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ABSTRACT Bacteria have been inferred to exhibit relatively weak biogeographic
patterns. To what extent such findings reflect true biological phenomena or meth-
odological artifacts remains unclear. Here, we addressed this question by analyzing
the turnover of soil bacterial communities from three data sets. We applied three
methodological innovations: (i) design of a hierarchical sampling scheme to disen-
tangle environmental from spatial factors driving turnover; (ii) resolution of 16S rRNA
gene amplicon sequence variants to enable higher-resolution community profiling;
and (iii) application of the new metric zeta diversity to analyze multisite turnover
and drivers. At fine taxonomic resolution, rapid compositional turnover was ob-
served across multiple spatial scales. Turnover was overwhelmingly driven by deter-
ministic processes and influenced by the rare biosphere. The communities also ex-
hibited strong distance decay patterns and taxon-area relationships, with z values
within the interquartile range reported for macroorganisms. These biogeographical
patterns were weakened upon applying two standard approaches to process com-
munity sequencing data: clustering sequences at 97% identity threshold and/or fil-
tering the rare biosphere (sequences lower than 0.05% relative abundance). Compa-
rable findings were made across local, regional, and global data sets and when
using shotgun metagenomic markers. Altogether, these findings suggest that bacte-
ria exhibit strong biogeographic patterns, but these signals can be obscured by
methodological limitations. We advocate various innovations, including using zeta
diversity, to advance the study of microbial biogeography.

IMPORTANCE It is commonly thought that bacterial distributions show lower spatial
variation than for multicellular organisms. In this article, we present evidence that
these inferences are artifacts caused by methodological limitations. Through leverag-
ing innovations in sampling design, sequence processing, and diversity analysis, we
provide multifaceted evidence that bacterial communities in fact exhibit strong dis-
tribution patterns. This is driven by selection due to factors such as local soil charac-
teristics. Altogether, these findings suggest that the processes underpinning diversity
patterns are more unified across all domains of life than previously thought, which
has broad implications for the understanding and management of soil biodiversity.
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A central goal of microbial ecology is to link microbial distribution patterns to
underlying ecological processes. Developing such links is important both for

fundamental science and applied outcomes, for example to make accurate global
biodiversity assessments and prioritize management goals in the face of both local and
global change (1, 2). However, achieving this critically depends on our abilities to
adequately characterize biodiversity at the first stage, with various methodological and
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theoretical challenges limiting our understanding of microbial distribution patterns and
their underlying ecological drivers.

Several principles have nevertheless become established in soil microbial ecology
through cultivation-independent studies over the last two decades. First, it is appreci-
ated that most soils harbor rich and abundant bacterial communities (3–6). In most
soils, a small number of taxa are abundant and prevalent, while the remaining taxa
have low abundance and frequency (the “rare” biosphere) (7, 8). In common with
macroorganisms (9), four key ecological processes control microbial assembly across
space and time: environmental selection, diversification, dispersal, and drift (10–12).
While much work has emphasized the role of deterministic environmental selection in
driving bacterial niche differentiation, especially edaphic factors such as pH (13–17),
some studies have also inferred stochastic patterns of community structure, for exam-
ple due to dispersal limitation or historical diversification (17–21). The relative strength
of these factors can vary across time, for example with dispersal controlling recruitment
and selection affecting retention during initial stages of primary succession (17, 22–24).
As is also the case in the field of macroecology, the relative importance of deterministic
and stochastic processes in shaping contemporary distributions of microorganisms
continues to be debated and there is a large body of often divergent literature in this
area. In this regard, a major methodological challenge is to perform sampling and
analysis that sufficiently disentangles the autocorrelation between environmental and
spatial factors in soil ecosystems (12, 25–27).

Also controversial is the extent to which microbial communities vary across space.
Soil bacteria are generally thought to exhibit weaker biogeographic patterns than
macroorganisms (15, 28). Most empirical studies have reported low exponents for
taxa-area relationships (13, 15, 29–31) and low regression coefficients in distance decay
curves (13, 19, 28, 32, 33), though exceptions have been reported (34–37). Several
hypotheses have been put forward to explain these observations (38, 39). Primarily,
bacteria are thought to be able to maintain wide geographic ranges in the face of
environmental variation by entering dormant states (39, 40), leading to limited geo-
graphic turnover and shallow taxon-area curves (15, 28, 41). However, methodological
artifacts may also account for some observations of weak spatial differences (28).
Microbial biogeographic patterns are known to be sensitive to various factors, including
spatial scale (42, 43), sampling effort (28, 44–46), and taxonomic resolution (15, 28, 44,
47–49). Communities are inherently prone to being undersampled, whether through
insufficient sampling effort, low sequencing depth, or rarefying data (50, 51). In
addition, the processing of 16S rRNA gene amplicon sequencing data typically used to
profile communities can reduce data set resolution; reads are usually clustered into
operational taxonomic units (OTUs) based on an arbitrary identity threshold (usually
97%), and the rare biosphere is regularly removed (52, 53). Compounding these issues,
the pairwise analyses generally used to quantify community turnover inadequately
partition variation from all community members: incidence-based measures are highly
sensitive to the rare biosphere, and abundance-based measures focus on the common
few (54, 55).

In this study, we employed three methodological innovations to address these
common limitations of microbial biogeographic surveys and reassess patterns of
bacterial community turnover. First, we adopted a hierarchical sampling scheme com-
monly used in macroecological surveys (56, 57); this enabled us to detect changes in
community structure across multiple spatial scales and, in light of controversies in the
literature, better distinguish the contributions of environmental and spatial drivers to
community assembly processes (27). Second, we profiled community composition
using high-resolution 16S rRNA gene amplicon sequence variants (ASVs), leveraging a
new generation of sequence processing tools (58–60). We compared the effects of the
commonly used approaches of filtering and clustering sequences on calculated com-
munity turnover; this is important given that clustering sequences reduces taxonomic
resolution and thus may increase the overall similarity of the community, thereby
weakening biogeographic patterns (35, 49). Finally, we used the multisite diversity
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metric zeta diversity to analyze spatial community turnover and predict the strength of
underlying deterministic and stochastic drivers (55). Unlike the commonly used beta
diversity that is calculated from pairwise comparisons, zeta diversity describes the
number of taxa shared across multiple sites. As a result, this parameter can discriminate
diversity patterns across the spectrum of common, intermediate, and rare taxa (55,
61–63) and infer deterministic and stochastic drivers of community assembly. On this
basis, we provide evidence that at the level of exact sequences, bacterial biogeographic
patterns are exceptionally stronger than previously reported.

RESULTS
Most community members have a low to moderate occupancy across soil

transects. We analyzed 96 topsoil samples along two perpendicular transects (see
Fig. S1a in the supplemental material): a 160-km latitudinal transect (north/south)
spanning four climatic zones (subhumid, semiarid, arid, and hyperarid; 69 samples) and
a 20-km longitudinal transect (east/west) in the arid zone (27 samples). Within each
transect, samples were collected according to a hierarchical design (2 sites per zone � 3
plots per site � 3 samples per plot) (Fig. S1b). This sampling scheme was designed to
enable the analysis of microbial community turnover at multiple spatial scales, capture
a wide spectrum of distance classes (Fig. S1c), and discriminate underlying spatial and
environmental drivers.

The bacterial and archaeal communities in each sample were profiled using both
new and standard approaches for processing 16S rRNA gene amplicon sequencing
data. Rarefaction curves (Fig. S2a to c) and richness estimators (Fig. S2d) confirmed that
sequencing and sampling efforts sufficiently captured the diversity of taxa within and
across samples. A high-resolution community profile was generated by processing
reads using the deblur pipeline (59) to resolve 16S rRNA gene amplicon sequence
variants (ASVs) at the single-nucleotide level (singletons removed) (see Data Set S1, tab
1, in the supplemental material). Most sequences were from the nine dominant soil
phyla (7), especially Actinobacteriota, Chloroflexota, and Proteobacteria, as well as pu-
tatively ammonia-oxidizing archaea (Fig. S3). The occupancy frequency distribution (64)
of the 11,335 taxa (ASVs) detected was positively skewed; �67% of 7,602 taxa were
detected in fewer than 10% of samples (Fig. 1a).

We then compared the effects of applying two standard approaches used to process
sequencing data into OTUs: (i) clustering, i.e., combining sequences with an identity
threshold of 97%, and (ii) filtering, i.e., removing sequences with lower than 0.05%

FIG 1 Occupancy frequency distribution of amplicon sequence variants (ASVs) at different taxonomic resolutions. The Kernel-
smoothed density plot shows the number of sites that each taxon (ASVs) was detected in across the data set. (a) Effect of clustering
taxa at either 100% or 97% identity threshold. (b) Effect of either including or removing taxa with lower than 0.05% relative
abundance. The vertical dashed lines show distribution means.
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relative abundance (Data Set S1, tab 2). There was a sharp decrease in the number of
taxa retained (2,943 clustered, 222 filtered, 403 clustered then filtered). Though clus-
tering inevitably reduced richness, as well as the frequency of intermediate taxa, it did
not affect the skew of the occupancy frequency distribution (Fig. 1a). However, when
less abundant taxa were filtered from the data sets, occupancy frequency shifted from
a positive skew to a modal distribution (Fig. 1b). These findings suggest that the
prevalence of most community members is low to moderate; standard clustering and
filtering approaches not only affect the “rare” biosphere, but a large percentage of
community members with moderate range sizes. In turn, changing occupancy prop-
erties may underestimate ecological heterogeneity and markedly bias biogeographic
interpretations.

Deterministic factors drive differences in community composition between soil
samples. We subsequently used pairwise metrics (beta diversity) to analyze community
composition between samples. We detected significant differences in microbial rich-
ness down to the site level (Data Set S1, tab 1) and community structure down to the
plot level (Data Set S2, tab 2). The extent of compositional differences observed
between sites depended on both the community property used (incidence versus
abundance, taxonomic versus phylogenetic) and the taxonomic resolution of the data
set. Principal-coordinate analysis (PCoA) ordinations showed prominent “V” patterns
(Fig. 2a); this pattern, also known as the horseshoe effect, has been shown to indicate
the presence of niche differentiation along environmental gradients (65). In line with
the high environmental heterogeneity along the latitudinal transect, differentiation was
more pronounced for the latitudinal transect than for the longitudinal transect
(Fig. S4a).

FIG 2 Patterns and drivers of beta diversity in the latitudinal transect. (a) Multidimensional scaling visualizing taxonomic and phylogenetic pairwise incidence
and abundance dissimilarity of microbial communities. The axes show the explained variation of taxa (ASVs) between samples using four different dissimilarity
metrics: Jaccard (taxonomic incidence-based), Bray-Curtis (taxonomic abundance-based), unweighted Unifrac (phylogenetic incidence-based), and weighted
Unifrac (phylogenetic abundance-based) dissimilarity metrics. The PCoA ordination is compared at four different taxonomic resolutions (taxa clustered at 100%
or 97% identity; taxa with �0.05% relative abundance included or removed). (b) Variation partitioning analysis delineating the relative contributions of
environmental and spatial sources of variation on microbial community structure. The analysis shows the proportion of variation in microbial incidence between
sample pairs as explained by environmental, spatial, overlapping, and unexplained sources of variation. These analyses were performed using data from each
plot in the latitudinal transect. Results are compared at four different taxonomic resolutions (taxa clustered at 100% or 97% identity; taxa with �0.05% relative
abundance included or removed). Data Set S2, tab 3, in the supplemental material summarizes the environmental variables that best explain the variation along
the transect.
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A variation partitioning analysis was used to delineate the measured environmental
and spatial predictor variables that best explain pairwise community structure. Across
the latitudinal gradient, 45% of the community variation of the high-resolution data set
was explained by measured edaphic factors (Fig. 2b; Data Set S1, tab 3) with pH, C/N
ratio, aridity, and salinity explaining the greatest amount of variation (Data Set S2, tab
3). These results broadly reflect other studies in the Negev region and along aridity
gradients globally (66–68). Less variation was explained for the more homogeneous
longitudinal transect (35%) (Fig. S4; Data Set S2, tab 4). Altogether, these results
suggest environmental effects predominate over distance effects in driving community
composition.

In common with other biogeographic studies (13, 69, 70), a large proportion of
variation was unexplained by the measured variables. A combination of factors could
contribute to this unexplained variation, including deterministic processes driven by
unmeasured abiotic and biotic factors, as well as neutral ecological drift and potentially
sampling effects. In both the PCoA and variation partitioning analyses, less variation in
community composition could be explained and partitioned for the high-resolution
data set compared to filtered ones (Fig. 2 and Fig. S4). The rank importance and weight
of environmental predictors also shifted depending on taxonomic resolution for both
transects (Data Set S2, tabs 3 and 4). In support of recent findings (71), these results
suggest that different environmental drivers structure common and rare microbial taxa.

Soil microbial communities exhibit rapid deterministically driven multisite
turnover. We also analyzed spatial turnover in the community using the recently
developed metric zeta diversity. As depicted in the infographic in Fig. S5, zeta diversity
describes the number of taxa shared by multiple combinations of sites; whereas beta
diversity (which it encompasses) is predisposed to detect turnover of rare taxa, zeta
diversity discriminates patterns and drivers of turnover across the spectrum of com-
mon, intermediate, and rare taxa (55, 61).

For the high-resolution data set, zeta diversity rapidly declined toward zero within
four orders in the latitudinal transect (�4 � 0.0068) (Fig. 3a). This means that the
average number of taxa shared across any four plots was 0.68% of 10,826, indicating
very rapid turnover. Similar patterns were observed across both transects and within
each climatic zone; somewhat lower turnover was observed along the longitudinal
transect (�4 � 0.010) (Fig. S6). Reducing taxonomic resolution markedly slowed com-
positional turnover (Fig. 3a); for the clustered and filtered data set, up to 30% of the
community were shared across any four plots (�4 � 0.18 and 0.30 for the latitudinal and
longitudinal transects, respectively). Such findings reflect that, given that common,
intermediate, and rare community members show different distribution patterns, low-
ering taxonomic resolution distorts detection of microbial turnover and underlying
drivers.

Derivations show that zeta decline most often follows either a power law or an
exponential form, which are, respectively, associated with either deterministic or
stochastic community assembly processes (55). Zeta decline much better fitted a power
law form for both transects and within each climatic zone (Fig. 3c and Fig. S6). This
therefore suggests that deterministic processes drive turnover and rejects the null
hypothesis that microbial communities are randomly distributed. While power law
support was overwhelming for the high-resolution data set, there was some support for
exponential models in the low-resolution data sets; filtering microbial data sets, by
obscuring biogeographic structure, may therefore cause false signals of stochastic
assembly processes (Fig. S6).

Soil microbial communities exhibit strong distance decay and taxon-area
relationships. We subsequently measured distance decay using a combination of
pairwise (beta decay) and multisite (zeta decay) metrics. Based on pairwise compari-
sons, a strong decay of shared taxa was also detected across transects (P � 0.0001)
(Fig. 4a and Fig. S4c; Data Set S2, tab 5). Lowering taxonomic resolution caused a large
increase in community similarity, a steeper distance decay coefficient, and a lower rate
of community turnover overall; across the 160-km latitudinal transect, there was a 82%
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reduction in community similarity for the high-resolution data set compared to 50% to
60% reductions for the clustered and/or filtered data sets. Given the concordant
support for deterministic drivers, based on the zeta diversity (Fig. 3), variation parti-
tioning analysis (Fig. 2b), and PCoA analysis (Fig. 2a), these decay patterns likely reflect
environmental filtering rather than dispersal limitation.

To quantify how distance decay compares between rare, intermediate, and common
taxa, distance decay was calculated for up to six zeta orders by using the mean distance
between pairs for up to six plots. For both transects at high resolution, the gradient of
the distance decay curve rapidly and significantly decreased with increasing zeta order
(Fig. 4b and Fig. S4d). This provides additional evidence that these microbial commu-
nities are highly structured and that turnover is driven by loss of rare to intermediate
members. In contrast, there were no significant changes in distance decay rates with
zeta order for the less-resolved data sets, further demonstrating that clustering and/or
filtering obscures biogeographic patterns.

Given these outcomes, we revisited the controversial taxa-area relationship for
bacterial communities (15, 44) using these data sets. This universal relationship in
ecology describes the increase in taxon richness with area sampled, i.e., S � cAz (where
S is number of species, A is area sampled, and c and z are fitted constants), and its
exponent z is a normalized measure of turnover rates that can be compared between
organismal groups (15). A strong taxa-area relationship was also observed for both
transects (P � 0.001) (Fig. 4c; Fig. S4e). The z exponents were 0.39 (latitudinal transect)
and 0.40 (longitudinal transect) for the original high-resolution data sets, and the
exponents decreased to 0.13 and 0.09 in the clustered then filtered data sets (Data Set

FIG 3 Multisite community turnover and assembly processes along the latitudinal transect at different
taxonomic resolutions. (a) Zeta decline showing how the number of shared taxa (ASVs) decline with the
addition of sites to the comparison (Order). (b) Zeta diversity ratio showing rate of taxon retention. This
demonstrates the probability of retaining common over rare taxa at any particular order with the
addition of an extra site. (c) Zeta decline followed a power law form in all cases, which is associated with
deterministic processes driving community turnover. (d) Statistical support for the power law form,
relative to an exponential form, varies depending on the taxonomic resolution.
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S2, tab 6). Such z exponents greatly exceed those reported for bacterial communities
in most previous studies (median, 0.04), but are congruent with four studies (29, 34, 35,
37), two of which also performed hierarchical sampling. These exponents are of the
same order of magnitude as those previously reported for animal and plant data sets
(median, 0.27) (Fig. 4d; Data Set S2, tab 6), indicating that biogeographic patterns of
bacteria and macroorganisms may not profoundly differ. However, more broad and
detailed side-by-side sampling is required to compare scaling relationships between
bacteria and macroorganisms.

Similar biogeographic patterns are observed using metagenomic sequences
and global data sets. This study relies on 16S rRNA gene amplicon sequencing to
profile the soil microbial communities. This approach remains standard practice for
biogeographic studies, given that the alternative of metagenomic profiling requires
much higher sequencing depths and yields either less information-rich short reads or
more error-prone long reads (72). However, limitations of 16S rRNA gene sequencing
include potential for amplification and sequencing errors, biases in the primer sets, and
genome variability in 16S rRNA gene copy number (73). While it is possible that the data
set includes some spurious sequences introduced through this approach, these are

FIG 4 Distance decay in community similarity and the taxa-area relationship at different taxonomic
resolutions. (a) Zeta distance decay relationship showing community turnover with increasing geo-
graphic distance based on pairwise comparisons (�2) of sites along the latitudinal transect. (b) Differences
in the slope (coefficient) of distance decay between pairwise and higher orders of zeta (�2) using the
average distance between sites. (c) Taxa-area relationships of the increase in richness with area sampled
along the latitudinal transect. This shows effects of taxonomic resolution for understanding how
compositional heterogeneity scales with distance. (d) Violin plots showing the density distribution and
interquartile range of the exponent z of the taxa-area slope reported here with those from other studies
for bacteria and eukaryotes (Data Set S2, tab 6). Results are compared at four different taxonomic
resolutions, whereby (i) taxa were clustered at either 100% or 97% identity threshold and (ii) taxa with
lower than 0.05% relative abundance were either included or removed.
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unlikely to account for the surprising observations made here. First, a range of accuracy
measures suggest deblur efficiently denoises sequencing data and that a 100% identity
threshold resolved using the deblur denoising pipeline is optimal for community
profiling with the V4 region (58, 59). Second, similar but weaker patterns of rapid
deterministically driven community turnover were observed for the clustered (but not
filtered) data sets, in which most spurious sequences should be removed (Fig. 2 and 3).

To test the reproducibility of our findings, we performed short-read metagenomic
sequencing of a subset of 12 samples across the latitudinal transect and analyzed a
single-copy ribosomal marker gene, rplP. Similar to the 16S rRNA gene amplicon data,
samples showed a high estimated richness, comparable taxonomic composition, and
rapid community turnover (Fig. S7). Zeta decline approached zero after three orders
(�3 � 0.06) using a rarefied data set (Fig. S7c). In combination, this suggests that 16S
rRNA gene ASVs are sufficient to estimate community turnover, whereas standard
methods of clustering and filtering data obscure biogeographic patterns and inflate
signals of taxon commonness.

Having detected these patterns at local and regional scales, we analyzed whether
similar patterns were observable at the continental scale. To do so, we analyzed
previously published 16S rRNA gene profiles of 237 soil samples collected from six
continents (7). As with our original data set, we processed the 16S rRNA amplicon
sequencing data into ASVs and analyzed the effects of clustering and/or filtering. The
occupancy frequency distribution of the taxa showed a skew similar to that of the Israel
data set (Fig. S8). Concordant with our previous observations, zeta diversity rapidly
declined across the first few orders and followed a power law relationship with strong
model support (Fig. S8). Clustering and filtering altered the occupancy frequency
distribution, resulting in �10% to 30% of taxa being retained at six zeta orders (Fig. S8).
Thus, the key finding that soil bacterial communities exhibit strong biogeographic
patterns is reproducible in data sets at local (longitudinal transect), regional (latitudinal
transect), and global scales.

DISCUSSION

In this study, we analyze patterns and drivers of soil microbial composition across
multiple scales. Steps were taken to overcome common limitations in microbial bio-
geographical studies by leveraging innovations in sampling design, amplicon process-
ing, and diversity metrics. We found the following. (i) Soil bacterial communities exhibit
strong biogeographic patterns. (ii) Spatial turnover is rapid, as most taxa have low to
moderate levels of occupancy. (iii) Community structure is influenced more by niche
differentiation due to environmental variation rather than dispersal limitation. Our
findings agree with previous literature that reported the uneven distribution of bacteria
across communities and the strong influence of deterministic drivers (3, 12). However,
we observed much stronger spatial turnover than reported in most, though not all,
previous literature (13, 15, 28). This is reflected by the compatible findings of four
independent analyses using the original high-resolution data set. Occupancy frequency
distributions revealed most taxa were shared across less than 10% of samples (Fig. 1).
Through zeta decline analysis, we detected a logarithmic decrease in the number of
taxa shared as the number of sites increased (Fig. 3). In addition, we observed strong
distance decay (Fig. 4a) and taxon-area relationships (Fig. 4c), with z values one to two
orders of magnitude higher than most previous observations (13, 29, 34, 35, 37).

Multiple factors may explain why we observed high environmentally driven turn-
over. These potentially include the choices of sampling site, sampling scheme, se-
quence processing, and downstream analyses. It is notable that our desert sampling
sites contained loessial soils that facilitate dispersal and the regional transect contained
high environmental heterogeneity, which is known to be associated with increased
bacterial turnover (31, 66, 69); however, this is unlikely to primarily account for most
discrepancies with previous literature, given that rapid turnover was also observed in
the local transect where physicochemical variation was lower and similar findings were
also made in the global analysis. A more significant factor may be that our study
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adopted a hierarchical sampling design in order to quantify microbial variation across
multiple spatial scales. In this regard, it is well-recognized that sampling design and
sample size are critical determinants of taxa-area relationships (44, 74); this reflects that
the detection of rare taxa largely determines species evenness and spatial structure,
which in turn affects the exponent z (35). Methodological advances that improve the
detection and inclusion of rare taxa are therefore predicted to align microbial z values
more closely with those reported for animal and plant communities (44, 48). it is
notable that other studies reporting high taxon-area exponents also used spatially
explicit hierarchical designs (34, 35).

However, the biggest factor likely underlying these discrepancies is the treatment of
sequencing data. A pervasive feature of 16S rRNA gene amplicon surveys is the
clustering of similar sequences to remove potential “noise” and, less commonly, the
filtering or undersampling of low-frequency sequences that constitute the rare bio-
sphere. As summarized in Fig. 5, such processing greatly reduces and distorts the
information in data sets, obscuring patterns in occupancy, turnover, and drivers. We
avoided such downfalls by using a recently developed denoising algorithm to resolve
sequence variants (59), while confirming through rarefaction curves that our sequenc-
ing efforts captured most rare taxa within and between samples. Through simulating
sequence processing, we observed major differences in occupancy frequency, zeta
diversity, distance decay, and taxon-area relationships upon filtering rare taxa and, to
a lesser extent, clustering similar sequences (Fig. 5). It should be noted that these
observations may appear to conflict with those of a recent study that reported
clustering did not “change the rate of microbial taxonomic turnover” (28). However, this
may be an issue of interpretation of distance decay curves. In common with this study
(28), we also observed that the distance decay coefficient of bacteria and archaea
remains similar between taxonomic resolutions, reflecting similar observations reported
in fungal (75) and plant (76) communities. However, as the community similarity (y
intercept) is lower at higher resolution, a higher proportion of taxa are lost overall in
unclustered data sets compared to clustered data sets. Thus, it is reasonable to
conclude that clustering masks microbial taxonomic turnover and broader biogeo-
graphic patterns.

This study also highlights the different patterns and drivers of community turnover
between rare, common, and intermediate community members. As demonstrated by
the occupancy frequency distribution, filtering sequences removes most rare species
and retains most common ones. On the basis of the results of beta diversity analysis, we
observed significant differences in the proportion of variation assigned to environmen-
tal, spatial, shared, or unexplained components at different taxonomic resolutions. This
agrees with recent reports that environmental and spatial drivers differentially act on
common and rare taxa (77, 78). Abundant generalists and rare specialists have been
shown to differentially respond to environmental change, reflecting differences in
niche breadth (11, 79, 80). Beyond these pairwise observations, we used zeta diversity
to demonstrate that the turnover patterns reflect those typically observed in deter-
ministically structured communities. Zeta decline consistently follows a power law,
which indicates that communities are nonrandomly structured such as those with clear
niche or range differentiation. However, upon lowering taxonomic resolution, these
patterns degrade and increasingly resemble stochastic patterns such as seen in habitats
with strong aeolian forces or aquatic flows (Fig. 5). These findings suggest that at lower
taxonomic resolutions (49) or when rare taxa are removed (35), the community struc-
ture becomes more similar and thus predicted assembly processes switch from deter-
ministic to stochastic. Through incorporating a multisite distance decay model, signif-
icant differences in the spatial structure of rare, intermediate, and common taxa could
also be detected.

Looking forward, this work demonstrates how microbial biogeography can be
advanced using readily implementable approaches. There is scope to use the meth-
odological and theoretical innovations shown here to investigate these patterns across
a broader range of environments and temporal scales. Detailed studies are needed to
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FIG 5 Summary of biogeographic patterns of soil microbial communities at different taxonomic resolutions. (a) Principle of how zeta diversity
encompasses turnover of rare, intermediate, and common community members. (b) Comparison of patterns of occupancy frequency, zeta decline, and
distance decay for rare, intermediate, and common community members. In addition, the figure demonstrates how the common approaches of clustering
and filtering can bias biogeographic interpretations of microbial communities.

Bay et al.

July/August 2020 Volume 5 Issue 4 e00540-20 msystems.asm.org 10

https://msystems.asm.org


better capture the biotic and abiotic subsets of drivers responsible for changes in
community turnover across all occupancy classes; this has been achieved in plant
ecology (61, 81) but is currently lacking in microbial ecology. Likewise, it is critical to
compare the patterns and drivers of community turnover in parallel for microorganisms
and macroorganisms. Indeed, a key observation of our study is that the z exponent for
the taxon-area relationships microbial communities falls within the interquartile range
of higher animal and plant communities, suggesting that microorganisms and macro-
organisms exhibit similarly strong spatial structure. However, given that these expo-
nents are highly sensitive to factors such as sampling design, sample size, and taxo-
nomic resolution (44, 74), a rigorous comparison of turnover between domains requires
side-by-side sampling. Finally, emerging advances in long-read and full-length 16S
rRNA gene sequencing may enable resolution of biogeographic patterns of microor-
ganisms at both the species and strain levels (82, 83).

MATERIALS AND METHODS
Soil survey design. Topsoil samples were collected along perpendicular latitudinal and longitudinal

transects in the Judea Hills and Negev Desert regions, Israel. The latitudinal transect, which was designed
to capture a high level of environmental heterogeneity, extended for 160 km in a north/south direction
along a steep aridity gradient. This transect traversed four climatic zones that were differentiated by
mean annual precipitation patterns: subhumid shrubland (300 to 400 mm/year), semiarid grassland
(�200 to 250 mm/year), arid desert (�50 to 90 mm/year), and hyperarid desert (�20 mm/year). The
longitudinal transect, sampled within the arid zone across a relative homogenous climate, extended
perpendicular to the latitudinal transect for 20 km in an east/west direction.

A hierarchical sampling scheme was used to capture biogeographic patterns across multiple spatial
scales and provide sufficient spatial resolution to cover the majority of distance classes between sites (see
Fig. S1c in the supplemental material). Three spatial hierarchies were within each climatic zone: (i) site
level (two representative sites of �1,000 m2), (ii) plot level (three representative plots of �100 m2), and
(iii) sample level (random triplicates of �100 cm2) (Fig. S1b). Site selection was based on four criteria: (i)
soil type (wind-deposited loessic soils in the subhumid, semiarid, and arid zones and gypsic soils in the
hyperarid zone), (ii) presence of soil crust to indicate no recent disturbance, (iii) vegetation-free soil to
minimize a vegetation effect, and (iv) a buffer of 100 m from roads, slopes, and seasonal runoff water
channels. No statistical methods were used to predetermine sample size.

Soil sampling and analysis. In total, 99 topsoil samples were collected across both transects over
a 10-day period in May 2017. Prior to sampling, GPS coordinates and site metadata were recorded. Soil
samples of approximately 50 g were collected in triplicate, using sterile techniques, by removing the soil
crust (0- to 2-cm depth) and then sampling the underlying topsoil (2- to 10-cm depth). Samples were
placed into individual 50-ml screw top falcon tubes and stored at 4°C until downstream analysis.

Within 24 h of sampling, all soils were homogenized by sieving (500 �m) and soil water content (as
a percentage) was measured gravimetrically in duplicate. All samples were then shipped to quarantine
approved facilities at the School of Biological Sciences, Monash University. For soil chemistry analysis,
samples were pooled to form one representative sample per plot and sent to the Environmental Analysis
Laboratory, Southern Cross University. In total, 21 separate soil chemical parameters were selected for
analysis, based on commonly reported drivers of soil microbial communities globally and those reported
by previous studies of the Judea Hills and Negev Desert (66, 84). These parameters included the
following: soil acidity (pH), electrical conductivity (EC), effective cation exchange capacity (ECEC), total
organic carbon, total nitrogen, sodium (Na), sulfur (S), phosphate (P), potassium (K), nitrate (NO3

�), and
ammonium (NH4

�), as well as bioavailable minerals, including manganese (Mn), copper (Cu), zinc (Zn),
boron (B), aluminum (Al), iron (Fe), and silicon (Si). Each chemical parameter was calculated following the
methods of Rayment and Lyons (85). Aridity data for each site were obtained from a global geospatial
data set (86) mapping the aridity index (MAP/PET, where MAP stands for mean annual precipitation and
PET stands for potential evapotranspiration) at a resolution of 90 arcseconds (approximately 1 km at the
equator) using a climatic time series from 1950 to 2000 (86). This data set includes samples from six
continents, Africa, Europe, Asia, Australia, North America, and South America.

Community DNA extraction and sequencing. For all samples, total community DNA was extracted
from 0.25 g of soil using the modified Griffith’s protocol (87). We confirmed the DNA yield, purity, and
integrity for each extraction using a Qubit fluorometer, Nanodrop 1000 spectrophotometer, and agarose
gel electrophoresis. For each sample (88), the hypervariable V4 region of the 16S rRNA gene was
amplified using the universal Earth Microbiome Project primer pairs F515 and R806 (89). The amplicons
were subjected to Illumina paired-end sequencing at the Australian Centre for Ecogenomics, University
of Queensland. Twelve samples were also subjected to shotgun metagenomics sequencing (SH.1.A3,
SH.1.C2, SH.2.C3, SA.2.B3, SA.1.C3, SA.1.B1, AR.2.A3, AR.2.A1, AR.1.C2, HA.2.C2, HA.1.B1, and HA.1.C2). DNA
was extracted from 0.25 g of soil using the MoBio PowerSoil isolation kit according to the manufacturer’s
instructions. Metagenomic shotgun libraries were prepared for the 12 samples using the Nextera XT DNA
sample preparation kit (Illumina Inc., San Diego, CA, USA). Sequencing was performed on an Illumina
NextSeq500 platform with 2 � 150 bp high-output run chemistry. For analysis of the previously pub-
lished global data set (7), the raw 16S rRNA gene amplicon sequences were downloaded from Figshare
(https://figshare.com/s/82a2d3f5d38ace925492).
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Amplicon-based community profiling. Raw sequences from the Israel and global data sets were
processed on the QIIME 2 platform (90) using the deblur pipeline (59) to resolve exact amplicon
sequence variants (ASVs). In contrast to operational taxonomic unit (OTU)-based approaches that cluster
sequences to a fixed identity threshold (usually 97%), deblur controls error rates (typically 0.1% per
nucleotide) to resolve single-nucleotide differences over the sequenced gene region (59).

Paired-end raw reads were demultiplexed, and adapter sequences were trimmed, yielding 3,989,659
reads across all samples. Forward and reverse reads were joined using the q2-vsearch plugin (91). A
quality filtering step was applied using a sliding window of four bases with an average base call accuracy
of 99% (Phred score of 20). Low-quality reads were removed, and sequences were truncated at 250 bp
before denoising using deblur (59). For downstream analysis, three samples with low read counts
(�1,000 reads) were excluded (SH.1.B2, AR.1.B1, and AR.1.B2). An additional 414 ASV singletons were
detected and removed. The final data set contained 96 samples and 11,335 ASVs (see Data Set S1, tab
1, in the supplemental material). In order to compare biogeographic patterns across different taxonomic
resolutions, a second data set was created by clustering the ASVs at a 97% identity threshold using open
reference OTU picking via q2-vsearch (91) (Data Set S1, tab 2). The third and fourth data sets were created
by removing reads with lower than 0.05% relative abundance from the 100% and 97% identity threshold
data sets using the Phyloseq filter_taxa function.

Taxonomic assignment was performed as per a previously described approach (https://osf.io/25djp/
wiki/home/). Briefly, all reference reads that matched the 515F/806R primer pair were extracted from the
Genome Taxonomy Database (GTDB) (92) and used to train a naive Bayes classifier (93) by using the
fit-classifier-naive-bayes function with default parameters. The classifier was then used to assign the tax-
onomy to the ASV feature table. Representative sequences were aligned using the multiple sequence
alignment program MAFFT (94), and a phylogenetic tree was constructed using the fast-tree method in
QIIME 2.

Metagenome-based community profiling. The 16S rRNA gene amplicon sequence is commonly
used as a marker to profile microbial communities. However, a major limitation of this approach lies in
the intragenomic and intergenomic variation in copy number of the 16S rRNA gene (73, 82). We
conducted a comparative metagenomic analysis on a subset of 12 samples (biological triplicate from
within each climatic zone) along the latitudinal transect using a single-copy ribosomal marker in order
to test whether our observations of community turnover by 16S rRNA gene amplicon sequencing were
affected by this variation. A total of 318,420,199 reads were obtained from metagenomic sequencing
across the 12 samples. In contrast, the read counts for the negative controls were 6,547 (extraction
control) and 1,360 (library preparation control). Raw sequence reads in each sample were stripped of
adapter and barcode sequences, then contaminating PhiX sequences were identified and removed using
the BBDuk function of BBTools v. 36.92 (https://sourceforge.net/projects/bbmap/) with a kmer size of 31
and hamming distance of 1. We then used SingleM (95), which uses hidden Markov model (HMM)
searches of single-copy ribosomal markers, to generate de novo OTUs. In total, 28 HMM searches were
performed against 14 single ribosomal single-copy marker genes. GraftM was used for taxonomic
annotation of OTUs by searching sequences using hmmsearch (HMMER) (96). For downstream analysis,
the single-copy marker gene rplP was used for comparison, encoding ribosomal protein L16 L10e. This
marker was previously identified as a robust means of distinguishing between both closely and distantly
related genomes (97). Sequences were then clustered de novo into OTUs using a sequence identity
threshold of 97%. Taxonomic assignment was carried out using the GTDB taxonomy.

Due to large differences in sequencing depth, the amplicon and metagenomic sequences analyzed
were both rarefied at 300, which was the minimum number of sequences observed for rplP. Rarefied data
sets were used only in the supplemental analysis shown in Fig. S7, whereas the rest of the study used
unrarefied data sets.

Richness analysis. Statistical analysis and visualizations were performed in R version 3.4.4 (2018-
03-15) using the packages ggplot2 (98), phyloseq (99), vegan (100), and zetadiv (55). Occupancy
frequency distributions (64) were used to visualize the distributions of the numbers of taxa occupying
different numbers of areas and examine the distributional shifts at lower identity thresholds and after
filtering rare taxa. Taxa accumulation curves were used to compare alpha diversity properties between
sites and confirm adequate sampling of the microbial community. A sample-based rarefaction method
was used to find the expected curve, namely, the Mao Tau estimate, and a moment-based standard
deviation was estimated from the extrapolated number of ASVs surveyed (gamma diversity) using the
“exact” method of the specaccum function [Vegan | R] (100). Observed richness and estimated richness
(Chao1 and abundance coverage estimate [ACE] methods) were calculated using the estimate_richness
function [Phyloseq | R] (99). To test for significant differences in the mean observed and estimated
richness at the site level, an analysis of variance (ANOVA) with a Shapiro-Wilk test to confirm normality
was used.

Turnover analysis. The multisite diversity metric zeta diversity (�) was used [Zetadiv | R] (55) to
examine incidence-based turnover in community composition (Fig. S5). Pairwise metrics of incidence-
based turnover (e.g., Jaccard, Simpson index) are biased toward detecting turnover that is driven
predominantly by the loss and addition of taxa from the rare biosphere, as by definition rare taxa are not
shared by many sites. Zeta diversity overcomes this limitation by enabling discrimination between
turnover of rare, intermediate, and common taxa. With increasing orders of zeta, the average number of
taxa shared between sites declines and the contribution of increasingly more common taxa to the value
of zeta diversity increases. Variation in the rate and form of zeta decline provides information on
community structure and inference of the processes driving community assembly. If the zeta decline
follows an exponential form (the ratio between �i and �i-1 is constant), there is a similar probability of
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finding a common or rare taxon with the addition of a site, suggesting that turnover is predominantly
stochastic or dispersal limited. However, if zeta decline follows a power law form (the ratio between �i

and �i-1 increases at higher orders), then the chance of detecting a common taxon is greater than
detecting a rare one with increasing orders, demonstrating structure in the community and suggesting
that turnover is driven primarily by deterministic processes such as selection due to soil or climate (55).

Zeta decline using Monte Carlo sampling was calculated via the zeta.decline.mc function [Zetadiv | R]
(55). Zeta diversity was calculated on nonweighted presence-absence data for � orders �1 to �6; this
captured the extent at which the community was structured across each transect, as � values within each
data set approached zero. To account for differences in richness between sites, all �i values were
normalized by using a Jaccard normalization with subsampling set to 1,000 permutations for each
analysis. Power-law and exponential models were fitted to �i decline curves and Akaike information
criterion (AIC) were used to estimate the likelihood of either exponential or power law model describing
the relationship between � diversity and order i.

Biogeographic analysis. We calculated the distance decay of similarity across both transects to
quantify the number of shared ASVs over geographic distance and to explore turnover within the context
of geographic distance. Pairwise distance decay was calculated using normalized �2, with subsampling
set to 1,000 using the function zeta.ddecay [Zetadiv | R] (55). To quantify the contribution of rare and
common ASVs to turnover, distance decay was calculated for orders �1 to �6 by using the mean distances
between pairs of n sites via the zeta.decays function [Zetadiv | R] (55). Spatially explicit taxa-area
relationships (74) were calculated by estimating richness as a function of the sample, plot, and site level
spatial hierarchies using the specnumber function [Vegan | R] (100). The taxa-area curve was fitted using
the Arrhenius model with the expression kAz, where k is the average number of taxa, A is the area (spatial
hierarchy), and z is the steepness of the curve. For comparison, turnover rates from this study were
compared against a total of 655 data sets, including bacteria and higher eukaryotes (101).

Community structure analysis. Principal-coordinate analyses (PCoA) were used on both weighted and
unweighted distance matrices. Read counts were normalized to relative abundance, and a square root
transformation was applied prior to calculating distances between samples using Bray-Curtis. For non-
weighted analysis, read counts were transformed to incidence (presence-absence) and distances were
calculated using the Jaccard index. A multivariate model-based framework was used to test for significant
differences in community structure among spatial hierarchies and identify the subset of environmental drivers
that best explain spatial patterns in community structure [MVAbund | R] (102). Microbial abundance and
incidence data typically show a mean-variance relationship, which standard approaches such as permuta-
tional multivariate analysis of variance (PERMANOVA), analysis of similarity (ANOSIM), and redundancy analysis
(RDA) fail to account for. Instead they rely on pairwise distance matrices which convert multivariate data sets
to univariate ones, which has been shown to reduce statistical power. MVAbund solves this problem for
nonnormal data by fitting a single generalized linear model (GLM) to each ASV separately and performing
resampling of P values to determine significance of a shared predictor variable.

In this study, ASV incidence data were modeled using generalized linear models. Mean variance
relationships of the data were confirmed by visually inspecting scatterplots showing mean variance as
a function of ASV incidence. Model assumptions were validated by inspecting Dunn-Smyth residuals as
a function of each predictor variable, and significance was established using a likelihood ratio test (LRT)
with PIT-trap bootstrapping (103). To obtain the subset of predictor variables which best explain a
multivariate response, significant predictor variables were passed through a forward selection in a
multivariate linear model using the top 10 independent variables with the highest average R2. A variation
partitioning analysis was performed to disentangle the autocorrelation between environmental and
geographic distance and partition variation in community structure into its spatial and environmental
components. Multisite generalized dissimilarity modeling (MS-GDM) was used to identify the importance
of correlates of turnover by regressing �2 against the subset of identified predictor variables at each
taxonomic resolution using zeta.msgdm function [Zetadiv | R] (55). Subsequently, a variation partitioning
analysis was performed using the zeta.varpart function [ZetadivR] (55), which partitioned the variation
into (i) variation explained by distance alone, (ii) variation explained by either distance or environment,
(iii) variation explained by environment alone, and (iv) unexplained variation.

Data availability. The amplicon and shotgun sequencing data sets generated for this study have
been deposited in the NCBI Sequence Read Archive under the BioProject accession no. PRJNA642232.
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