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Abstract Variability in admissions and lengths of stay
inherently leads to variability in bed occupancy. The
aim of this paper is to analyse the impact of these
sources of variability on the required amount of ca-
pacity and to determine admission quota for scheduled
admissions to regulate the occupancy pattern. For the
impact of variability on the required number of beds,
we use a heavy-traffic limit theorem for the G/G/∞
queue yielding an intuitively appealing approximation
in case the arrival process is not Poisson. Also, given a
structural weekly admission pattern, we apply a time-
dependent analysis to determine the mean offered load
per day. This time-dependent analysis is combined with
a Quadratic Programming model to determine the opti-
mal number of elective admissions per day, such that an
average desired daily occupancy is achieved. From the
mathematical results, practical scenarios and guidelines
are derived that can be used by hospital managers and
support the method of quota scheduling. In practice,
the results can be implemented by providing admission
quota prescribing the target number of admissions for
each patient group.
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1 Introduction

With the growing demand for health care resources,
the pressure on the efficient usage of the available
bed capacity is increasing. The workload at clinical
wards is most often highly variable, leading to the need
for extra capacity to respond to peaks in demand for
beds. In addition to these extra capacity requirements,
the variability in workload does have other negative
side effects. For instance, Litvak et al. [16] show that
reducing variability in bed demand helps to reduce the
stress of the nursing staff and to improve the safety of
patients.

Surprisingly, studies have shown that the variation in
the number of scheduled patients admitted is generally
at least as large as the variation in the number of emer-
gency admissions, and often larger, see e.g. McManus
et al. [20] and de Bruin et al. [5]. The variability in
admissions leads to highly variable bed occupancy. The
admission process is also largely affected by the sched-
ule of the Operating Theater (OT). The OT schedule
allocates the available operating time to the different
surgical disciplines, but, in most cases, it does not spec-
ify which or how many procedures are to be executed
in the allocated times and so the number of patients
admitted on every weekday can vary significantly. This
OT schedule results in a weekly bed occupancy pattern,
but the number of occupied beds on each day can still
vary significantly from week to week. Moreover, during
the weekend the number of elective admissions is gen-
erally very small, leading to extra workload fluctuations
over the week.

A simple way to reduce the variability would be
to admit a fixed number of patients every day of the
week. This could be implemented using a fixed quotum
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for the number of daily admissions, thereby removing
any unnecessary variation in demand. The remaining
variation would solely be due to emergency arrivals and
variations in the length of stay in the hospital.

The absence of a substantial number of scheduled
admissions during the weekend complicates the use
of a fixed quotum per day. In addition, it is current
practice in most hospitals that the number of staffed
beds is lower during weekends, partly because of higher
staffing costs. A fixed daily quotum (for every day of
the week) would not accommodate this, but yields the
same expected bed demand every day of the week. An
alternative approach is to use different admission quota
for the days of the week, taking differences in length of
stay (LOS) between patient types into account. In this
paper we determine the number of scheduled admis-
sions for every day of the week, with the objective of
keeping the bed demand as close as possible to some
target load. This target can be different for every day
of the week, thereby accommodating a lower number
of staffed beds during the weekends. The result will
be quota for the number of scheduled admissions for
different patient types on every day of the week.

The main contribution of this paper is to determine
admission quota for scheduled admissions and the im-
pact of variability in the number of admissions on the
required bed capacity. First we study approximations
for determining the impact of the daily variability in
the number of admissions, for both stationary and time-
dependent admissions with a weekly pattern. This re-
sults in intuitive approximations for the variability in
bed demand and for blocking probabilities. Second, we
use these results in an optimisation model that min-
imises the weighted deviations of the load from a pre-
defined target load, which can differ from day to day.
We incorporate emergency arrivals, routing of patients
over different wards and multiple patient types, each
type having a specific phase-type LOS distribution. Our
primary focus is on bed demand, where the surgery
scheduling may be included as a constraint.

Patient scheduling has received quite some attention
in the literature, mostly focusing on the scheduling of
surgeries. An example of work that studies surgery
scheduling in combination with bed usage is Beliën and
Demeulemeester [3], who try to level the bed usage by
finding the best allocation of OT time blocks to surgical
disciplines. They view the number of patients admitted
on a day as a stochastic variable with a distribution
depending on the specialty that used the OT. Van
Oostrum et al. [21] find the optimal so-called master
surgical schedule, in which they schedule all regularly
performed surgeries on a specific day in the planning
cycle, with a combination of OT time usage and the

maximum number of beds needed on every day as
the objective function. They treat the length of stay as
deterministic, with the length depending on the type
of surgery performed. Vanberkel et al. [22] study the
effect of a given surgical schedule on the usage of beds,
taking emergency arrivals and different ward types into
account as well. However, they do not use an optimi-
sation algorithm and only try to improve step-by-step
by trial and error. Their approach has been applied in
practice with good results.

Gallivan and Utley [10] present a generic model for
determining the distribution of bed occupation for a
given cyclic admission schedule. They give an example
of how these results could be used in an optimisation
context. They restrict themselves to a single ward. Adan
et al. [1] present a case study in which they apply an
optimisation model. They consider both the OT usage
and several other types of resources, such as different
wards visited by patients consecutively. A weighted
combination of the over- and underutilisation of all
these resources is minimised, in both a deterministic
and a stochastic version. The stochastic version cannot
be solved to optimality due to its size in their case study
setting, although they do believe that taking random-
ness into account is important.

The remainder of the paper is organised as follows.
We start with quantifying the impact of variability on
the required bed capacity. In Section 2 we use approxi-
mation methods for analysing models with non-Poisson
arrivals and we analyse time-dependent arrivals, to
allow for a weekly arrival pattern, in Section 3. In
Section 4 we discuss admission scheduling that results
in a stable bed demand by applying a Quadratic Pro-
graming model. We conclude with Section 5 where we
discuss the contribution of this paper and describe the
main practical insights that can be derived.

2 Impact of variability in scheduled admissions

The arrival process of emergency admissions is gener-
ally well approximated by a Poisson process. Although
elective admissions are scheduled, our experience is
that the variability in the number of elective admissions
is at least as large as the variability in the number of
unscheduled admissions, which is also supported by
various studies, see e.g. [5, 20]. Given the variability
in both types of admissions, the Erlang loss (or delay)
model is often well applicable for giving insight in the
implications of capacity decisions for clinical wards, see
for example [5, 19].

In this section we quantify the impact of a more
stable (elective) arrival stream and the corresponding



Health Care Manag Sci (2011) 14:237–249 239

appropriate capacity. Equivalently, this may be used to
determine a target load in Section 4. We build on ap-
proximations in the literature to analyse models with a
general stationary arrival process that is not necessarily
Poisson. The approximations described here are further
adjusted in Section 3, where we study systems with non-
stationary arrivals.

For the Erlang loss model, the capacity is fixed at
s beds. Patients are assumed to arrive according to
a Poisson process with an average of λ per day. An
arriving patient is admitted in case a bed is available
and refused otherwise. An admitted patient stays for
a stochastic duration (the length of stay) at the ward
with an average of β days. By Little’s formula, the
above implies that the offered load is ρ := λβ, which
represents the average number of occupied beds in case
there would always be sufficient capacity.

This M/G/s/s model has been well studied. The
probability that an arriving patient is refused, also
called blocking probability, is then given by

B(s, ρ) = ρs/s!
∑s

k=0 ρk/k! .

Moreover, the offered load (number of patients present
in case of sufficient capacity) has a Poisson distribution,
which can be well approximated by a normal distribu-
tion for ρ not too small. In particular, for the Poisson
distribution the mean and variance are equal, which
directly yields that the variance of the offered load can
then be approximated by ρ.

To obtain insight in the impact of scheduled ad-
missions it is required to eliminate the assumption of
Poisson arrivals, which is crucial for most queueing
models. This elimination leads to a G/G/s/s queue,
which is discussed next.

2.1 Stationary approximations

We approximate the G/G/s/s queue using its infinite-
server counterpart G/G/∞. We assume a stationary
arrival process, where arrivals occur at rate λ. The
coefficient of variation of the interarrival time is de-
noted by ca. The service times (lengths of stay) are
assumed to be independent and identically distributed
with mean β. We also introduce the so-called Gini
coefficient, which surprisingly appears in the approxi-
mations. This measure is related to the Lorenz curve,
which is used in economics to represent the inequality
in the distribution of wealth or income among the
citizens of a country. Here we use it for the inequality
in the length of stay S among patients (see also [5]).
The Gini coefficient is defined as the area under the
Lorenz curve. For piecewise differentiable probability

distributions, the Gini coefficient (G), proposed in [7],
is given by

G = 1 − 1

ES

∫ ∞

0
P(S > y)2dy.

For example, for a deterministic distribution we have
G = 0, and for an exponential distribution G = 1

2 . In
[5], the Gini coefficients are given for the LOS at
different wards.

We start with an approximation for the number of
busy servers, or rather the variance and distribution
of the number of busy servers, for a G/G/∞ system in
heavy traffic. If we use the heavy-traffic approximation
established in [4], we have that the number of busy
servers Xρ approaches a normal distribution in the limit
when the load ρ = λβ of the system tends to infinity:

Xρ − ρ√
ρz

→ N(0, 1), as ρ → ∞,

with

z = 1 + (
c2

a − 1
) 1

ES

∫ ∞

0
P(S > y)2dy

= 1 + (
c2

a − 1
)
(1 − G), (1)

where the second equality follows directly from the
representation of the Gini coefficient. We note that
only the first equality seems to be available in the
literature, and the interesting and useful relation to the
Gini coefficient has not yet been observed. The z is a
measure of the peakedness of the arrival process and
the service times, see [24] for a more elaborate discus-
sion. Here, the variance of the number of busy servers
is zρ. From the peakedness we can see that the variance
increases with the squared coefficient of variation of
the interarrival times c2

a as is to be expected, but it
can either increase or decrease in the Gini coefficient
depending on the sign of (c2

a − 1). This means that
reducing the variability in LOS is only beneficial in
cases where the arrival process is already quite sta-
ble, implying that hospital managers should focus first
on stabilising the arrival process before stabilising the
LOS distribution. Note that the point at which (c2

a − 1)

changes signs corresponds to a Poisson arrival process.
The variability in offered load is of prime importance

for the required amount of capacity. Based on the
square root staffing rule, see e.g. [13, 25], the required
number of beds is typically the mean offered load (ρ)
plus a constant times the standard deviation in offered
load (

√
zρ). The latter term corresponds to buffer ca-

pacity to deal with variability in bed demand. The value
of the constant depends on the service level target, but
is often chosen to be between 1 and 2.
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Table 1 The fraction of refused admissions for (mixed) station-
ary arrivals

Arrivals LOS Stdev. offered Loss fraction
load (%)

Det Det 0 0.00
Exp 3.42 2.51
H2 (p1 = 0.1) 3.93 3.63

Det + Poisson Det 3.42 2.51
Exp 4.19 4.24
H2 (p1 = 0.1) 4.41 4.75

Poisson Any dist 4.84 5.80

The most natural performance measure for the
G/G/s/s queue is the blocking probability Bc. In [24],
the Hayward approximation is proposed, which is
given by

Bc = Bc(s, ρ, z) ≈ B
(

s
z
,
ρ

z

)

. (2)

In other words, we use the regular Erlang loss formula,
but first divide both the number of servers and the
load of the system by the peakedness z. This requires
an extension of the Erlang loss formula to non-integer
values for the number of servers, see [15].

From this approximation, it follows that the frac-
tion of blocked arrivals increases as the peakedness
increases. So, the fraction of blocked arrivals increases
with the squared coefficient of variation of the inter-
arrival times but can either increase or decrease with
the Gini coefficient depending on the variability in the
arrival process.

2.2 Numerical examples

Our aim with the numerical experiments is to obtain
insight in the impact of elective admissions on the bed
occupancy in hospitals. Since the Hayward approxi-
mation is available in the literature, it is not our goal
to carry out extensive numerical experiments. As a
base example, we consider an average-sized ward with
28 beds, see [5]. We present experiments with three
different distributions for the length of stay, all with
mean 4. The LOS at clinical wards can typically be
represented by exponential or hyper-exponential dis-
tributions, whereas the deterministic LOS is included
to obtain insight in the impact of the LOS character-
istics. We consider (mixed) deterministic and Poisson
arrivals, representing scheduled and emergency admis-
sions. The average number of arrivals per day is 41/7,
giving an average offered load of about 23.43.

The standard deviation in offered load and the frac-
tion of refused admissions (blocking probability) for
the different scenarios may be found in Table 1. These

values have been calculated using approximations and
have been verified by simulation. We see that the stan-
dard deviation in offered load and the loss percentage
increase with the share of Poisson arrivals.

Health chains In some scenarios, patients visit a num-
ber of successive wards before leaving the clinic.
Heavy-traffic approximations for such networks are
complicated, see [11, 23] for some extensions to net-
works. For some cases, the variability of downstream
wards can easily be identified assuming sufficient ca-
pacity. For Poisson arrivals (unscheduled admissions)
the number of patients in each node of the network
has a Poisson distribution [17]. Furthermore, in case the
LOS of the preceding wards are deterministic (e.g. pre-
surgery admissions), the variability in admissions of the
downstream ward inherits the variability of the original
arrival process.

To illustrate the impact of a very regular admission
schedule on downstream wards, we consider a specific
tandem of two infinite server queues. We only consider
deterministic external arrivals that arrive at queue 1
with an average of 41/7 arrivals per day. Each patient
moves from queue 1 to queue 2 after which he/she
leaves the network. We focus on queue 2 and choose
an average length of stay (ALOS) of 4 for this queue
leading to an average offered load of 23.43, such that
the results for queue 2 may be compared to those of
Table 1. The standard deviations of the offered load
for queue 2 can be found in Table 2, which were
determined using simulations. Note again that Poisson
arrivals would lead to a Poisson number of patients
present, yielding a standard deviation of 4.84.

Clearly, the variability in offered load for queue 2 is
considerably larger than for queue 1, except in the case
with deterministic ALOS at queue 1. The results show
that the standard deviation in offered load increases
with both the ALOS of queue 1 and with the squared
coefficient of variation of the service times of queue 2.
It is interesting to note that a more variable service time
at queue 1 compared to an exponential distribution,

Table 2 Standard deviation offered load to queue 2

Queue 1 Queue 2 LOS distribution

ALOS LOS distribution Det Exp H2

(p1 = 0.1)

1 Exp 2.40 3.74 4.18
H2 (p1 = 0.1) 2.33 3.75 4.16

3 Exp 3.62 4.11 4.38
H2 (p1 = 0.1) 3.31 4.04 4.35

5 Exp 4.01 4.27 4.61
H2 (p1 = 0.1) 3.76 4.16 4.47

1, 3, 5 Det 0 3.42 3.93
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i.e. H2 (p1 = 0.1), may reduce the variability in offered
load at queue 2, in particular as the ALOS gets larger.
More practically, we see that the impact of a regular
admission schedule rapidly fades out for wards further
down the health chain unless the length of stay is more
or less fixed for the upstream wards.

3 Impact of time-dependent admissions

In this section, we assume that the arrival process at a
ward depends on the day of the week. This case is of
particular interest in view of the schedule of elective
patients at the OT. For example, it is well known that
the number of arrivals is generally smaller during the
weekend than on weekdays since hardly any elective
procedures are scheduled during the weekend, see e.g.
[5, 12]. The assignment of OT sessions to surgical disci-
plines typically also leads to differences in the number
of arrivals.

3.1 Time-dependent approximations

We assume that there is a periodic (cyclic) arrival pat-
tern. Let T be the length of a cycle and denote the
average number of arrivals during [a, b ] by λ(a, b), a ≤
b . We are mainly interested in the weekly pattern, i.e.,
T = 7. Let λd = λ(d − 1, d) denote the average num-
ber of arrival at day d, d = 1, . . . , 7, where we denote
Monday by day 1. Also, let λ̄ be the average number
of arrivals per day. As in Section 2, we assume that the
capacity is fixed at s operational beds.

Again, we use the infinite server queue (G/G/∞)
as a basis for approximating the number of occupied
hospital beds. In particular, the mean number of occu-
pied beds is ρ = λ̄β and the variance (in heavy-traffic)
is zλ̄, where z is called the peakedness reflecting the
variability in arrival and LOS processes. Similar to [14],
we assume that the variability in arrivals consists of
a random and predictable part. We decompose the
peakedness into a random and predictable part as well,
yielding

z = zrand + zpred

= 1 + (
c2

a − 1
)
(1 − G) + zpred, (3)

where the first part (zrand) is the same as in Section 2.
We note that the fraction of refused admissions can be
determined again using the Hayward approximation,
see Section 2. It easily follows that the loss fraction
becomes larger for time-dependent arrivals (compared
to a stationary arrival process) due to the increased
peakedness.

We determine the second part (zpred) of Eq. 3
based on a deterministic fluid approximation, see [17].
Specifically, let zpred = Var[m(t)]/E[m(t)] with m(t) the
mean number of busy servers at time t in the G/G/∞
queue:

m(t) = E

[∫ t

t−S
λ(s)ds

]

=
∫ ∞

0
λ(t − s)P(S > s)ds, (4)

where λ(s) is the arrival rate at time s (see e.g. [17]).
From Eq. 4 we see that the mean number of occupied
beds depends on the full distribution of S, the LOS.
That is, the ALOS or first two moments of the LOS
distribution are not sufficient to determine the mean
number of occupied beds at a particular point in time.

Of prime interest in the present setting is the case
T = 7 with arrival rates λd, d = 1, . . . , 7 and an expo-
nential (or hyper-exponential) LOS distribution. The
case of an exponential LOS distribution can be used as
a building block for more involved service time distrib-
utions and (feed forward) networks, see Appendix.

Exponential LOS For later use, we indicate mexp(t) for
the mean number of busy servers in case of exponential
service times. For convenience, consider the time in-
stants d = 1, 2, . . . , 7 corresponding to the end of each
day. Then, using Eq. 4, we directly obtain the recursive
relation, for d ∈ N,

mexp(d) =
∫ 1

s=0
λde−μsds +

∫ ∞

1
λ(d − s)e−μsds

= λd

μ

(
1 − e−μ

) + e−μ

∫ ∞

0
λ(d − 1 − u)e−μudu

= λd

μ

(
1 − e−μ

) + e−μmexp(d − 1), (5)

where the final step follows from Eq. 4, see also [2].
Using the above relation n times, we have

mexp(d) = 1

μ

(
1 − e−μ

) n−1∑

i=0

λd−ie−μi + e−μnmexp(d − n).

Taking n = T and using the periodicity of the arrival
rate and, hence, mexp(d) = mexp(d − T), yields

mexp(d) = 1

μ

1 − e−μ

1 − e−Tμ

T−1∑

i=0

λd−ie−μi. (6)

LOS as sum of exponentials Here, we assume that
the LOS can be expressed as a sum of exponential
terms: P(S > t) = ∑J

j=1 pje−μ jt. This directly applies to
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hyper- and hypoexponential LOS distributions. For the
former, we have 0 < pj < 1 and

∑J
j=1 pj = 1, whereas

the tail distribution for the latter is given by Eq. 17.
Note that these cases may be equivalently interpreted
as parallel and tandem networks where the LOS in each
node is exponentially distributed. The hypoexponential
case may be primarily applied for modelling series
of subsequent wards, whereas the hyper-exponential
distribution often provides a better fit for the LOS
distribution compared to the exponential.

For the mean number of occupied beds, we have

m(t) =
∫ ∞

v=0
λ(t − v)

⎛

⎝
J∑

j=1

pje−μ jv

⎞

⎠ dv

=
J∑

j=1

pjm
exp
j (t).

Now, the predictable variation in the number of occu-
pied beds is approximated by

zpred = 1

T − 1

T∑

d=1

(m(d) − m̄)
2 /m̄, (7)

where m̄ = ∑T
d=1 m(d)/T = λβ is the average occu-

pancy; for instance, m(d) is given by Eq. 6 for expo-
nential LOS. We note that this may seem involved at
first glance, but zpred may easily be computed in e.g.
a spreadsheet. Moreover, this derivation provides the
basis for scheduling elective admissions as presented in
Section 4.

Remark 1 A different approach in case of time-
dependent arrivals is the stationary process approxi-
mation, see [18]. The main idea of that approach is to
capture the additional variability in the arrival process
in c2

a, i.e., the time-dependent process is approximated
by a stationary process that is more variable. The
disadvantage of this approach is that the impact of
the service time (LOS) distribution on non-stationary
arrivals cannot always be properly taken into account.

3.2 Numerical experiments

To verify the modified peakedness approximation
(Eq. 3), we consider the following modification of the
clinical ward introduced in Section 2.2. The average
number of arrivals during weekdays and during the
weekend is assumed to be 7 and 3, respectively. The
ALOS is 4 days again, yielding an average load of
roughly 23.43. For now, we assume the number of
operational beds fixed at 28. In Table 3, we present
approximation and simulation results for the standard
deviation in offered load and the fraction of refused
admissions for different LOS distributions and for
both a deterministic and a Poisson arrival process. As
can be observed from Table 3, the approximations
are quite similar to the simulation results, indicating
that the modified peakedness approximation (Eq. 3)
works well.

Clearly, the weekly arrival pattern leads to increased
variability in offered load and refused admissions com-
pared to stationary arrivals (Table 1). This weekly
pattern is most prominent for a deterministic LOS
[2, 6]. As a consequence, the impact of the variability
in LOS distribution on the offered load can go either
way depending on the type of arrival process. This
further strengthens the conclusion from Section 2 that
the arrival process is of primary importance for a stable
bed occupancy and should be considered first before
focusing on the variability in LOS.

Health chains In Section 2 we illustrated that the
benefits of a relatively stable arrival process to the first
ward rapidly fades out for downstream wards due to
the variability in LOS (except for deterministic LOS).
Here, we give an example of the opposite effect in case
of time-dependent arrivals. In particular, we consider
two wards in tandem with sufficient capacity (infinite
number of servers) in which the arrival process to the
first ward is as described above. The LOS at both wards
is exponentially distributed, where the LOS at ward 2
equals 4. The weekly pattern in average offered load

Table 3 The fraction of
refused admissions for
time-dependent arrivals

Stdev. offered load Loss fraction

Arrivals LOS Approx Simulation Approx (%) Simulation (%)

Det Det 3.60 3.21 2.89 2.44
Exp 3.91 3.80 3.58 3.36
H2 (p1 = 0.1) 4.31 4.26 4.52 4.10

Det + Poisson Det 5.00 4.66 6.18 6.09
Exp 4.61 4.54 5.24 5.22
H2 (p1 = 0.1) 4.76 4.63 5.61 5.52

Poisson Det 6.03 5.76 8.76 9.6
Exp 5.20 5.11 6.67 6.75
H2 (p1 = 0.1) 5.15 5.05 6.57 6.71
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can be found in Fig. 1 for an ALOS of 1, 3 and 5
days at ward 1. We also included the case in which the
LOS at ward 1 equals 0, meaning that there effectively
is a single ward. The different ALOS of ward 1 has
the following implications for ward 2: (i) the peak in
offered load shifts due to the LOS at ward 1, and (ii) the
difference in average offered load across the week be-
comes smaller as the ALOS at ward 1 increases. Com-
bined with the observations from Section 2, we note
that, for non-deterministic LOS, the arrival process to
downstream wards tend to look more like a stationary
Poisson process.

4 Scheduling elective admissions

In most hospitals patient admission scheduling is done
per medical discipline and independently of possible
effects on the bed occupancy at clinical wards or inten-
sive care units. As indicated, this often leads to high
variability in bed occupancy and weekly patterns in
the number of patients present at wards. The latter
is also caused by the reduced number of (elective)
admissions during the weekend (see Section 3). One
way to deal with this weekly pattern is to adapt the
staffing according to the offered load as in, e.g., [2] or
[8]. A different approach is to schedule admissions such
that undesired predictable fluctuations in the bed occu-
pancy are avoided as much as possible. In this section,
we propose a quantitative method for the latter option.

Specifically, the scheduling of elective admissions is
done in two steps:

Step 1 Determine target load for each day, m∗(d), d =
1, . . . , T.

Step 2 Determine an admission schedule such that
the difference between the offered load and
target load is minimised, using an optimisation
model.

We note that Sections 2 and 3 play a key role in Steps
1 and 2, respectively. Here, we restrict ourselves to a
single ward and K types of patients. This may, for in-
stance, represent a ward for one medical discipline with
various procedures leading to structural differences in
the length of stay. This is just a base example and the
model may be extended in various directions along the
same lines. For implementation purposes, focusing on a
single medical discipline may be a good starting point,
as admissions are now generally scheduled per medical
discipline and coordination between disciplines is not
yet common. Moreover, in case the offered loads of all
disciplines are well balanced, this immediately holds for
the overall offered load.

We assume that the length of stay of patient type k
is exponentially distributed with ALOS 1/μk. (Here we
use exponential LOS, for hypo- or hyper-exponential
LOS one ward is represented by more than one node.)
Let the average number of admissions on day d of type
k be λk

d and let the offered load of patients of type k on
day d be mk(d). The target number of admissions for
type k during T days is denoted by �k.

Step 1: Target load

Determining the target load mainly concerns a man-
agerial decision at a tactical level. It involves two parts:
(i) The capacity in relation to variability in offered load,
and (ii) the weekly pattern for available number of
beds. Regarding (i), the models discussed in Section 2
can be applied to support decisions related to the

Fig. 1 The average offered
load across the week for ward
2 in a tandem with different
ALOS at ward 1
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trade-off between occupancy levels and blocking prob-
abilities. More specifically, the average load per day
m∗ may be determined using Eq. 2. For instance, for
a given throughput the required capacity may be deter-
mined such that the blocking probability does not ex-
ceed some target. Alternatively, given a fixed capacity, a
target occupancy level may be determined such that the
blocking probability does not exceed some chosen value.

The number of available beds depends on the
staffing, which is not necessarily the same for every day
of the week. A typical example for (ii) is a different
staffing during weekdays compared to the weekend,
which generally means that during the weekend some
beds are closed due to reduced bed demand (that
is a consequence of the limited number of sched-
uled admissions). Denote the target load on day d by
m∗(d), d = 1, . . . , T. Clearly, it should hold that m∗ =
∑

d m∗(d)/T. The target load during a cycle should
also be equal to the offered load following from the
admission target and corresponding ALOS, i.e., m∗(d)

should satisfy

m∗ = 1

T

T∑

d=1

m∗(d) = 1

T

K∑

k=1

�k × 1

μk
.

For identical targets on all days, we evidently have
m∗(d) ≡ m∗. In case the number of open beds during
the weekend is reduced by x (assuming that T is a
multiple of 7), it follows after some straightforward
calculations that

m∗(d) = m∗ + 2

7
x for d multiple of 1, . . . , 5

m∗(d) = m∗ − 5

7
x for d multiple of 6, 7

Step 2: Optimal admission schedule

In this step, we translate the admission scheduling
into a mathematical model, using results from Section 3.

Specifically, we formulate the problem as a Quadratic
Programming model with linear constraints, which is
in the spirit of [1]. (We note that it can be formulated
as a Linear Program as well using a different objective
function.) The key element is that the time-dependent
offered load as determined in Section 3 is linear in λd.

The objective here is to minimise the total squared
deviation of the offered load from the target load. This
is represented in Eq. 8 where the squared deviation
between the target and offered load is summed over all
days of the planning cycle.

The offered load for each patient type for the first
(Eq. 11) and all consecutive days (Eq. 12) of the
planning cycle are derived from the time-dependent
analysis in Section 3, i.e., Eq 6 for exponential LOS.
Note again that the full LOS distribution is required
to determine the mean offered loads, and not just the
average LOS. The total offered load on a particular
day is the sum of the loads generated by the different
patient types, as can be seen in Eq. 10.

The constraint 9 assures that the total number of
scheduled admissions is equal to the target number
of admissions for each patient type. The number of
admissions on each day should be non-negative, as
represented by Eq. 13. Moreover, it might be desirable
or current practice that no scheduled admissions occur
on some days, for instance, during the weekends or on
days when no OT-time is available for a certain patient
type. For such days, λk

d should be set to 0, as represented
in Eq. 14.

Finally, we note that the choice of decision variables
depends on whether patients of type k, k = 1, . . . , K,
represent scheduled or unscheduled admissions. In case
type k patients are scheduled, then λk

d, d = 1, . . . , T
are decision variables, whereas the λk

d should be de-
termined from historical data in case of emergency ad-
missions. (For the latter, mk(d) can also be determined
directly from the data).

Minimise
T∑

d=1

[
m(d) − m∗(d)

]2 (8)

subject to
T∑

d=1

λk
d = �k, k = 1, . . . , K (9)

m(d) =
K∑

k=1

mk(d), d = 1, . . . , T (10)

mk(1) = 1

μk

1 − e−μk

1 − e−Tμk

T−1∑

i=0

λk
1−ie

−μki, k = 1, . . . , K (11)

mk(d) = λk
d

μk

(
1 − e−μk

)
+ e−μk

mk(d − 1), d = 2, . . . , T, k = 1, . . . , K (12)

λk
d ≥ 0, d = 1, . . . , T, k = 1, . . . , K (13)

(case-dependent) λk
d = 0, for some d ∈ {1, . . . , T}, k ∈ {1, . . . , K} (14)
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As mentioned, the admissions scheduling can be mod-
eled as a Linear Programming problem by modifying
the objective function. In that case, the objective (Eq. 8)
is to minimise

∑T
d=1 |m(d) − m∗(d)|, which can be made

linear using standard LP arguments. Here we opt for
a quadratic objective function because we assume that
the consequences of a deviation from the target load
will not be linear in the size of the deviation. It is con-
siderably more difficult for the medical staff to handle
larger deviations.

Extensions and modif ications The QP model as intro-
duced above is an elementary model that may be ex-
tended in different directions depending on the specific
situation. Two important extensions are multiple (con-
secutive) wards and the impact of the Operating The-
ater for surgical patients. These extensions are dis-
cussed below.

A prime example where multiple wards are involved
concerns medical disciplines for which a considerable
fraction of the patients needs care at an ICU, after
which they join the Normal Care Unit. The develop-
ment of clinical pathways has also increased the inter-
ests in health chains. The time-dependent performance
of health chains may again be found in Section 3 and
Appendix, which is one of the key elements to extent
the QP model, i.e., extend Eqs. 11 and 12. Moreover,
the objective function should then be modified such
that the sum of the deviations from the target load
of each ward is minimised. Depending on its type,
different wards may be assigned a different weight
to represent its relative importance. For example, the
weight for an ICU will typically be larger than the
weight for other wards, as ICU capacity is more costly
and the options for the transfer of patients in case of
insufficient capacity is limited.

For surgical patients, the number of admissions is re-
stricted due to the schedule of the OT. In general, each
surgical discipline gets one or more rooms assigned to
for some specific days, i.e., the OT sessions. For a given
OT schedule, the maximum number of admissions of
type k on some day d thus depends on the surgical time
of type k patients and the available OT time for the
medical discipline of type k. Such restrictions can be

straightforwardly included in the QP and thus easily al-
low for modifications in the admission planning without
(strongly) affecting the OT schedule. Finally, we like
to emphasise that the admission scheduling applies to
both surgical and non-surgical patients.

4.1 Numerical experiments

The scenario for the numerical experiments is compa-
rable to the scenarios considered in Sections 2.2 and 3.2.
Specifically, emergency patients arrive with an average
of 3 per day and have an ALOS of 4 days. For the
elective patients, we assume that two groups can be
distinguished: patients with short (ALOS of 2 days) and
long (ALOS of 6 days) hospital stay. These groups can,
for instance, be determined based on medical proce-
dures. The target number of admissions for both groups
is 10 patients per week. For simplicity, the length of stay
is exponentially distributed for all groups.

We consider three different target scenarios: no re-
duction of beds during the weekend and closing 2
and 4 beds during the weekend. For all scenarios, no
elective admissions during the weekend are allowed.
The required number of elective admissions that follow
from solving the QP are given in Table 4. The resulting
offered loads, along with the targets, are displayed in
Fig. 2. We note that the presented number of admis-
sions in Table 4 are fractional. To find the admission
quota, these numbers could be rounded to the nearest
integer. If it is infeasible to guarantee identical number
of elective admissions for each patient group for a con-
siderable time period, the “admission planner” could
work with a small bandwidth. In practical situations
the fractional numbers therefore provide a guideline in
which direction the actual number of admissions should
deviate from the prescribed admission quota.

Observe that in all scenarios, the target and offered
load are not identical for all days of the week. Because
there are no admissions during the weekend, there
is limited control over the offered load during that
period. For instance, in all cases the load decreases
considerably from Saturday to Sunday. To compensate
for the relatively small load on Sunday, the number

Table 4 Elective admission
quota for different bed
occupancy targets

Weekend reduction Mon Tue Wed Thu Fri Sat Sun

No weekend reduction Short 5.2 3.6 1.2 0 0 0 0
Long 0 0 2.2 3.0 4.7 0 0

Reduction of 2 beds Short 6.2 3.8 0 0 0 0 0
Long 0 0.1 3.6 3.0 3.3 0 0

Reduction of 4 beds Short 4.0 3.2 0.5 1.0 1.1 0 0
Long 3.3 0.3 2.9 2.1 1.4 0 0
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Fig. 2 The target load and
offered load across the week
for different target scenario’s
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of admissions is largest on Mondays for all three sce-
narios. In case the reduction in beds is limited (here
0 or 2), the patients with relatively long hospital stay
should be admitted at the end of the week, often on
Fridays, thereby filling the beds during the weekend.
As a consequence, the patients with short hospital stay
are mainly admitted at the beginning of the week, often
on Monday.

We note that aiming for a constant bed occupancy
target might be undesirable in this example. For the
scenario of no weekend reduction, the offered load
has a peak on Friday that is implicitly caused by the
relatively large target during the weekend. In case 2
beds are closed during the weekend, there remains a
smaller peak in offered load on Friday, whereas this
peak is absent in the scenario where 4 beds are closed.
Although, we presented a specific case, the admission
principles apply to a broader health care setting.

5 Practical implications and discussion

The main goal of this paper is to provide quantitative
methods to determine admissions quota for scheduled
admissions and to analyse the impact of variability in
scheduled admissions on the required bed capacity.
For the impact of variability, we used approximation
methods that build on heavy-traffic results in the litera-
ture and presented an interesting relation to the Gini
coefficient. Moreover, we modified this peakedness
approximation to allow for time-dependent arrivals,
which is exploited in the step of admission schedul-

ing. In particular, the admission quota for scheduled
patients are determined using a QP model minimis-
ing the difference between the expected and desired
occupancy.

Our second aim is to derive generic practical insights
that apply to almost all hospital situations. A first major
observation is that more variation in admissions leads
to a higher variability in bed demand and to more
refused admissions for a hospital ward. Variation in
the LOS can have negative consequences as well, but
its influence depends on the variability of the arrivals.
Only for stable arrival processes, reducing the variation
in LOS leads to a less variable bed occupancy. Hence,
stabilising the bed occupancy is best achieved by start-
ing to smoothen the admissions. Along the same lines,
the most time-stable performance is achieved when the
arrivals to the hospital are as evenly distributed over
the week as possible. A very uneven weekly pattern will
increase variability in bed demand and the probability
of refused admissions just as a variable arrival process
will. If there is a clear weekly pattern, a LOS that is very
stable can even be detrimental. Here, again, one should
start by smoothing the admission pattern.

In practice, patients often visit more than one type
of ward during their stay in the hospital. The varia-
tion in demand at the first ward influences that on
subsequent wards. For relatively stable admissions, the
variability in bed demand on the second ward is at
least as large as that on the first one. Typically, for
subsequent wards the bed occupancy starts to look
more like the occupancy generally seen for emergency
patients. In situations with a weekly admission pattern,
a peak in demand on the first ward will be noticeable
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for the second ward as well, but with a shift in time on
which it occurs. The weekly pattern on the second ward
becomes less noticeable as the LOS in the first ward
becomes more variable.

In addition to smoothing the arrival process, it is
also possible to schedule the arrivals in a better way.
The first decision needed is the number of beds that
will be staffed every day of the week, e.g., how many
beds are closed during the weekend. In general, in
absence of scheduled admissions during the weekend,
it is advisable to close beds during that period. The
case that no beds are closed during the weekend and
scheduled admissions are absent, might lead to unused
capacity. Scheduling patients with a longer expected
LOS on Fridays can help to minimise this unused capac-
ity, as such patients will stay throughout the weekend.
The optimal schedule generated by our optimisation
model typically generates schedules with such patterns
(although the pattern is clearly affected by the num-
ber of closed beds during weekends). The drawback
is that this often results in peak demand on Friday
itself.

Another general rule is that more admissions should
be scheduled on Mondays compared to the other week-
days, to fill the ward after the weekend. Because pa-
tients with a larger LOS are mainly scheduled at the end
of the week, the patients scheduled for Mondays typi-
cally have a shorter LOS. Tuesday through Thursday
are often comparable and roughly have about the same
number of admissions scheduled.

We like to stress that the models presented are of
a generic nature and can easily be implemented in e.g.
an Excel spreadsheet to model the characteristics of a
specific ward or hospital (or a specific time scale). Such
models are of a deductive nature, based on a set of
general principles and logical inference to derive new
insights or improve decision making, see also Gallivan
[9] for a further discussion on the role of models in
health care. By definition, these models are based on
assumptions regarding the structural characteristics of
patient flows and admissions and, therefore, do not
capture all decisions made at a hospital. A particular
topic that is not captured by the models presented here
is the possible dependence of the discharge process
on the day of week or the occupancy. Although it is
not clear whether it is desirable to incorporate such
dependencies in the structural organisation of health
care processes, this provides an interesting topic for
further research.
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Appendix: Phase type LOS and feed forward networks

In this section, we consider a feed forward network of
nodes with an exponential LOS. This may be equiv-
alently interpreted as a single node with a (specific)
phase type LOS distribution. For convenience, we as-
sume that the LOS rates are different for each node.

First, we define some notation, in line with Section 3,
and restate part of a more general result of [17]. Let
J be the number of nodes and let λ j(t) be the external
arrival rate to node j at time t. A patient goes from node
i to node j with probability pij and leaves the network
from node i with probability 1 − ∑

j�=i pij. Denote a
generic LOS at node j by S j and let μ j be its LOS rate.

The main goal is to determine the mean number of
occupied beds at time t for node j (m j(t)). We first
restate (part of) a more general result of Massey and
Whitt, see [17, Theorem 1.2]:

Theorem 1 In the (Mt/GI/∞)J)/M model, the number
of occupied beds Q j(t) at time t, 1 ≤ j ≤ J, are indepen-
dent Poisson random variables with f inite means

m j(t) = E[Q j(t)] = E

[∫ t

t−S j

λ+
j (u)du

]

, (15)

where λ+
j is the aggregate-arrival-rate function to node

j, def ined as the minimal nonnegative solution to the
system of input equations, for 1 ≤ j ≤ J,

λ+
j (t) = λ j(t) +

J∑

i=1

E
[
λ+

i (t − Si)
]

pij. (16)

For optimisation purposes and for applications in
health care, we are interested in more explicit results.
Therefore, we make several assumptions, while main-
taining a sufficiently generic framework for modelling
in practical situations. We assume that all S j are ex-
ponential, i.e., we restrict ourselves to phase-type LOS
distributions. For convenience, we also assume here
that all μ j’s are different. Finally, we consider a feed
forward network meaning that pij = 0 for j ≤ i and
1 ≤ i ≤ J.

Below, we express m j(t) in terms of single nodes with
exponential LOS, which are essentially used as build-
ing blocks. To do so, we decompose the patient flows
into all possible routes through the network (that have
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nonzero probability). A patient on route r then uses a
subset of the nodes {1, . . . , J}. Specifically, patients on
route r = {n1, . . . , n f } arrive at the first node n1 with
rate λn1(t)pr, where pr = pn1n2 · · · pn f−1n f represents the
fraction of traffic coming from node n1 going through
n f via route r.

Now, consider node j and truncate the network at
node j, i.e., consider the network consisting of nodes
{1, . . . , j}. Let r j be a route in the truncated network
that goes through node j and let R j be the set of
possible routes going through j. We add a subscript s if
route r j starts at node s (we denote r j

s and use R j
s again

to denote the set of possible routes). Using Eqs. 15, 16
and the feed forward structure, we have

m j(t)

= E

[∫ t

t−S j

(

λ j(u) +
j∑

i=1

E
[
λ+

i (u − Si)
]

pij

)

du

]

= E

[∫ t

t−S j

λ j(u)du

]

+E

[∫ t

t−S j

j−1∑

i=1

pijE
[
λ+

i (u−Si)
]

du

]

= mexp
j (t) + E

⎡

⎣
∫ t

t−S j

∑

r j
s∈R j

pr j
s
E

⎡

⎣λs

⎛

⎝u−
∑

l∈r j
s

Sl

⎞

⎠

⎤

⎦ du

⎤

⎦

= mexp
j (t) +

j−1∑

s=1

∑

r j
s∈R j

s

pr j
s
E

⎡

⎣
∫ t

t−S j

λs

⎛

⎝u−
∑

l∈r j
s

Sl

⎞

⎠ du

⎤

⎦ ,

where the final step follows from interchanging inte-
grals and sum. Note that the value of the expectation is
similar to the mean load in node j for a tandem network
(or a single node with a hypoexponential LOS). Using
the tail distribution of a hypoexponential random vari-
able (Eq. 17), we get, after some rewriting,

E

⎡

⎣
∫ t

t−S j

λs

⎛

⎝u −
∑

l∈r j
s

Sl

⎞

⎠ du

⎤

⎦

= E

⎡

⎣
∫ t

t−(
∑

l∈r
j
s

Sl+S j)

λs(u)du

⎤

⎦ − E

⎡

⎣
∫ t

t−∑

l∈r
j
s

Sl

λs(u)du

⎤

⎦

=
∏

l∈r j
s−{ j}

μl

μl − μ j
mexp

{λs(·),μ j}(t)

+
∑

i∈r j
s−{ j}

μi

μ j − μi

∏

l∈r j
s−{ j}

μl

μl − μi
mexp

{λs(·),μi}(t),

where mexp
{λs(·),μ j}(t) is the mean load at time t for a single

node with exponential LOS at rate μ j and arrival rate
function λs(·). Combining the above yields

m j(t) = mexp
j (t) +

j−1∑

s=1

∑

r j
s∈R j

s

pr j
s

×
⎛

⎝
∏

l∈r j
s−{ j}

μl

μl − μ j
mexp

{λs(·),μ j}(t)

+
∑

i∈r j
s−{ j}

μi

μ j − μi

∏

l∈r j
s−{ j}

μl

μl − μi
mexp

{λs(·),μi}(t)

⎞

⎠.

Again, the mean offered load at some node may seem
involved at first glance, but we can still express it in
terms of single exponential nodes. For a feed forward
network of size J we require the time-dependent analy-
sis of at most J! exponential single nodes (for j =
1, . . . , J, we need mexp

{λs(·),μ j}(·), with s = 1, . . . , j). How-
ever, the actual required number of single exponential
nodes strongly depends on the routing probabilities in
a specific practical situation and will often be much
smaller than J!.

Example 1 An important special case is a tandem net-
work of J nodes in series. Assuming here that all
customers arrive at the first node, the sojourn time is
then the convolution of J exponentials, which has a
hypoexponential distribution, i.e.,

P(S > t) =
J∑

j=1

∏

n�= j

μn

μn − μ j
e−μ jt. (17)

In this case, the mean number of occupied beds in node
j reads

m j(t) =
j−1∏

l=1

μl

μl − μ j
mexp

j (t)

+
j−1∑

i=1

μi

μ j − μi

j−1∏

l �=i

μl

μl − μi
mexp

i (t).
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