category. Cross time examination results showed that the 24 h-
metabolite models predicted animals at 6 h with less accuracy than
the 6 h models used in predicting the hepatotoxic effect on rats at
24 h. Themetabolites found effective at 24 h were not highly predictive
of the hepatotoxic effect at 6 h and therefore themetabolites in the 24 h
model may represent later metabolic changes to toxicity than occurs
early on. Likewise, the 6 h metabolites were not as sensitive to hepato-
toxicity at 24 h as the 24 h metabolite models, since the 6 h model
contained mostly early changes and was not covering as many toxicity
pathways as the metabolite in the 24 h model were. More studies are
needed to further test the sensitivity, specificity and limitations of the
temporal biomarker panels, and to test the translation potential to
other species before major conclusions can be made about the useful-
ness of the metabolic patterns, associated pathways and models. In
terms of sensitivity and reproducibility, not only more acute and idio-
syncratic drugs need to be tested, but several idiosyncratic drugs con-
nected to HLA hypersensitivity need to be evaluated to determine
whether they would have a different metabolic pattern. For specificity,
more non-hepatotoxic drugs need to be tested as well as drugs that
cause damage to other organs. More animal numbers and more species
are needed for temporal pattern refinement and Gaussian probability
fitting for the chemical idiosyncratic hepatotoxic risk predictions. None-
theless, the mechanism-based biomarker panel could provide comple-
mentary prediction information in hepatic injury by themselves or in
conjunction with current clinical biomarker (ALT, AST and ALP) and
other emerging biomarkers such as proteomic, transcriptomic or
miRNA biomarkers that may improve regulatory and clinical decision
making.
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