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Abstract: Drowsiness detection (DD) has become a relevant area of active research in biomedical
signal processing. Recently, various deep learning (DL) researches based on the EEG signals have
been proposed to detect fatigue conditions. The research presented in this paper proposes an
EEG classification system for DD based on DL networks. However, the proposed DD system is
mainly realized into two procedures; (i) data acquisition and (ii) model analysis. For the data
acquisition procedure, two key steps are considered, which are the signal collection using a wearable
Emotiv EPOC+ headset to record 14 channels of EEG, and the signal annotation. Furthermore,
a data augmentation (DA) step has been added to the proposed system to overcome the problem
of over-fitting and to improve accuracy. As regards the model analysis, a comparative study is also
introduced in this paper to argue the choice of DL architecture and frameworks used in our DD
system. In this sense, The proposed DD protocol makes use of a convolutional neural network (CNN)
architecture implemented using the Keras library. The results showed a high accuracy value (90.42%)
in drowsy/awake discrimination and revealed the efficiency of the proposed DD system compared
to other research works.

Keywords: drowsiness detection; EEG signals; Emotiv EPOC+; deep learning; data augmentation;
convolutional neural networks; classification; awake/drowsy states

1. Introduction

Over the past three decades, we have seen changes in driving conditions and driver
safety due to the vast efforts of research studies and government agencies. According to
available estimates [1], more than 1.3 million people die per year, and about 20 to 50 million
people suffer non-fatal injuries due to road accidents. Drowsiness and fatigue, immediately
after high speed and alcoholism [2], are the main causes of traffic injuries in many areas
such as aviation [3], the military sector [4] and driving [5]. However, drowsiness detection
(DD) researches [6,7] have been a subject of interest in recent years. This is now a real
up to date problem in the current Covid-19 pandemic [8] where medical equipment is
commonly overbooked.

Drowsiness [9] is an intermediate state between wakefulness and sleep. This state is
mainly defined by heaviness in terms of reaction, changes in behavior, reflex reduction,
and the difficulty of keeping the head in the frontal position of the vision field. In this regard,
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several means such as videos [7,10] and biomedical signals [11,12] have been targeted
for DD. On the one side, the video-based applications for DD are efficient and robust
against noise and lighting variations [13]. Nevertheless, the biomedical signals are the best
indicators of drowsiness relative to video features, according to [14]. In this context, several
biomedical signals, such as electroencephalogram (EEG) [15], electrocardiogram (ECG) [16],
electromyogram (EMG) [17] and electrooculogram (EOG), have been used for various DD
studies [18–21]. Among them, EEG is probably the most efficient and promising modality
of DD [22,23] thanks to various existing EEG-based technologies [24]. Furthermore, this
modality provides a good state of DD accuracy rate and also is more appropriate than
percentage-of-eye-closure (PERCLOS) [25] indicator in the evaluation of driver drowsiness.
Thanks to its high temporal resolution, portability, and inexpensive cost, the Emotiv EPOC+

(https://www.emotiv.com/epoc/ (accessed on 1 June 2020) headset [26] is considered one
of the most commonly used among the EEG-based technologies. The neurotechnology
headset is a brain measuring data hardware that enables to record brain activity using
fourteen electrodes placed on the participant’s scalp. In this paper, we focus on an EEG-
based DD system using the Emotiv EPOC+ headset to record brain activity by analyzing
the drowsy or awake states.

Over this decade, many EEG-based research works related to machine learning
(ML) [27–30] have been suggested in medical diagnosis, in particular for classification-based
drowsiness detection tasks. Nevertheless, some limitations appear in ML applications such
as the need for a massive dataset to train, limitation predictions in return, the need of an
intermediary step for feature representation and drawing conclusions to detect anomalies.

In addition, deep learning (DL) researches [31,32] have recently shown notable
progress in biomedical signal analysis especially classification-based anomaly detection.
However, DL [33] is now the fastest sub-field of ML technology [34] based on the artificial
neural networks (ANNs) [35]. Interestingly, DL networks offer great potential for biomedi-
cal signals analysis through the simplification of raw input signals (i.e., through various
steps including feature extraction, denoising, and feature selection) and the improvement
of the classification results. Various DL models have been applied to biomedical signal
analysis [36] particularly for recurrent neural networks (RNNs) [37], long short-term mem-
ory (LSTM) [38], auto-encoder (AE) [39], convolutional neural networks (CNNs) [40], deep
stacking networks (DSNs) [41], etc. Among them, CNNs models [42] are the most fre-
quently used in biomedical signals classification for anomaly detection due to its high clas-
sification accuracy. In this sense, several biomedical signals-based CNNs studies [43–45]
have been suggested for anomaly detection tasks using various architectures such as CNN,
visual geometry group network (VGGNet), Residual Network (ResNet), Dense Net, Incep-
tion Net, etc. In the present study, a CNN architecture is developed to classify the drowsy
or awakeness states of each participant using an Emotiv EPOC+ headset.

Along with the growing success of CNNs, the interest in data augmentation (DA)
quickly increased. Numerous DL research works have integrated the DA technique [46,47]
in the training step in order to avoid over-fitting and improve the performance of the
networks by increasing accuracy. In our work, we integrated the DA technique to improve
the performance of the proposed system.

According to [48], the authors proposed an algorithm that uses features learned apply-
ing a CNN to capture various latent facial characteristics and various complex nonlinear
characteristics. This system is used to warn the driver of drowsiness and to prevent traf-
fic accidents. The trained classifier results give a classification accuracy equal to 92.33%.
Likewise, in [49], the authors used an RNNs architecture to detect driver fatigue in real-
time. The experimental part presents good results (92.19%). In [50], the authors propose
a Complex Network-Based Broad Learning System (CNBLS) to differentiate between the
fatigue and alert state using EEG signals. The experimental results showed an average
accuracy of around 100%. In [51], the authors suggest the detection of driver fatigue using
a single EEG signal with the AlexNet CNN model. The achieved accuracy is respectively
equal to 90% and 91%. According to [52], a system composed of deep CNNs and deep
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residual learning with EEG signals is proposed to detect mental driver fatigue. The re-
sults showed an average accuracy reaching, respectively, to 91.788% and 92.682%. In [53],
the authors proposed a system to detect driver drowsiness based on differential entropy
(DE) with a novel deep convolutional neural network. The experimental results showed an
accuracy equal to 96%. In [54], an EEG based prediction has been developed to transform
the recorded EEG into an image liked feature map applying a CNN architecture. This
approach offers a 40% detection score in the drowsy class.

The aim of our paper is to develop a new EEG-based DD system based on a CNN
model. Our system is validated through individual performance assessment and compari-
son with other CNNs architectures used in biomedical signals analysis.

The rest of this paper is divided into four sections. In Section 2, we introduce the sug-
gested system using the Emotiv EPOC+ headset. Moreover, we introduce the methodology
used for EEG data acquisition as well as the architectures used for drowsiness analysis. In
Section 3, the experimental results of the proposed system are listed. A discussion is given
in Section 4. Finally, conclusions and future work are drawn in Section 5.

2. Materials and Methods

Our protocol introduces a new classification system between drowsiness or awakeness
states using the Emotiv EPOC+ headset to record 14 channels of EEG signals. The pipeline
of the proposed system is represented in Figure 1. Data acquisition and model analysis are
the two main procedures of our system. A detailed description of each procedure is given
in the following subsections.

Data Acquisition

Signal Collection Data preprocessing

Raw EEG data

Emotiv Epoc headset

Data Preparation

IIR filter

Signal Annotation Data Augmentation

Model Analysis

Convolutional Neural Network

Feature Extraction Classification

Keras
Drowsy/awake states

Output

Figure 1. Pipeline of the proposed drowsiness detection (DD) system.

2.1. Data Acquisition

The EEG data acquisition procedure consists of two main steps that are signal collec-
tion using the Emotiv EPOC+ headset and data preprocessing. A description of each step is
provided as follows.

2.1.1. Signal Collection

The signal collection step is developed by two processes, which are the hardware and
the software parts [55]. The Emotiv EPOC+ hardware is a non-invasive brain-computer
interface (BCI) used for the development of the human brain and contextual research.
Figure 2 illustrates the various Emotiv EPOC+ helmet components used in the experimental
step consisting of a headset, a fourteen-sensors box, a USB key with cable for battery
recharging that ensures the connection between the headset and the Emotiv Pro software,
and a saline solution [56] that ensures impedance and contact with the cortex. Compared
to medical gel [57], the saline solution is easy to use and maintains effective contact with
the scalp of men and women.
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(a) (b) (c) (d)

Figure 2. The different components of the Emotiv EPOC+ headset: (a) helmet, (b) fourteen-sensors
box, (c) saline solution and (d) USB Key with cable.

The Emotiv EPOC+ headset provides excellent access to professional-level brain data.
As shown in Figure 3, this helmet contains fourteen active electrodes with two reference
electrodes, which are Driven Right Leg (DRL) and Common Mode Sense (CMS). The
electrodes are mounted around the participant’s scalp in the structures of the following
zones: frontal and anterior parietal (AF3, AF4, F3, F4, F7, F8, FC5, FC6), temporal (T7, T8),
and occipital-parietal (O1, O2, P7, P8). Table 1 presents some of the main characteristics of
the Emotiv EPOC+ helmet.

AF3

F3

F7

FC5

T7

CMS

P7

O1 O2

P8

DRL

T8

FC6
F4

AF4

F8

Figure 3. Location of the Emotiv EPOC+ helmet of the International System (10–20) [58].

Table 1. The characteristics of the Emotiv EPOC+ helmet.

Characteristics EEG Headset

Number of channels 14 (plus 2 references CMS and DRL)
Channel names AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4
Sampling rate 128 SPS (2048 Hz internal)

Sampling method Sequential sampling
Bandwidth 0.2–45 Hz, Digital notch filters at 50 Hz and 60 Hz
Resolution 14 bits
Filtration Sinc filter

Dynamic range 8400 µV (microvolts)

The EmotivPRO software allows visualizing the data streams in real-time including
all data sources. This program configures the vertical scaling of the EEG Graphics with
the multi-channel and single-channel display mode. Subsequently, the raw EEG data are
exported in European Data Format (EDF) or Comma-Separated Values (CSV) formats that
are considered as the input of the data preprocessing step.

2.2. Data Preprocessing

The specific preprocessing steps of the EEG data revolve around the following points
that are data preparation, signals annotation, and data augmentation.

2.2.1. Data Preparation

Various noise sources are targeted in the portion of the raw signal including eye
blinks [59,60], dipolar size variance, muscle switches, inherent electrical properties and
physical arrangement of various tissues [61]. Data preprocessing is a preliminary step
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to EEG data denoising. In this context, various filters based on EEG denoising methods
have been suggested as infinite impulse response (IIR) and finite impulse response (FIR)
filters. Other sophisticated denoising approaches could be considered at the expense of
higher computational complexity [62,63]. In our work, we propose to use an IIR filter that
manages an impulsive signal within time and frequency domains. The IIR filter function
can be expressed as the following discrete difference :

y(n) =
M

∑
m=0

bmx(n − m)−
N

∑
m=1

amy(n − m), (1)

where y(n) refers to the filtered signal, x(n) represents the input signal, bm and am refer
to the coefficients of the filter, and N represents the order of the filter. Subsequently, we
convert the EEG signal from the time domain to the frequency domain using the fast
Fourier transform (FFT) [64]. The key task of the FFT is to take to 1024 samples from
the input signal in the time domain and generate the output frequency of 128 Hz in the
spectrum domain. In this work, alpha and theta waves analysis are accomplished using
the FFT by adopting standardized EEG data.

2.2.2. Signals Annotation

The central nervous system (CNS) [65] consists of the spinal cord, the cerebellum,
and the brain. The latter is divided into two parts: the right and left hemispheres. There
are four lobes in each hemisphere, which are frontal, parietal, occipital, and temporal.
Predominantly, the EEG signal is split into large spectral frequency bands related to EEG
processors and rhythms of various frequency waves [66,67]. Brainwaves are usually
classified into five frequency and amplitude bands [66] including Gamma, Beta, Alpha,
Theta, and Delta where each band wave refers to identifying states of participants. Other
mixed bands, such as Alpha-Theta (5–9 Hz) [68], have also appeared, which refers to
waking and relaxation states. Table 2 presents a brief description of each brainwave from
EEG signals.

Table 2. Characteristics of brain waves.

Brainwaves Description Frequency Interval Location

Gamma Refers to hyper-vigilance state >30 Hz —
Beta Refers to alert state 13 to 30 Hz Frontal and Central

Alpha Refers to waking state 8 to 13 Hz Frontal and Occipital
Theta Refers to the half-sleep 4 to 7 Hz Temporal and Median

Alpha-Theta Refers to waking and relaxation states 5 to 9 Hz Temporal and Occipital
Delta Refers to consciousness and sleep states 0.5 to 4 Hz Frontal lobe

The main functions associated with the six brainwave frequencies are described in the
following in order to identify the electrodes that allow the detection of drowsy/awake states.

• Gamma bands have a frequency ranging from 30 to 70 Hz and an amplitude value
between 3 µV to 5 µV. These waves are used to detect Alzheimer’s disease [69].

• Beta wave is generated from the cortex region with frequency values from 13 to 30 Hz
and a low amplitude ranging from 2 to 20 µV. These waves are related to awake states
and various pathologies and symptoms of drugs.

• Alpha band is produced from the thalamus area with a frequency ranging between
8 to 13 Hz and amplitude values between 20 to 60 µV. This band is detected with eyes
closed to generating relaxation and awake states with attenuating drowsiness.

• Theta wave is produced from the neocortex and hippocampus areas of the brain with
frequency values from 4 to 7 Hz and an amplitude ranging from 20 to 100 µV. This
band is correlated with a drowsiness state.

• Delta wave is produced from the thalamus with a spectrum range of 4Hz and an
amplitude ranging from 20 to 200 µV. The wave is shown in the deep stage of sleep.
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• Alpha-Theta waves have a frequency ranging from 5 to 9 Hz and amplitude values
between 20 to 100 µV. These bands refer to awake and drowsy states.

Furthermore, drowsiness is an intermediate state between awakeness (i.e., wake-
fulness) to sleep. During awakeness, beta waves are analyzed in the human brain [70].
The drowsy stage is called stage 1 of sleep, the correlation is assured by alpha and theta
bands [71–74]. The decrease in the alpha band and the rise in the theta frequency band
expresses drowsiness [75]. The drowsy state is a transitional phase between wakefulness
and sleep, which is experienced in theta brain waves. This step is characterized by a
decrease in the EEG waves frequency with an increase in their amplitude. The third and
fourth steps are related to deep sleep, which is characterized by a low frequency and high
amplitude fluctuation of the delta waves [76]. According to this analysis, we support that
the alpha-theta waves are the best bands for detecting the drowsy state. Our annotation
is based on the study of Alpha-Theta waves for drowsiness/awakeness detection from,
respectively, the occipital and temporal regions. The illustration of our annotation for the
awake and drowsy states mentioned by O1, O2, T7, and T8 is shown in Figure 4. During the
awakeness state, the amplitude is characterized by the lowest value while the drowsiness
state is characterized by the highest value.

(a) Awake (b) Drowsy

Figure 4. Example annotation of drowsy (a) and awake (b) of our electroencephalogram (EEG)
signal collection.

2.2.3. Data Augmentation

In the recent year, DA [77] has been shown to achieve significant performance for
DL with increasing accuracy and stability and reducing over-fitting. As developed in [46],
DA is a process in which new data are artificially created from the current data on the
training phase. In [78], the need for developing a DA technique contributes to avoiding
over-fitting, improves classification accuracy and stability [47,79] then better generalizes
on new data and enhances performance in imbalanced class issues [80]. Furthermore,
DA allows improving the efficiency of CNN in the BCI field by overcoming the problems
of small datasets. DA effectiveness varied considerably across techniques. However,
sampling methods, noise addition, windows sliding, and Fourier transform are considered
as the classic examples in signal classification tasks. Growingly, the DA techniques are
used with DL networks on EEG signals works to generate new samples based on existing
training data [46]. This technique presents various advantages as it increases the model
robustness against the variability of the input without decreasing the efficient capacity [81].
In our work, DA steps are applied only to the training set in order to prevent over-fitting.
The main idea of this procedure is to generate new samples by labeling retraining data
transformations. The proposed DA method is considered as the opposite operation to
dropout [82] where a small volume of training data are duplicated randomly and appended
to the training set. For instance, each EEG segment of the training set added a form of
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opposite operation to the dropout where the segments were extended by duplicating the
vectors at random time points to a fixed length in the time dimension.

2.3. Model Analysis

Choices of the different architectures and frameworks of DL used in the proposed DD
system are argued by a comparative study. This section introduces our DD system based
on comparative analysis.

2.3.1. Comparative Study

Simple CNN, ResNet, WaveNet, and Inception are among the best CNNs networks
widely used in biomedical signals analysis studies. Based on recent works [42,83–97],
a comparative analysis is provided in the following using various performance criteria as
complexity, 1D-dimension, performance and time-consumption. In this regard, specific three
tests (2, 3 and 4 states) with various values are given for each criterion as following.

• 2 states (0, 1),
• 3 states (0, 0.5, 1),
• 4 states (0, 0.33, 0.66, 1),

where 0 value is the low level, 1 value represents the high level, 0.33, 0.5, and 0.66 are
intermediate levels. Table 3 indicates the score of the architectures with 2, 3, and 4 states.

Table 3. The architectures scores with 2, 3, and 4 states.

CNNs Architectures ResNet Inception WaveNet Simple CNN

References [86–90] [96,97] [84,91] [42,92–95]
States number 2 3 4 2 3 4 2 3 4 2 3 4

Complexity 0 0 0.33 0 0 0.33 0 0 0.33 1 1 1
Performance 1 1 0.66 0 0.33 0.5 1 0.5 0.66 1 1 1

Time-consumption 0 0.5 0.66 0 0.5 0.66 1 0.5 0.66 1 0.5 0.66
1D-dimension 1 1 0.66 0 0.5 0.66 1 1 1 1 1 1

Total 2 2.5 2.31 0 1.33 2.15 3 2 2.65 4 3.5 3.66

For instance, 0 value indicates more complexity and time-consumption, low perfor-
mance and unused for 1D-dimension, while a value of 1 indicates less complexity and time-
consumption, high performance and widely used for 1D-dimension. The highest score is
identified by the best architecture used in biomedical signals classification. According to
the reported results, the high total value is presented by the Simple CNN architecture.

As regards the choice of the DL framework, there are numerous open-source frame-
works [98,99], such as keras [100], tensorflow [101], and pytorch [102]. In the developing
of DL models, the Keras framework offers a high level in build blocks by using particular
libraries, such as TensorFlow, dedicated for operations characterized by a low level [103].
In this context, we have used the Keras DL library with a sequential model applied to the bi-
nary classification. Keras is used to build the architectures with TensorFlow backend [104].
This framework presents high-level application programming interfaces (APIs) developed
on top of TensorFlow. This model is characterized by its easy use and its simplicity.

Regarding the choice of the optimization algorithm, many optimizers exist in the
literature such as Adam [105], Stochastic Gradient Descent Optimizer (SGD) [106] and
Root Mean Square Propagation (RMS prop) [107]. In this context, SGD is the most popular
optimizer, which is simple and effective for finding optimal values in a neural network.
In this work, we have used an SGD optimizer.

2.3.2. Proposed Simple CNN Model

The diagram of the proposed CNN used in our DD system is presented in Figure 5. All
the EEG windows with 3.75s are the input of our proposed model. Via four convolutional
and one max-pooling layers, EEG signals move followed by seven batch-normalization
and one fully connected layer. All layers are equipped with the activation function of the
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rectified linear unit (ReLU). The pooling process chooses the maximum pooling procedure
that can accomplish both reduction of dimensionality and invariance. In addition, dropout
processing [82] is used to reduce the risk of over-fitting. Throughout the structure of our
network, the fully connected layer serves as a classifier when mapping between high and
low dimensions. The different layers of the proposed CNN model used in our DD system
are detailed in the following.

Max Pooling

Conv layer

Feature extraction

Flatten layer

Dropout

Output

Drowsy

Awake

Batch Normalization (BN) 

layer

Pooling layer

...

...

Dense layer

Classification

Flattening

Input 

Input EEG Convolution

BN layer

Figure 5. Diagram of the proposed convolutional neural network (CNN) model.

• Convolutional layers
The layers allow filter application and features extraction [108] based on the input
EEG signals. The equation below presents the convolution operation.

Yi = bi + ∑
n

Win ∗ Xn, (2)

where * is the convolution operation, Yi presents the feature map, bi is the bias
term, Win is the sub-kernel of channel and Xn is the input signal. Table 4 presents a
description of the four convolutional layers purpose.

Table 4. Convolutional layers parameters.

Parameters Role

Filters Feature extraction
Kernel size Convolutional window specification

Kernel initializer Initialization of all values
Activation Applied after performing the convolution

• BatchNormalization layers
As known in DL, there are two fundamental problems [109], which are the over-fitting
and the long training duration. The Batch Normalization (BN) layers are used to scale
and speed up the learning process. Accordingly, each BN stratum normalizes the
previous activation layer by subtracting the average batches, as well as divides it by
the standard deviation.

• Dropout layer
Each dropout layer is considered as a regularization technique and allows to improve
over-adjustment on neural networks in which it decreases the error rate in the classifi-
cation process. In the proposed model, the value of dropout is equal to 0.2. To avoid
over-fitting, we have inactivated 20% of the neurons. We have used three dropout
layers in our model.

• Max-Pooling1D layer
The sample-based discretization max-pooling-1D blocks is used to sub-sample each in-
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put layer by reducing its dimensionality and decreasing the number of the parameters
to learn, thereby reducing calculation costs.

• Flatten layer
A multidimensional data output is given in the previous step, which cannot be read
directly from this neural network, and the model is therefore flattened.

• Dense layers
The dense layer has the role of describing the connectivity with the next and interme-
diate layers of neurons. We have used two fully connected layers in our architecture.
In the first dense of our model, we used a hidden layer of 128 neurons to have better
classification results. For the second dense, the value of the final neuron is equal to 1.
Binary classification is applied in this work, so a single neuron is sufficient to denote
class “1” or “0”.

3. Experimental Validation

A description of our dataset and experiments without and with DA were provided in
the following subsections for the efficiency assessment of the proposed DD scheme. Our
experiments have been performed using the power of GPU (Graphical Processing Unit)
provided by the Google AI (Artificial Intelligence) platform and Colab [110].

3.1. Dataset

Our EEG signal collection contains forty-two records of six men and eight women
aged between fourteen and sixty-four with normal mental health. For each person, we
made three recordings lasting sixteen minutes over the day: in the morning, afternoon,
and evening. For each recording, the total number of rows of data is equal to 123,648. In
order to identify the state of each participant, we divided the EEG signal into windows of
3.75 s. In this sense, we split each EEG recording into 256 different sets (segments) and the
length of each segment is equal to 483. Based on the proposed data annotation step in our
method, a deeper analysis of the brain is the preliminary phase in the detection of each
participant’s state. In this regard, we categorized the different participants according to
drowsy and awake states. Table 5 presents the detailed results for each participating state.

Table 5. Detailed table of each participant’s status.

Participants Morning Afternoon Evening

P1 (26 years) Drowsy Drowsy Drowsy
P2 (46 years) Awake Drowsy Awake
P3 (37 years) Drowsy Drowsy Drowsy
P4 (35 years) Drowsy Drowsy Drowsy
P5 (64 years) Drowsy Drowsy Awake
P6 (62 years) Awake Drowsy Drowsy
P7 (53 years) Drowsy Drowsy Drowsy
P8 (63 years) Awake Awake Awake
P9 (59 years) Drowsy Awake Awake

P10 (24 years) Drowsy Drowsy Awake
P11 (17 years) Drowsy Awake Drowsy
P12 (22 years) Drowsy Drowsy Drowsy
P13 (14 years) Drowsy Drowsy Drowsy
P14 (43 years) Awake Awake Drowsy

Our data are divided into two parts, with 80% and 20%, respectively, as training for
the train model and testing for the predict model. There were (20,286, 256) recordings in
total in which (16,422, 256) were used for training and (3864, 256) for testing. Therefore,
the training set data is divided into two parts, with 80% and 20% as training and validation.
There were (16,422, 256) recording in total in which (13,137, 256) were used for training
and (3285, 256) for validation.
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3.2. Experimental Details

The different parameters as filters, kernel-size, padding, kernel-initializer, and acti-
vation of the four convolutional layers have the same values, respectively, 512, 32, same,
normal, and relu. The parameter values of the remaining layers are detailed in Table 6.

Table 6. Summary of our model.

Participants Morning Afternoon Evening

Layer Num Type Output Shape Parameters

Layer 1 Batch Normalization (None, 256, 2) 1024
Layer 2 Conv 1D (None, 256, 512) 33,280
Layer 3 Conv 1D (None, 256, 512) 8,389,120
Layer 4 Batch Normalization (None, 256, 512) 2048
Layer 5 Dropout (None, 256, 512) 0
Layer 6 Conv 1DN (None, 256, 256) 4,194,560
Layer 7 Batch Normalization (None, 256, 256) 1024
Layer 8 Dropout (None, 256, 256) 0
Layer 9 Batch Normalization (None, 256, 256) 1024

Layer 10 Conv 1D (None, 256, 256) 2,097,408
Layer 11 Batch Normalization (None, 256, 256) 1024
Layer 12 Maxpool 1D (None, 2, 256) 0
Layer 13 Dropout (None, 2, 256) 0
Layer 14 Flatten (None, 512) 0
Layer 15 Dense (None, 128) 65,664
Layer 16 Batch Normalization (None,128) 512
Layer 17 Dropout (None, 128) 0
Layer 18 Batch Normalization (None, 128) 512
Layer 19 Dense (None, 1) 129

We aim to reach the best accuracy rate by using a minimum number of electrodes
that provide information about the drowsiness state. In [111–113], the authors discover
that the pre-frontal and occipital cortex are the most important channel to better diagnose
the drowsiness state. Furthermore, previous work [114] indicates that occipital, parietal,
central and frontal regions are useful for drowsiness detection. According to the recent
related work [115], the authors provide that the frontal, occipital and parietal are the best
selected areas for DD. To select the relevant channels that enable the best accuracy in the
proposed DD system, we suggest comparing the different results recorded by various
numbers of electrodes. To reach the converge of our model, we used 15 epochs for all
experiments. To this regard, we choose the following recorded data:

• Recording by 14 electrodes including the frontal and the anterior parietal (AF3, AF4,
F3, F4, F7, F8, FC5, FC6), the temporal (T7, T8), and the occipital-parietal (O1, O2,
P7, P8).

• Recording by 7 (AF3, F7, F3, T7, O2, P8, F8) electrodes from parietal, occipital, pre-
frontal and temporal areas.

• Recording by 4 (T7,T8, O1 and O2) electrodes from the temporal and occipital areas.
• Recording by 2 (O1 and O2) electrodes from the occipital area.

3.2.1. Experiments without DA

Table 7 presents the reported testing and training accuracies, respectively, with two,
four, seven, and fourteen electrodes. From the reported results, the different accuracy
values related to the training and validation sets as well as testing sets are low. One can
notice that the training accuracy is quite stable over different electrode configurations,
while test accuracy presents more disparity and lower values. These high classification
error rates on the testing set indicate low generalization capacity of the proposed model
when used without DA.
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Table 7. Training, validation and testing accuracy of the various numbers of electrodes without data
augmentation (DA).

Number of Electrods 2 4 7 14

Accuracy train 78.20% 85.82% 88.22% 90.46%
Accuracy Validation 74.33% 80.09% 86.30% 87.95%

Accuracy test 68.79% 54.14% 72.41% 79.43%

In the next experiments, a DA step is added to the training set to improve the classifi-
cation performance (accuracy) of the proposed DD system, thereafter to select the most
efficient number of electrodes associated with the best results.

3.2.2. Experiments with DA

In the present work, we solve the data limitation problem by adding the DA step to
increase the performance of the proposed CNN model. The DA step is only processed
for the training set by using 20 duplicates. In this regard, the vector value of the training
set is doubling from (13,524, 256) to (132,058, 256). The reported training, validation and
testing accuracies, respectively, with two, four, seven, and fourteen electrodes are presented
in Table 8. We can notice that DA allows to drastically improve the performance of the
proposed model while used with seven electrodes, especially for the testing set. As regards
training, the four configurations perform similarly with very good accuracies.

Table 8. Training, validation and testing accuracy of the various numbers of electrodes with DA.

Number of Electrods 2 4 7 14

Accuracy train 94.30% 97.25% 98.88% 93.69%
Accuracy Validation 78.14% 86.06% 93.27% 89.22%

Accuracy test 77.41% 78.49% 90.14% 82.07%

After evaluating our model with the use of the DA technique, we can select the best
acquisition configuration, i.e., seven electrodes. To this regard, we use AF3, F7, F3 and
F8 electrodes from the frontal, T7 the temporal, O2 the occipital and P8 the parietal areas.
The values mentioned in Table 8 present the average accuracies of three runs for each
experiment. Table 9 gives an example of the average accuracy of seven electrodes with DA.

Table 9. Average accuracies of training, validation and testing of 7 electrodes with DA.

Run 1 2 3 Average Accuracy

Accuracy train 98.94% 98.90% 98.81 % 98.88%
Accuracy Validation 92.15% 93.88% 93.79% 93.27%

Accuracy test 90.01% 90% 90.42% 90.14%

Using the selected electrodes, Figure 6 displays the training and validation accuracy
and loss. Using 15 epochs, we find that the train and validation accuracy improves, and the
training and validation loss decreases. This shows that the proposed CNN-based DD
system has been trained to achieve up to 98.81% highest training accuracy with 90.42%
highest testing accuracy for the prediction in order to automatically classify the EEG signals
in drowsy/awake states.
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(a) (b)

Figure 6. (a) Accuracy graph, (b) loss graph.

To further quantitatively evaluate the performance of the proposed model, True
Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) rates are
used to evaluate metrics [116] such as accuracy, precision, recall, and F1 score calculated
as follows:

Accuracy = (TP + TN)/(TP + TN + FP + FN). (3)

Precision = TP/(TP + FP). (4)

Recall = TP/(TP + FN). (5)

F1score = (Precision ∗ Recall)/(Precision + Recall). (6)

In the experimental configuration with DA, the highest accuracy value is equal to
90.42%, the precision is equal to 86.51%, the recall value is equal to 89%, while the F1-score
value is equal to 88%. This high precision rate indicates the capacity of the model to not
miss drowsy alarms.

To visualize the performance of the proposed model, we used the confusion matrix
that is represented in Figure 7, where 2667 presents the TP, 231 presents the FP, 139 presents
the FN and 827 presents the TN.

Figure 7. The highest results of the confusion matrix of 7 electrodes with DA.

Additionally, the cross validation method is used in order to evaluate our model with
seven electrodes. Table 10 presents all the experimental results with different folds.

Table 10. The experimental results of cross-validation for 7 electrodes with DA.

Train and Validation Sets 80%,20% 60%,40% 40%,60% 20%,80%

Accuracy train 98.94% 98.81 % 98.66% 98.83%
Accuracy Validation 92.15% 89.82% 88.32% 89.48%

Accuracy test 90.01% 88.20% 84.94% 84.96%
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3.3. Comparison

In order to evaluate the effectiveness of the proposed CNN model, we compared
the performance measures of our model with that of several different CNNs architec-
tures, as mentioned in Table 11, such as Inception (Conv1d_3, Conv1d_4, Conv1d_5,
Max_Pooling1d_1, Concatenate_1, Batch_Normalization, Dropout, Flatten, Dense,
Batch_Normalization and Dense_), WaveNet (import WaveNet) and ResNet (Conv1d_46,
Conv1d_47, Conv1d_45, Add_14, Activation_14, Batchnormalization_14, Dropout_7,
Flatten_5, Dense_17, Batchnormalization_15 and Dense_18).

Table 11. Accuracy comparison of the proposed CNN model with ResNet, Inception and
WaveNet models.

Models Proposed CNN Inception Resnet Wavenet

Accuracy train 98.88% 88.91% 79.03% 71.54%
Accuracy Validation 93.27% 67.70% 69.86% 67.40%

Accuracy test 90.14% 74.87% 72.80% 75%

Additionally, we compare our work with recent DD systems in the literature. In [54],
the authors propose a system based on the EEG signal processing image, which converts
the EEG signal into an image-like signal 2-D function map and then transfers them to the
CNN model for DD. This architecture is composed of two convolutional and pooling layers
with one fully connected layer. The total accuracy in the prediction imbalanced dataset
result is equal to 71.15%. In [40], the authors suggest a DD system based on a DL model.
Using spectrograms from the channels of EEG signals, the proposed system is developed to
the ULg Multimodality Drowsiness Database. The used ConVNets model is composed of
three convolutional and max-pooling layers with one fully connected layer. An accuracy of
86% is achieved in this work. We implement these two DL architectures using our EEG data.
Table 12 indicates the accuracy values of the testing set using the competing DD systems.
It is noteworthy that the proposed DD system gives the best accuracy classification of
drowsy/awake states.

Table 12. Accuracy test comparison with related works.

DD Methodology Accuracy Test Classification Method

E.J. Cheng et al. [54] 74.95% CNN
L. Guarda et al. [40] 83.93% ConvNets
Proposed Method 90.14% CNN

4. Discussion

EEG data are being increasingly used to analyze drowsiness through the control
of mental states, fatigue progression, and tiredness over time [117]. Interestingly, re-
ported studies in the literature indicate a specific trend to reduce the number of used
electrodes [118,119]. From a practical point of view, reducing the number of electrodes
ensures better comfort for the driver. In this paper, we started by using fourteen electrodes
and we reduced the number to seven, four, and two electrodes. However, brain regions,
such as the parietal, frontal, and occipital lobes, tend to be more vulnerable than other areas
for DD. To this regard, alpha and theta waves from the occipital and the temporal area
reveal a high indicator for DD. During drowsiness, exhaustion, and insufficient attention,
the alpha band demonstrates an increase in-band power, while the theta band indicates
the state of deep relaxation during the first phase of slow sleep. In fact, these waves reflect
the state between sleep and wholeness. Therefore, comparative behavioral testing of alpha
and theta waves can be beneficial for effective DD. The proposed DD system is divided
into two steps as data acquisition and model analysis. The first step contains three steps,
signal collection, data annotation, and data augmentation (DA). An Emotiv EPOC+ head-
set is used for signal collection. Subsequently, we have annotated our dataset according
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to the amplitudes of alpha and theta waves. By incorporating the DA step to improve
performance, we have done two experimental tests: with and without DA. For model
analysis, we have built a CNN model in which implementation is done using the Keras
framework. The average values of the accuracy, F1-score, precision, and recall showed a
high classification rate using seven electrodes, in comparison to other competing methods.

5. Conclusions and Future Work

This paper proposes a new DD system based on EEG signals using a CNN architecture.
An Emotiv EPOC+ headset is used for signal collection. Furthermore, our EEG data has
been annotated to detect drowsiness based on the analysis of alpha and theta waves from
the occipital and temporal area. A study has been conducted to select the most suitable
number of electrodes. Obtained results are coherent with the state-of-the-art. In this context,
we proposed a system for DD using only seven electrodes. The proposed system achieves
an average classification accuracy of 90.14%. In future work, EEG can be considered with
other physiological assessment tools, such as EOG, ECG and Near-Infrared Spectroscopy
(NIRS) [120,121], which help to improve accuracy rate. We will also consider validating
our system on larger datasets, especially collected under real driving conditions.
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AE Auto-encoder
APIs Application Programming Interfaces
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BCI Brain Computer Interface
BN BatchNormalization
CNN Convolutional Neural Network
CNBLS Complex Network-based Broad Learning System
CMS Common Mode Sense
CSV Comma Separated Values
CNS Central Nervous System
DD Drowsiness Detection
DL Deep Learning
DA Data Augmentation
DSNs Deep Stacking Networks
DE Differential Entropy
DRL Driven Right Leg
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EEG Electroencephalogram
ECG Electrocardiogram
EMG Electromyogram
EOG Electrooculogram
EDF European Data Interface
FIR Finite Impulse Response
FFT Fast Fourier Transformation
FP False Positive
FN False Negative
GPU Graphics Processing Unit
IIR Infinite Impulse Response
LSTM Long Short Term Memory
ML Machine Learning
NIRS Near Infrared Spectroscopy
PERCLOS Percentage of eye closure
RNNs Recurrent Neural Networks
ResNet Residual Network
RMSprop Root Mean Squence Propagation
ReLU Rectified Linear Unit
SGD Stochastic Gradient Descent Optimizer
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