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A major barrier for broadening the efficacy of immunotherapies for cancer is identifying

key mechanisms that limit the efficacy of tumor infiltrating lymphocytes. Yet, identifying

these mechanisms using human samples and mouse models for cancer remains a

challenge. While interactions between cancer and the immune system are dynamic

and non-linear, identifying the relative roles that biological components play in regulating

anti-tumor immunity commonly relies on human intuition alone, which can be limited by

cognitive biases. To assist natural intuition, modeling and simulation play an emerging

role in identifying therapeutic mechanisms. To illustrate the approach, we developed

a multi-scale mechanistic model to describe the control of tumor growth by a primary

response of CD8+ T cells against defined tumor antigens using the B16 C57Bl/6 mouse

model for malignant melanoma. The mechanistic model was calibrated to data obtained

following adenovirus-based immunization and validated to data obtained following

adoptive transfer of transgenic CD8+ T cells. More importantly, we use simulation to

test whether the postulated network topology, that is the modeled biological components

and their associated interactions, is sufficient to capture the observed anti-tumor immune

response. Given the available data, the simulation results also provided a statistical basis

for quantifying the relative importance of different mechanisms that underpin CD8+ T

cell control of B16F10 growth. By identifying conditions where the postulated network

topology is incomplete, we illustrate how this approach can be used as part of an iterative

design-build-test cycle to expand the predictive power of the model.

Keywords: ordinary differential equations, Bayesian statistics, B16, immunotherapy, adoptive cell transfer, in vivo

mouse model

1. INTRODUCTION

Recent clinical successes illustrate the potential of immunotherapy to treat cancer (Topalian
et al., 2015). Yet, malignant cells create a tissue niche by changing how cells communicate and
by disrupting host immunity in non-intuitive ways that can be different among patients and
between humans and pre-clinical models (Laland et al., 2014; Klinke, 2014b, 2016). Identifying the
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relative importance of specific mechanisms that can disrupt
host immunity in a particular system from experimental data
is challenging using human intuition alone. Modeling and
simulation can play an important role to integrate knowledge
related to the underlying biology and assist natural intuition
in interpreting acquired data from humans and animal models
(Klinke, 2015). However, a common critique of mathematical
modeling is that model predictions are based on values of
model parameters that are not known. Here, we illustrate a
new approach enabled by improved computational power that
can be used to test whether our existing knowledge of the key
components of a biological system and their interactions, that
is the network topology, are sufficient to explain the observed
data irrespective of a lack of knowledge regarding the associated
parameter values.

Enthusiasm associated with cancer immunotherapies is driven
by the remarkable clinical successes associated with modulating
immune checkpoints and adoptive cell transfer of T cells that
recognize tumor-associated antigens (Hodi et al., 2010; Porter
et al., 2011; Rosenberg et al., 2011; Robbins et al., 2011; Topalian
et al., 2012). While these therapies provide a significant clinical
benefit to a subset of patients, the emerging challenge is to
broaden the clinical benefit of these therapies across the patient
population (Topalian et al., 2015). As a distributed and adaptive
system, the ability of the immune system to defend against a
malignancy depends on the collective action of multiple cell
types that are distributed spatially throughout the body and
provide information that changes with time and spatial context
(Chen and Mellman, 2013; Spitzer et al., 2015). While there
are multiple points where this process can become interrupted,
these new immunotherapies jumpstart this process by increasing
the number of CD8+ T cells that can infiltrate tumors
(Herbst et al., 2014; Tumeh et al., 2014). Improving efficacy of
immunotherapies then depends on improving the efficacy of
CD8+ T cells that infiltrate the tumor microenvironment to
recognize and kill malignant cells.

The tumor microenvironment is a complex environment
where multiple cell types contribute to overall tumor growth.
Identifying the roles that cells play in tissue dynamics, especially
in the case of anti-tumor immune response, presents a challenge
for human intuition alone. Models, either experimental or
mathematical, aid in thinking clearly about how tumors disrupt
host immunity by recreating this complicated cellular cross-
talk in a system that can be manipulated. Transplantable mouse
models are commonly used experimental models for testing
whether a particular component plays a causal role inmodulating
anti-tumor immunity (Dranoff, 2012). While in vivo mouse
models are considered the gold standard for testing mechanistic
hypotheses, limited observability of a complicated dynamic,
non-linear system can lead to non-intuitive results or limited
translational relevance (Wen et al., 2012). Alternatively, math
models aid in testing whether a mechanistic explanation is
consistent with observed data by encoding prior knowledge of
key components of a system and how these components are
thought to interact (Shoda et al., 2010; Germain et al., 2011;
Klinke, 2015). While the parameter values that quantify the
relative importance of these interactions are largely unknown,

computational tools can be used to select parameter values
that are consistent with observed data and to test from a
strong statistical viewpoint whether the postulated network is
consistent with the observed data, that is in silico model-
based inference (Klinke, 2014a, 2015). The complexity of a
mathematical model can then be progressively increased to
incorporatemore biological detail through iterative design-build-
test cycles.

To illustrate in silico model-based inference in the context of
cancer immunotherapy, we developed a multi-scale mechanistic
model to describe the control of tumor growth by a primary
response of CD8+ T cells against defined tumor antigens using
the B16 mouse model for malignant melanoma (Ya et al., 2015).
The mechanistic model was calibrated to data obtained following
adenovirus-based immunization to the tumor rejection antigen
dopachrome tautomerase antigen (DCT) and the glycoprotein
gp100 (Bloom et al., 1997; Overwijk et al., 1998). We used
simulation to test whether the postulated network topology,
that is the modeled biological components and their associated
interactions, was sufficient to capture the observed system. The
resulting model was then validated to data obtained following
adoptive transfer of transgenic CD8+ T cells that recognized
antigens derived from gp100. As part of an iterative approach,
the validated model and associated predictions suggest that
increasing the number of tumor infiltrating CD8+ T cells was
necessary but not sufficient for CD8+ T cell-mediated control
of tumor growth and outgrowth of B16F10 tumors depended on
a transient loss of MHC class I antigen presentation. While the
functional defects in CD8+ T cells that occur upon localizing
to the tumor microenvironment is established (e.g., McGray
et al., 2014), these simulations highlight how the relationship
between tumor and CD8+ T cells can abruptly change with time
following tumor transplant. Uncontrolled dynamics can have
important implications for interpreting experimental results and
the translational relevance of these pre-clinical mouse models.

2. MATERIALS AND METHODS

2.1. Models and Inference
A multi-scale mathematical model was constructed to represent
both prior knowledge about elements of the cellular network
and postulated dynamic relationships among the observed
components of the biological system. These causal relationships
among the modeled biological components were represented
using a mass-action formalism and encoded using a set of
ordinary differential equations. Geometrically, these causal
relationships, that is the model topology, can generate an infinite
family of curves that trace all possible dynamic trajectories of the
system in network state space. Individual curves are defined by
specific values of the model parameters and initial conditions.
Once the topology of the model is specified, a subset of these
curves is selected based on goodness-of-fit with the specified
experimental data. Using this subset of curves and associated
parameter values, the model can be used to describe the evolution
in the cellular network as a function of time and to explore the
implications of the assumed model structure. This process of
determining whether the postulated model topology is consistent
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with the experimental data, given the uncertainty in the model
parameters, is called in silico model-based inference (Klinke,
2009; Klinke et al., 2012; Klinke, 2014a). To focus on the
computational approach, experimental data was obtained from
previously published studies that describe using an adenovirus
vaccine against melanoma antigens to control the growth of the
B16 mouse melanoma model (Yang et al., 2006; McGray et al.,
2012, 2014). In the following subsections, themodel topology and
in silico model-based inference of the model parameters will be
discussed in more detail.

2.1.1. Mathematical Model of the Anti-tumor

Immunity Initiated by Adenovirus Vaccination

As summarized in Figure 1, two different modifications of a
deterministic multi-scale mathematical model were formulated
to describe the observed system and to integrate existing
knowledge about CD8+ T cell-mediated killing of tumor cells
following immunization against a tumor antigen using an
adenovirus vector. To represent the spatial organization of anti-
tumor immune response, three different compartments were
created to discriminate between components observed in either
the secondary lymph nodes, blood, or tumor microenvironment.
The initial model is described previously (Wang et al., 2015) and
referred to as V1. The two modified models are referred to as
V2 and V3. The particular biological components included in
the V2 and V3 models and a description of their corresponding
rate equations are described in the next paragraphs. In brief,
the V2 model modified the state variables in the lymph node
compartment to account for an age-structured population and
in the tumor microenvironment to account for changes in
compartmental size. The V3 model modified the state variables
in the tumor microenvironment.

• [TN]: Naïve CD8+ T cells in the blood expressed in cells per

mm3. We assume that naïve CD8+ T cells that recognize the
specific tumor antigen used in the adenovirus immunization
are produced at a constant rate, c1, from thymus and die
naturally at a rate kd1 · TN . To solve for the constant rate
of production, we assumed that naïve CD8+ T cells are
maintained at a constant level in the absence of the adenovirus,
i.e., c1 = kd1 ·TN(0). Upon immunization, naïve CD8+ T cells
are recruited to the lymph node, activated by the adenovirus
vector, and begin a proliferation and differentiation process
that results in their ultimate conversion to effector CD8+
T cells. The third term in the rate equation represents the
recruitment of naïve CD8+ T cells to the lymph node at a
rate proportional to TN and a saturable adenovirus-induced
antigen (LV) term.

dTN

dt
= c1 − kd1 · TN − c2 · TN ·

LV

LV+ kg
(1)

• [TE1a−d]: Effector CD8+T cells in the lymph node expressed

in cells per mm3. Newly activated naïve CD8+ T cells
initiate a differentiation and polarization cell fate program
to create effector CD8+ T cells. This process takes time
and influences the functional characteristics that CD8+ T

cells acquire during differentiation. To represent this age-
structured process mathematically (see Klinke (2006)), we
represent the differentiation of naïve into effector CD8+ T
cells as a sequential series of intermediate cell states indicated
by the species TE1a through TE1d. The rate equation for the
first cell state, TE1a, has two non-linear terms. The first term
represents that recruitment of naïve CD8+ T cells to the
lymph node, as similarly represented in Equation (1), and
is multiplied by the ratio of the volume of the blood (Vb)
to volume of the lymph node (Vln) to account for changes
in compartment size. The second non-linear term represents
the rate of change associated with cell differentiation and
proliferation, which also includes a saturable adenovirus-
induced antigen (LV) term. Cell proliferation is also limited
by immune checkpoints, where effector CD8+ T cells engage
Cytotoxic T-lymphocyte antigen 4 (CTLA-4) that attenuates
T cell receptor signaling (Sharma et al., 2011). This negative
feedback on effector CD8+ T cell proliferation is represented

by (1−
T2
E1d

k2a + T2
E1d

). The presence of TE1d in this term represents

the up regulation of B7 homologue 1 (B7-H1), an early
co-inhibitory membrane-expressed ligand that interacts with
CTLA-4, on activated CD8+ T cells (Pulko et al., 2011). The
other effector CD8+ T cell states also have similar non-linear
terms. In the rate equation for most differentiated state in the
lymph node, TE1d, the second term is positive as it represents
the proliferation of this terminally differentiated state and
the equation includes two additional terms that represent the
trafficking of effector CD8+ T cells from the lymph node to
the blood.

dTE1a

dt
= c2 · TN ·

Vb

Vln
·

LV

LV+ kg

− kp1 · TE1a ·
LV

LV+ kg

{

1−
T2
E1d

k2a + T2
E1d

}

, (2)

dTE1b

dt
= 2kp1 · TE1a ·

LV

LV+ kg

{

1−
T2
E1d

k2a + T2
E1d

}

− kp1 · TE1b ·
LV

LV+ kg

{

1−
T2
E1d

k2a + T2
E1d

}

, (3)

dTE1c

dt
= 2kp1 · TE1b ·

LV

LV+ kg

{

1−
T2
E1d

k2a + T2
E1d

}

− kp1 · TE1c ·
LV

LV+ kg

{

1−
T2
E1d

k2a + T2
E1d

}

, (4)

dTE1d

dt
= 2kp1 · TE1c ·

LV

LV+ kg

{

1−
T2
E1d

k2a + T2
E1d

}

+ kp1 · TE1d ·
LV

LV+ kg

{

1−
T2
E1d

k2a + T2
E1d

}

− ...

a12 · TE1d + a21 · TE2 ·
Vb

Vln
. (5)

• [LV]: Adenovirus expression in the lymph node expressed

in Relative Light Units (RLU) per mm3). The two adenovirus
vectors used in this experiment encode for either the full length
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FIGURE 1 | Schematic diagram of multi-compartment model of adenovirus-induced control of B16F10 tumor growth. The mathematical model is divided

into three compartments: the lymph node (top), the blood (middle), and the tumor microenvironment (bottom two panels). The key state variables include CD8+ T cells

that are denoted as Tx and cancer cells that are denoted by Cx , where x indicates the specific subset. The immunization vector and cytokine states are represented

by LV, TNFα, and IFNγ , respectively. Rate relationships associated with each compartment are contained within a black box associated with each compartment and

indicated by arrows connecting two state variables. Transport of modeled state variables between compartments is represented by solid arrows that cross

compartmental boundaries. The lymph node compartment was modeled differently in the V2 and V3 relative to the V1 model. In addition, the tumor microenvironment

(Continued)
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FIGURE 1 | Continued

was modeled in two different ways. The V2 model, enclosed by the red box, contained just one state of effector CD8+ T cells in the tumor microenvironment, while

the V3 model, enclosed by the blue box, contained four states of effector CD8+ T cells. Following from the detailed description presented in the Text, the conversion

or transport of cells between modeled states are represented by the solid arrows. The dotted red arrows represent the influence of a given state variable on the

conversion rate of another state variable. Each arrow is annotated by its corresponding rate constant. The rate constants associated with the production of TNFα in

the tumor microenvironment (kc2) are also annotated with * to indicate that the actual rate relationships are more complicated than depicted in the diagram.

human dopachrome tautomerase (DCT) or the full length
human melanoma Ag glycoprotein, gp100. The protein gp100
is a tissue-differentiation antigen that is expressed by both
normal melanocytes and melanoma cells in humans and mice.
Once the adenovirus is introduced on day 5, we assume an
exponential decay model for LV with the rate constant of kd2,
since the adenovirus used in the calibration experiments is
replicate-defective:

dLV

dt
=

{

0, for t ≤ 5 days

−kd2 · LV, for t > 5 days
(6)

In addition, the concentration of LV was set equal to 105 RLU
per mm3 on day 5.

• [TE2]: Effector CD8+ T cells in the blood expressed in

cells per mm3. The model included one net source and two
net sinks for effector CD8+ in the blood. The lymph node
provides a net source of these cells, where the first and second
terms represent the reversible trafficking of cells from the
lymph node to the blood and back, respectively. The first term
is multiplied by a volume ratio to account for the differences
in compartment sizes between the blood and lymph node. The
third term represents the natural death of effector CD8+ T
cells in the blood, which is the first sink. The second sink
is represented by the fourth and fifth terms that represent
the reversible trafficking of cells from the blood into the
tumor compartment and back, respectively. The migration
rate of effector CD8+ T cells from the blood to the tumor is
proportional to the concentration of cells in the blood. The
trafficking of T cells from the tumor back to the blood is
proportional to the fraction of tumor cells that do not express
the antigen epitope recognized by the effector CD8+ T cells.
The denominator in the fraction of tumor cells recognized by
the CD8+ T corresponds to the total volume of the tumor
(Vt = ǫ + CMHCI− + CMHCI+ + Vi · TE3x), where Vi

is the volume of a single T cell (Abbas and Lichtman, 2003)
and ǫ is small positive constant representing a small volume
of tissue that excludes tumor and immune cells in the tumor
compartment. The number of immune cells in the tumor
compartment, TE3x, corresponds to either TE3 in the V2model
or the sum of all T cell states (TE3a + TE3b + TE3c + TE3d) in
the V3 model.

dTE2

dt
= a12 · TE1d ·

Vln

Vb
− a21 · TE2 − kd3 · TE2 − a23 · TE2

+ a32 ·
CMHCI−

Vt
·
TE3a

Vb
(7)

• [CMHCI− ]: MHC class I negative tumor cells expressed in

units of mm3. Tumor cells can exist in one of two states:

tumor cells that do not express the antigen epitope recognized
by the effector CD8+ T cells and tumor cells that do express
the epitope. The immunodominant peptide that is shared
between human (the adenovirus antigen) and mouse (what
CD8+ T cells recognize) DCT and binds to the relevant
major histocompatibility complex (MHC) class I protein H-
2Kb is DCT180−188, SVYDFFVWL (Parkhurst et al., 1998).
For gp100, the immunodominant peptide that binds to H-
2Db is mgp10025−33, EGSRNQDWL (Overwijk et al., 1998).
The first two terms represent the increase in tumor cells that
are MHC class I negative due to cell proliferation. The first
term represents the proliferation of MHC class I negative cells
and the second term represents the increase in MHC class I
negative cells due to proliferation of MHC class I positive cells
that lose MHC class I expression due to cell division. In the
absence of new protein synthesis and assuming symmetric cell
division, copy numbers of proteins per cell is divided by 2
upon each cell division. While the copies of MHC class I is
a continuous variable, discretizing the tumor cells into these
two states based on MHC class I expression is a compact
representation of this process. The third term represents the
conversion of MHC class I negative to MHC class I positive
tumor cells due to the dose-dependent action of Interferon γ .
The final term represents the loss of tumor cells due to cell
death independent of the cytotoxic action of effector CD8+ T
cells. In contrast to the rest of the species in the model, the
two tumor cell states are represented in terms of total volume
rather than a concentration.

dCMHCI−

dt
= kp2 · CMHCI− + 2kp2 · CMHCI+

− c3 ·
IFNG

k1 + IFNG
CMHCI− − kd4 · CMHCI− (8)

• [CMHCI+ ]: MHC class I positive tumor cells expressed in

units of mm3. The rate of change of tumor cells that express
the immunodominant peptide recognized by the effector
CD8+ T cells has five terms. The first term represents the
conversion of MHC class I negative to MHC class I positive
tumor cells due to the dose-dependent action of Interferon
γ . The second term represents the loss due to conversion
to MHC class I negative cells by cell proliferation. The third
term represents the loss of tumor cells due to cell death
independent of the cytotoxic action of effector CD8+ T cells.
The last two terms represent the loss of tumor cells due
to the cytotoxic action of effector CD8+ T cells, which is
implemented differently in the V2 (Equation 9-V2) and V3
(Equation 9-V3) models. In the V3 model, effector CD8+ T
cells exist in one of four states, TE3a to TE3d. The product of
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TE3x
Vt

·
CMHCI+

Vt
can be conceptualized as the probability that

effector CD8+ T cells and MHC class I positive tumor cells
could interact in a given finite volume element. The rate
coefficients, c4a to c4d, represent the number of productive
immune cell-tumor cell interactions that result in a tumor
cytotoxic event per hour and was determined for each of
the different treatment conditions. The subscripts a to d
correspond to the cytotoxic activity of the effector CD8+ T
cell states TE3a to TE3d, respectively.

dCMHCI+

dt
= c3 ·

IFNG

k1 + IFNG
· CMHCI− − kp2 · CMHCI+

− kd4 · CMHCI+ − c4a ·
TE3

Vt
·
CMHCI+

Vt
· Vt

(9-V2)

dCMHCI+

dt
= c3 ·

IFNG

k1 + IFNG
· CMHCI− − kp2 · CMHCI+

− kd4 · CMHCI+ −

(

c4a ·
TE3a

Vt
+ c4b ·

TE3b

Vt

+ c4c ·
TE3c

Vt
+ c4d ·

TE3d

Vt

)

·
CMHCI+

Vt
· Vt

(9-V3)

• [TE3,TE3a−d]: Effector CD8+ T cells in the tumor

microenvironment expressed in number of cells. In the
V2 model, effector CD8+ T cells within the tumor are
described by only one phenotype or state: TE3. In the V3
model, effector CD8+ T cells in the tumor are considered to
be in one of four differentiation states: TE3a, TE3b, TE3c and
TE3d. These different T cell states are defined by differences in
IFNG production, proliferation capacity, migration capacity,
and cytotoxic killing ability. The equations for TE3 and TE3a

include four terms that are related to cell trafficking and cell
fate, which are shown in Equations (10-V2,-V3), respectively.
The two terms for cell trafficking include a term for the
movement of effector CD8+ T cells from the blood (TE2) and
their return to the blood compartments that is dependent on
the fraction of total tumor cells that do not express the tumor
antigen epitope (i.e., CMHCI− ). The two additional terms relate
to an increase in cell number due to cell proliferation, which
is proportional to the presence of antigen-expressing tumor
cells (i.e., CMHCI+ ) and a rate constant kp3a, and a decrease
in cell number due to cell death with a rate parameter kd5a.
The equation for TE3a (Equation 10.1-V3) also includes an
additional term to represent the conversion in cell phenotype
from TE3a to TE3b. Conversion in cell phenotype includes a
constitutive rate with the rate parameter a4 and a rate that is
proportional to the concentration of IFNG within the tumor
microenvironment, which is parameterized by k1 and the
maximum rate a5.

dTE3

dt
= a23 · TE2 · Vb − a32 · TE3 ·

CMHCI−

Vt

+ kp3a · TE3 ·
CMHCI+

Vt
− kd5a · TE3 (10-V2)

dTE3a

dt
= a23 · TE2 · Vb − a32 · TE3 ·

CMHCI−

Vt

+ kp3a · TE3 ·
CMHCI+

Vt
− kd5a · TE3 − ...

(

a4 + a5 ·
IFNG

k1 + IFNG

)

· TE3a (10.1-V3)

In an initial analysis of the data, we found that we were unable
to capture the trend associated with IFNG gene expression
in the tumor microenvironment. As it is well established
that tumors create an immunosuppressive microenvironment
(Motz and Coukos, 2013), we decided to split the effector
CD8+ T cell population into four states. The additional
effector CD8+ T cell states in the tumor microenvironment;
TE3b, TE3c, and TE3d; represent different phenotypes that
exhibit progressively diminished cytotoxic effector functions,
such as reduced IFNG production and cytotoxic killing ability.
The equations for TE3b to TE3d include four terms that are
related to cell fate. The first two terms represent progressive
conversion in cell phenotype, such as conversion from TE3a

to TE3b and TE3b to TE3c, and depend on a constitutive rate
constant (a4) or rate proportional to IFNG (a5). The last
two terms represent cell proliferation at a rate proportional
to the number of antigen-expressing tumor cells and the rate
constant kp3b and cell death with a rate parameter of kd5b.

dTE3b

dt
=

(

a4 + a5 ·
IFNG

k1 + IFNG

)

· TE3a

−

(

a4 + a5 ·
IFNG

k1 + IFNG

)

· TE3b + ...

kp3b · TE3b ·
CMHCI+

Vt
− kd5b · TE3b (10.2-V3)

dTE3c

dt
=

(

a4 + a5 ·
IFNG

k1 + IFNG

)

· TE3b

−

(

a4 + a5 ·
IFNG

k1 + IFNG

)

· TE3c + ...

kp3b · TE3c ·
CMHCI+

Vt
− kd5b · TE3c (10.3-V3)

dTE3d

dt
=

(

a4 + a5 ·
IFNG

k1 + IFNG

)

· TE3c

+ kp3b · TE3d ·
CMHCI+

Vt
− kd5b · TE3d (10.4-V3)

• [IFNG]: Interferon γ in the tumor microenvironment

expressed in moles per mm3. As the tumor mass constitutes
a compartment that is changing in volume, the rate of change
in the concentration of IFNG in the tumor microenvironment
includes terms related to the rate of change in the number of
IFNGmolecules and terms related to changes in concentration
due to the rate of change in the compartment size. These terms
follow directly from the application of the product rule where
a protein concentration (C) in a well-mixed compartment is a
ratio of the number of molecules of a protein (N) divided by
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the volume of the compartment (V):

dC

dt
=

d(N/V)

dt
=

1

V
·
dN

dt
−

N

V2
·
dV

dt
. (11)

Using this general relationship, the specific equations used
for the two cytokine concentrations, IFNG and TNFα,
in the tumor microenvironment are shown in Equations
(12, 13). We assume that IFNG is produced under these
experimental conditions by active effector CD8+ T cells
present in the tumor microenvironment and is consumed at
a concentration-dependent rate. The total number of tumor
cells is represented by Ct .

dIFNG

dt
= kc1 ·

TE3

Vt
− kd6 · IFNG+

IFNG

Vt
· Vi · kd5a · TE3

+
IFNG

Vt
· c4a · TE3 ·

CMHCI+

Vt
− ...

IFNG

Vt
· Vi · a23 · TE2 · Vb

+
IFNG

Vt
· Vi · a32 · TE3 ·

CMHCI−

Vt
− ...

IFNG

Vt
· Vi · kp3a · TE3 ·

CMHCI+

Vt

+
IFNG

Vt
· (kd4 − kp2) · Ct (12-V2)

dIFNG

dt
= kc1 ·

(

TE3a

Vt
+

TE3b

Vt
·
c4b

c4a
+

TE3c

Vt
·
c4c

c4a

+
TE3d

Vt
·
c4d

c4a

)

− kd6 · IFNG+ ...

IFNG

Vt
· Vi · [kd5a · TE3a

+ kd5b · (TE3b + TE3c + TE3d)]+ ...

IFNG

Vt
· (c4a · TE3a + c4b · TE3b + c4c · TE3c

+ c4d · TE3d) ·
CMHCI+

Vt
− ...

IFNG

Vt
· Vi · a23 · TE2 · Vb

+
IFNG

Vt
· Vi · a32 · TE3a ·

CMHCI−

Vt
− ...

IFNG

Vt
· Vi · [kp3a · TE3a

+ kp3b · (TE3b + TE3c + TE3d)] ·
CMHCI+

Vt
+ ...

IFNG

Vt
· (kd4 − kp2) · Ct (12-V3)

• [TNFα]: Tumor Necrosis Factor α in the tumor

microenvironment expressed in moles per mm3. Similar
to the equations for the concentration of IFNG, the rate of
change in TNFα in the tumor microenvironment includes
terms that describe the production or consumption of TNFα
molecules and terms that capture the change in concentration

due to changes in compartmental size. The TNFα is produced
by effector CD8+ T cells at a constant rate and this rate
is increased in an autocrine positive feedback loop. TNFα
present in the tumor microenvironment is eliminated with a
concentration-dependent rate.

dTNFα

dt
= kc2 ·

TNFα

k2 + TNFα

·
TE3

Vt
+ kc3 ·

TE3

Vt
− kd7 · TNFα

+
TNFα

Vt
· Vi · kd5a · TE3 + ...

TNFα

Vt
· c4a · TE3 ·

CMHCI+

Vt
− ...

TNFα

Vt
· Vi · a23 · TE2 · Vb

+
TNFα

Vt
· Vi · a32 · TE3 ·

CMHCI−

Vt
− ...

TNFα

Vt
· Vi · kp3a · TE3 ·

CMHCI+

Vt

+
TNFα

Vt
· (kd4 − kp2) · Ct (13-V2)

dTNFα

dt
= kc2 ·

TNFα

k2 + TNFα

·

(

TE3a

Vt
+

TE3b

Vt
+

TE3c

Vt

+
TE3d

Vt

)

+ ...

kc3 · (
TE3a

Vt
+

TE3b

Vt
+

TE3c

Vt
+

TE3d

Vt
)

− kd7 · TNFα + ...

TNFα

Vt
· Vi · [kd5a · TE3a

+ kd5b · (TE3b + TE3c + TE3d)]+ ...

TNFα

Vt
· (c4a · TE3a + c4b · TE3b

+ c4c · TE3c + c4d · TE3d) ·
CMHCI+

Vt
− ...

TNFα

Vt
· Vi · a23 · TE2 · Vb

+
TNFα

Vt
· Vi · a32 · TE3a ·

CMHCI−

Vt
− ...

TNFα

Vt
· Vi · [kp3a · TE3a

+ kp3b · (TE3b + TE3c + TE3d)] ·
CMHCI+

Vt
+ ...

TNFα

Vt
· (kd4 − kp2) · Ct (13-V3)

The model equations were encoded and evaluated in MatLab
R2013a (The MathWorks, Natick, MA). As the experimental
measurements do not directly correspond to individual
molecular species in the mathematical model, the simulated
concentrations of the species in the model were combined
to represent the experimental measurements. To make a
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comparison with the experimental RT-PCR data, the values for
TCR gene expression was based on the total concentration of
effector CD8+ T cells in the tumor microenvironment and the
values of IFNG and TNFα gene expression were based on the
simulated rate of protein production relative to the volume of
the compartment, as described by:

TCRα mRNA = BG1 + β1 · (TE3a + TE3b + TE3c + TE3d)/Vt

(9)

IFNG mRNA = BG2 + β2 ·

(

TE3a + TE3b ·
c4b

c4a
+ TE3c ·

c4c

c4a

+ TE3d ·
c4d

c4a

)

/Vt (10)

TNFα mRNA = BG3 + β3 ·

(

kc2 ·
TNFα

k2 + TNFα
+ kc3

)

· (TE3a + TE3b + TE3c + TE3d)/Vt . (11)

Many biological assays, like qRT-PCR, measure relative changes
in a measurand, like gene expression, above a non-specific
background signal, which is represented by the parameters
BG1, BG2, and BG3. In comparing the experimental gene
expression measurements with model predictions, we used qRT-
PCR measurements obtained from untreated mice to estimate
a non-specific background signal. Initially, we considered the
qRT-PCR measurements obtained from untreated mice using
all time points to estimate this non-specific background signal,
as the background signal should be constant. However, when
comparing the time points, the measurements obtained at day
8 for all three genes were consistently higher than all of the
other time points. We used a StudentÕs t-test to test the null
hypothesis that values from day 8 were drawn from the same
population as values from other days. The resulting p-value
(<1e-6) suggests that it is unlikely that these samples come
from the same population. Therefore, day 8 qRT-PCR values
in untreated mice were considered outliers and removed from
subsequent analyses.

Initial values for the tumor cells and naive CD8+ T cells were
specified tomeasured values while the remaining biological states
contained within the model were initially set to near zero (i.e., 2e-
16). Summed squared error between experimental and simulated
measurements was used to determine goodness-of-fit. Maximum
expectation estimates for the calibrated parameters, shown in
Tables S1, S2, were determined using an empirical Bayesian
approach (Klinke, 2009), as described in the next section.

2.1.2. In silico Model-Based Inference of Model

Predictions and Parameters

An empirical Bayesian approach was used to estimate the
uncertainty associated with the model predictions and
parameters, given the available experimental data (Klinke,
2009). Briefly, we used an Adaptive Markov Chain Monte
Carlo (AMCMC) algorithm to generate a sequence of states
that represent samples drawn from the posterior distribution
of the model predictions, given the uncertainty in the model
parameters and the specific calibration data. This involves the

calculation of the following integral:

P(YM|M) =

∫ +∞

−∞

∫ +∞

−∞

P(YM|2,M)·P(Y|2,M)·P(2|M)d2dY .

(12)
As the available data (Y) is a finite discrete set, integrating with
respect to Y involves adding the comparisons between each
model prediction (YM) and the corresponding observation (Y)
that are represented by the likelihood (P(Y|2,M)). Integration
with respect to the parameters (2) is more difficult but can
be accomplished using Markov Chain Monte Carlo (MCMC)
methods enabled by improved computational power. MCMC
methods collect parameter values that provide model predictions
that are consistent with the observed data using a random walk
in parameter space. Importantly, the collective Markov chain
represents samples drawn from the integrand: P(YM|M). A
starting point in the parameter space for the Markov Chains was
obtained via simulated annealing (Beers, 2007). To accelerate
the equilibration of the model behavior, final values were
captured after the simulated annealing step and used as initial
values for the AMCMC simulations. Using an unbiased prior
distribution, a learning period of 100,000 steps was used to
establish the covariance of the proposal distribution. The
proposed steps within parameter space were evaluated using
a Metropolis-Hastings algorithm with a targeted acceptance
fraction equal to 0.2.

The key question here is how long of a chain do you need to
estimate P(YM|M). Convergence criteria, like the Gelman-Rubin
Potential Scale Reduction Factor (PSRF), are used to determine
how long of a walk is necessary to provide consistent estimates
of P(YM|M) (Gelman and Rubin, 1992; Brooks and Gelman,
1998). The Gelman-Rubin potential scale reduction factor was
applied to the model predictions to estimate the convergence
of the Markov chain to the posterior distribution of the model
predictions, which are shown in Figures S2, S5. Once the chains
are converged, subsequent samples help fill out the contours of
P(YM|M) and the corresponding parameter values that provide
these predictions. In addition, representative samples from the
posterior distributionwere obtained by retaining every 200th step
of the cumulative Markov chain.

Four parallel chains, each containing at least 1 × 106

steps, were calibrated to the observed experimental data (see
Figures 2, 3) and used to estimate the posterior distributions
in the model predictions and parameters. The simulation of
each chain took approximately 720 h on a single core of a 2.66
GHz Dual-Core Intel Xeon 64-bit processor with 8 GB RAM.
A graphical summary of the Gelman-Rubin statistics was used
as a diagnostic to determine convergence of the Markov chains
to the posterior distribution in the model predictions (Figures
S1, S4). An initial sequence of 3 × 105 AMCMC steps was
required for the four chains to converge. This initial sequence was
used as the “burn-in” period. Traces for each of the parameters
were used to estimate the degree of mixing among the four
chains (see Figures S2, S5). The optimal parameter values were
determined using the expectation maximum and are listed in
Table S1. Pairwise scatter plots obtained from the four chains
following the burn-in period were used to estimate the posterior
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FIGURE 2 | Posterior distribution in the model predictions obtained for the V1 model compared against the observed data for all three treatment

groups. The experimental data (squares) acquired for untreated C57Bl/6 mice (A) and mice immunized with rHuAd5-hgp100 (B) and rHuAd5-hDCT (C) adenovirus

expression vector on day 5 following subcutaneous implantation of 1×106 B16F10 tumor cells were compared to the posterior distributions in the model predictions

obtained using the V1 model. The comparisons between experimental measures of the anti-tumor immune response and corresponding simulated values are shown

separately in subpanels. Experimental observations include antigen expression (luciferase expression: B-1,C-1), activated CD8+ T cells in lymph node (B-2,C-2),

activated CD8+ T cells in blood (percent of total CD8+ T cells: B-3,B-4,C-3,C-4), tumor volume (A-1,B-5,C-5), TCRa mRNA expression in tumor (A-2,B-6,C-6),

IFNG mRNA expression in tumor (A-3,B-7,C-7), and TNFα mRNA expression in tumor (A-4,B-8,C-8). Using an empirical Bayesian approach, the uncertainty in the

model predictions are represented by a solid line, which represents the median response, and dashed lines that enclose the 95% credible interval. Luciferase, active

CD8+ T cells in lymph node, and activated CD8+ T cells in blood are not shown for untreated C57Bl/6 mice as they are essentially zero.

Frontiers in Pharmacology | www.frontiersin.org 9 January 2017 | Volume 7 | Article 515

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Klinke and Wang Simulating Immune Control of Tumor Growth

FIGURE 3 | Posterior distribution in the model predictions obtained for the V2 and V3 models compared against the observed data for all three

treatment groups. Similar to Figure 2, the experimental data (squares) acquired for untreated C57Bl/6 mice (A) and mice immunized with rHuAd5-hgp100 (B) and

rHuAd5-hDCT (C) adenovirus expression vector on day 5 following B16F10 implantation were compared to the posterior distributions in the model predictions

obtained using the V2 (red curves) and V3 (blue curves) models. Experimental observations shown in each subpanel include antigen expression (luciferase expression:

B-1,C-1), activated CD8+ T cells in lymph node (B-2,C-2), activated CD8+ T cells in blood (percent of total CD8+ T cells: B-3,B-4,C-3,C-4), tumor volume

(A-1,B-5,C-5), TCRa mRNA expression in tumor (A-2,B-6,C-6), IFNG mRNA expression in tumor (A-3,B-7,C-7), and TNFα mRNA expression in tumor

(A-4,B-8,C-8). The model predictions are represented by a solid line, which represents the median response, and dashed lines that enclose the 95% credible interval.

As they were considered outliers, experimental values excluded from the analysis are indicated by *. Luciferase, active CD8+ T cells in lymph node, and activated

CD8+ T cells in blood are not shown for untreated C57Bl/6 mice as they are essentially zero.
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identifiability of the model parameters (see Figures S3, S6).
The scatter plots were colored based upon marginal posterior
probability density obtained by kernel density estimation. A high
value for the correlation coefficient suggests that the parameters
were not independently identifiable given the calibration data.
For example, the parameters associated with the rate of IFNG
secretion (e.g., kc1) and the scaling constant for RT-PCR assay
of IFNG gene expression (β1) were not practically identifiable,
as they exhibited a correlation coefficient of nearly 1.0. The
posterior distributions in the model predictions were obtained
by marginalizing the model predictions over all of the parameter
values from the Markov chains following the burn-in period.
Despite the variation in the model parameters, the posterior
predictions obtained from the converged segment of the Markov
chains resulted in a narrow range of predictions (see Figure 3).

3. RESULTS

3.1. A Single Effector CD8+ T Cell State Is
Unable to Capture Observed Tumor
Response
Building upon a prior analysis of the B16 model for
immunotherapy that generated the V1 model (Wang et al.,
2015), we assembled a multi-scale model that represented key
aspects of clonal expansion of CD8+ T cells in response to
adenovirus vaccination against tumor antigens. The adenovirus
vector induces both the transient expression of a defined
tumor associated antigen and triggers innate immunity to
initiate a primary adaptive immune response against this tumor
antigen. As a primary adaptive immune response is organized
spatially (Chen and Mellman, 2013), the model includes three
compartments. First, a secondary lymph node compartment
represents initial antigen presentation and activation of naive
CD8+ T cells. Second, a blood compartment represents
circulating naïve and effector CD8+ T cells in search of cognate
tumor antigens. Third, a tumor microenvironment models
infiltrating effector CD8+ T cells that can kill cells expressing the
corresponding tumor antigen. The physiology represented by
the model is shown schematically in Figure 1. We assumed that
the size of the secondary lymph node and blood compartments
remained fixed while the tumormicroenvironment compartment
changed in size due to changes in the number of B16F10 tumor
cells. Motivated by inconsistencies between the V1 model
and observed data that was not used in developing the V1
model (see Figure 2), parameters were incorporated to model
immunizing against different tumor antigens. In addition, the
representation of clonal expansion of antigen-specific CD8+
T cells in the lymph node was revised to represent an age-
structured framework where naive CD8+ T cells must undergo
a series of rounds of proliferation before they acquire the ability
to emigrate from the lymph node as effector CD8+ T cells.

Cellular decision-making, like the acquisition of an effector
phenotype by CD8+ T cells, is influenced by the intracellular
abundance of proteins and can take multiple rounds of cell
proliferation to change the cellular state (Marchingo et al.,
2014; Kinjyo et al., 2015). Cellular decision-making and cell

proliferation are, to some degree, linked and can be represented
mathematically by the transition between discrete states. Within
the cell, external signals are transmitted to the nucleus by
modifying proteins post-translationally. The abundance of these
modified proteins, in the absence of new external signals, is
reduced by a factor of two with each cell division (Klinke
et al., 2012). In the case of CD8+ T cells, antigen stimulation
promotes the initial rounds of proliferation, which are guided
by an intrinsic program of the cell. Subsequent rounds of
proliferation are modulated by environmental signals, like IL-2,
and correspond to downregulation of CD62L, migration to
peripheral tissues, and acquisition of cytotoxic functionality
(Jenkins et al., 2008; Hofer et al., 2012; Kinjyo et al., 2015). In
addition to acquiring the ability to emigrate from the lymph
node, they also upregulate co-inhibitory proteins, such as CTLA4
and B7-H1 (Pulko et al., 2011; Sharma et al., 2011), that aim to
limit the clonal expansion of the T cell response. This process is
represented in the model by a feedback term from effector CD8+
T cells (i.e., TE1d) that inhibits the rate of change associated
with cell differentiation and proliferation in the lymph node (see
Supplemental Text). These biological features were incorporated
into a revised model, which is denoted as the V2 model.

The model was calibrated using the raw data summarized
in a collection of three published studies that test whether
immunization against tumor antigens could be used to
control the growth of the B16F10 model of malignant
melanoma, a widely used pre-clinical model for testing cancer
immunotherapies (Ya et al., 2015). The first paper describes the
dynamics of a primary CD8+ T cells response by immunizing
with an adenovirus tumor-antigen delivery vehicle based on the
recombinant human adenovirus serotype 5 (rHuAd5) vector
(Yang et al., 2006). These data constrained the dynamics
associated with adenovirus antigen expression and T cell
dynamics in the lymph node and blood. Calibrating the effect
of adenovirus vaccination on tumor growth was based on two
studies (McGray et al., 2012, 2014). In these papers, the rHuAd5
vector is used to induce a CD8+ T cell response to human
dopachrome tautomerase antigen (hDCT; vector: rHuAd5-
hDCT) and to the glycoprotein gp100 (rHuAd5-hgp100). In the
B16F10 model, DCT is a rejection antigen while gp100 is unable
to be processed and presented by the Major Histocompatibility
Complex class I pathway Leitch et al. (2004). As shown in
(McGray et al., 2014), control of tumor growth in this model
is through tumor-specific CD8+ T cells. Collectively, 448 data
points were used to constrain 36 model parameters.

In contrast to Wang et al. where a single set of best-fit
parameters were used, here in silico model-based inference was
used to determine whether the postulated topology of this
multi-scale model was consistent with the observed response of
CD8+ T cell to adenovirus vaccination and concomitant changes
in the tumor microenvironment under all three experimental
conditions (untreated, rHuAd5-hgp100, and rHuAd5-hDCT).
In silico model-based inference involves a random walk in
parameter space to select parameter combinations that are
consistent, within a certain probability, with the observed data
(Klinke, 2009; Klinke et al., 2012; Klinke, 2014a). In theory,
selecting appropriate parameter values was an over-determined
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problem because 448 data points were used to constrain 36
model parameters. However, in practice, selecting appropriate
parameter values is a more difficult problem computationally
and conceptually, as the information contained within each data
point may not be unique and the model parameters may not
have a unique impact on the model predictions (Klinke, 2014a).
An adaptive Markov Chain Monte Carlo approach based on a
Metropolis-Hastings algorithm, which is suited to these types of
issues, was used to provide this random walk in parameter space;
the computational details of the approach are described in the
Supplemental Text. Converged segments from four independent
Markov Chains were used to establish the posterior distributions
in the model predictions and to establish an identifiable subset
of model parameters (Figures S1–S3). Overall, the posterior
distributions in themodel predictions show good agreement with
the observed experimental data (see red curves in Figure 3).
In most cases, the dynamic trends were consistent between the
model predictions and experimental observations despite the fact
that the experimental variability was greater than the posterior
distribution in model predictions. The small variability in the
model predictions is consistent with the in silico model-based
inference approach, where the experimental variability associated
with each time point is averaged out by using a mechanistic
model to integrate across the different time points.

To be more quantitative in comparing the two models, we
used a Bayes Ratio (Bri) to quantify the strength of evidence that
favors the revised model (Mr) vs. initial model (Mi) to capture
the observed experimental data. The maximum value of the
Bayes Ratio was obtained from the converged segments of the
corresponding Markov Chains and calculated according to:

Bri =
Max(P(Y|θk,Mr))

Max(P(Y|θk,Mi))
, (13)

where P(Y|θk,Mi) is the likelihood to observe data Y , given a set
of parameter values θk and model Mi. In turn, the likelihood is
estimated by:

P(Y|θk,M) ∝





1
∑Nobs

j=1 (Yj − YMj(θk))2





Nobs
2

, (14)

where the denominator is the summed squared difference
between the experimental observations, Yj, and the
corresponding model predictions, YMj(θk), and the exponent
accounts for the number of experimental observations, Nobs

(Klinke, 2014a). The Bayes Ratio was calculated separately for
each observed state variable, as summarized in Table 1. Values
for the Bri between 1 and 3 are considered weak, between 3 and
20 are positive, between 20 to 150 are strong, and greater than
150 are very strong evidence favoring model r over model i
(Klinke, 2014a). Collectively, the Bayes Ratios suggest strong to
very strong evidence favoring the V2 over V1 model. Of all the
values, simulations of the rHuAd5-hDCT-related data tend to
have lower Bayes Ratios, which reflects the fact that the V1model
was developed primarily based on the rHuAd5-hDCT data. In
contrast, the V2 model better captures the differences observed

TABLE 1 | Bayes Ratios were used to quantify the evidence in support of

successive revisions of the mathematical model.

Experimental Bayes Ratio

Group Measure V2 vs. V1 V3 vs. V2

Untreated Tumor volume 383.0 2.4

TCRa mRNA 6.8E+31 1.0

IFNG mRNA 5.9E+21 1.0

TNFa mRNA 3.3E+32 1.0

rHuAd5-hgp100 Tumor volume 1.8E+11 1.0

TCRa mRNA 74.6 1.5

IFNG mRNA 68.3 0.9

TNFa mRNA 2.5E+04 0.1

Active CTL in blood 14.7 1.2

rHuAd5-hDCT Tumor volume 1.3 2.0

TCRa mRNA 17.7 1.4

IFNG mRNA 0.01 2.4

TNFa mRNA 287.6 1.7

Active CTL in blood 1.0 0.2

Tumor infiltrating T cells 1.0 1.0

Using the simulation results for each model, the Bayes Ratio was calculated separately

for each observed state variable according to Equation (13).

between these three experimental conditions, such as differences
in tumor growth attributed to the presence of CD8+ T cells.

Of particular interest was whether the postulated topology
of this multi-scale model can capture the dynamics associated
with CD8+ T cell infiltration into the tumor microenvironment.
Experimentally, the expression of genes associated with T cells
(TCRa) and the secretion of cytokines related to their biological
function (IFNG and TNFα) were measured in samples obtained
from homogenized tumor samples. As a variety of other immune
cells can elicit anti-tumor immunity, the adenovirus vector
expressing hgp100 was used as a negative control as B16F10
cells have a defect in the MHC class I antigen processing
machinery such that the immunodominant epitope from hgp100
is not processed and presented on the cell surface (Leitch
et al., 2004). As there was no significant difference in tumor
growth between untreated and hgp100-immunized animals, the
contribution of other immune cells to control tumor growth
was considered as negligible in this system. In addition, the
observed response can be attributed to the response of CD8+
T cells to a tumor antigen, as tumor growth was inhibited in
hDCT-immunized animals. In terms of characterizing CD8+ T
cell infiltration, TCRa and TNFα mRNA exhibited symmetric
peaks in expression that reached a maximum at day 14. In
contrast, IFNG mRNA exhibited a different dynamic trend than
either TCRa or TNFα gene expression. The profile of IFNG gene
expression exhibited a skewed distribution that peaked at day
10 and declined thereafter. As illustrated by the inconsistency
between the model predictions and observed data (see arrows
in Figure 3C–7), a model that represents tumor-infiltrating
lymphocytes as a single state does not appear to explain the
observed data.
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3.2. Representing Tumor-Infiltrating CD8+

T Cells as a Multi-State Population Better
Represents the Observed Tumor Response
In the V1 and V2 models, we assumed that the phenotype
of CD8+ T cells that enter the tumor in response to
rHuAd5-hgp100 and to rHuAd5-hDCT are the same and remain
constant in time, which implies that dynamic changes in IFNG
should track changes in TCRa gene expression. The model
predictions are consistent with the RT-PCR data obtained
from rHuAd5-hgp100 treated mice. However, in rHuAd5-hDCT
treated mice, there is a disconnect between IFNG and TCR gene
expression that becomes apparent at days 10 and 12. Assuming
that the disconnect between the predicted and observed dynamic
change in IFNG gene expression is driven by an underlying
biological process, we created a revised model (V3) that changed
the representation of tumor-infiltrating lymphocytes from one
state to four states. While our biological understanding should
be used as a basis for modifying the model, what happens to
CD8+ T cells once they enter the tumor microenvironment
is somewhat unclear. What is known is that within a tissue
hosting an ongoing type 1 immune response, CD8+ T cells are
functionally heterogeneous (Halle et al., 2016). Within regressing
tumors, CD8+ T cells proliferate (Tumeh et al., 2014) but also
lose functionality compared to CD8+ T cells in the periphery
(Grinshtein et al., 2009). Based on these observations, the model
represents a hypothesis that this loss of functionality corresponds
to a similar process as the acquisition of an effector phenotype
but in reverse order.

Representing TILs as four related states corresponds to
an age-structure, similar to the T cell states in the lymph
node (see schematic diagram highlighted by blue box in

Figure 1). The specific number of states, four, was a compromise
between a one-state model and a model that represents cellular
phenotype using an additional independent continuous variable
and the discrete impact of cell division on cellular decision-
making. The four states of tumor-infiltrating lymphocytes
were defined to have a progressive decrease in IFNG gene
expression and cytotoxic killing ability. As it unclear as to
what specific mechanisms regulate the conversion of tumor-
infiltrating lymphocytes among these different states, the rate of
interconversion was parameterized by a constitutive rate constant
and a rate constant that was proportional to the concentration
of IFNG within the tumor microenvironment. While the specific
biochemical details may be different in reality, the dependence
on IFNG represents a negative feedback mechanism whereby
an ongoing anti-tumor immune response inhibits the cell-
mediated cytotoxic activity.Model-based inference was then used
to determine whether the observed data support a constitutive
rate for cellular deactivation vs. a negative feedback mechanism.
Collectively, modifying the model to include an age-structure
increased the number of free parameters from 36 to 41.

Similar to the V2 model, an adaptive Markov Chain Monte
Carlo approach was used to obtain a posterior distribution
in the predictions derived from the V3 model (see blue
curves in Figure 3 and Figures S4–S6). Similarly, the posterior
distributions in the model predictions show good qualitative
agreement with the observed experimental data. We also
compared predictions of the number of tumor infiltrating
lymphocytes (Figure 4), which were qualitatively similar from
the two models. A Markov Chain of 200,000 steps was required
for the predictions to converge for the initial model. The V3
model also required about 200,000 steps for predictions that were

FIGURE 4 | Comparison of the number of tumor infiltrating lymphocytes in V2 vs. V3 models. The number of CD8+ T lymphocytes infiltrating into implanted

B16F10 tumors were simulated using the V2 (A) and V3 models (B). Convergence of the model predictions as a function of the Markov Chain length were assessed

using the Gelman-Rubin potential scale reduction factor (left subpanels). The posterior distribution in the model predictions obtained from the converged segments of

the Markov Chains are represented by a solid line, which represents the median response, and dashed lines that enclose the 95% credible interval (right subpanels).

Simulated values are compared against the number of tumor infiltrating lymphocytes (squares) that were quantified 10 and 15 days in tumors following implanting

subcutaneously of 1×106 B16F10 tumor cells and immunizing C57Bl/6 mice with DCT adenovirus on day 5 (bottom panels and red curves). The number of TILs were

also simulated in mice immunized with rHuAd5-hgp100 (top panel and blue curves).
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constrained by data (10–15 days) but longer chains were required
for predictions longer than 15 days to converge. Predictions
after 17 days seemed to diverge between the two models where
number of TILs predicted by the initial model peaked at 17
days, which mirrors the dynamics of the blood T cell population.
The number of TILs predicted by the revised model reached
a similar value at 17 days but then continued to increase at a
slower rate through 25 days. For both V2 and V3 models, the
posterior distribution in the number of TILs is broader than but
enclose the rHuAd5-hDCT predictions, which is not surprising
as there are no TILs data for the rHuAd5-hgp100 conditions.
While predictions derived from both models match the number
of TILs at 10 days, the models tend to predict a lower number of
TILs at 15 days than observed on average.

In comparing V3 to V2 models, the Bayes Ratios were mostly
between 1 and 3 suggesting weak but supportive evidence that V3
better represents the observed data over V2. The highest Bayes
Ratio (2.4) was obtained in comparing the model predictions
with the IFNG mRNA data observed following rHuAd5-hDCT
immunization, as expected. For comparison, a Bayes Ratio of
540 is possible if the model was able to match the mean IFNG
mRNA values on days 10 and 12. While alternative forms of
the models were tested, an improved fit to the rHuAd5-hDCT
data came at the expense of capturing the rHuAd5-hgp100
data. Assuming that these data reflect the underlying biology,
these results imply that new CD8+ T cell immigrants to the
tumor have a higher level of IFNG mRNA in rHuAd5-hDCT
compared to rHuAd5-hgp100 immunized animals and that
IFNG mRNA expression is regulated dynamically by cognate
TCR interactions. This observation is at odds with the model,
which assumes that immigrating CD8+ T cells have the same
phenotype as CD8+ T cells in the circulation and that the
phenotype of CD8+ T cells can be subsequently modified
by the local microenvironment. Moreover, the phenotype
of CD8+ T cells in the circulation should not depend on
the specific antigen used in the vaccine. While failed killing
correlates with cytokine hypersecretion (Jenkins et al., 2015),
this phenomenon is unlikely to explain the early peak in IFNG
as it should be linked in the model to the later CD8+ T cell
states (i.e., TE3b−d) rather than new immigrants (i.e., TE3a) and
a corresponding increase in TNFα mRNA with IFNG mRNA
was not observed. Supported by the Bayes Ratios, the V3 model
is an improvement. In addition, analyzing the data collectively
identified underappreciated aspects of the dynamic CD8+ T cell
response and suggests specific experimental conditions that may
help in clarifying this process. We next examined the associated
parameter distributions to gain insight into the underlying
biological mechanisms represented in the corresponding
models.

3.3. Deactivation of Tumor Infiltrating
Lymphocytes Alters Cell Fate Preference
Immunizing against tumor antigens aims to enhance the number
of CD8+ T cells in the tumor microenvironment that recognize
and kill tumor cells. Control of tumor growth depends on
two factors, the ability of a CD8+ T cell to kill tumor

cells and the number of CD8+ T cells present within the
tumor microenvironment that recognize tumor antigens. As the
distribution in parameter values is also influenced by the data,
the V2 and V3 models were used to interpret the data to gain
insight into these two factors by examining the distributions
in parameters associated with these biological processes. In the
following two paragraphs, we examine separately how themodels
parse the overall response into changes in cytotoxic activity
vs. cell population dynamics among the different experimental
conditions studied.

First, we consider the cytotoxic activity of CD8+ T cells
within the tumor microenvironment predicted by the V2
and V3 models. In analyzing the data obtained following
immunization using rHuAd5-hgp100, the posterior distributions
in the parameters associated with CD8+ T cell killing are similar
between the V2 and V3 models, where the median value for
c4a in the V2 model was 0.0084 mm6 cells−1 day−1 and was
0.0038 mm6 cells−1 day−1 in the V3 model (see Figure 5A). In
contrast to rHuAd5-hgp100, immunizing with rHuAd5-hDCT
is more effective in enhancing the cytotoxic activity of CD8+
T cells as the killing parameter is at least a factor of 10,000
higher. As expected, newly immigrant CD8+ T cells in the V3
model are more effective in killing B16F10 cells than CD8+
T cells predicted by the V2 model (118.4 vs. 101.8). The V2
model assumes that the cytotoxic activity of CD8+ T cells within
the tumor microenvironment does not change with time. In
contrast, the V3 model assumes that, upon entering the tumor
microenvironment, a subset of CD8+ T cells lose cytotoxic
activity and an ability to produce IFNG, that is they become
deactivated (Figure 5B). The ratio between the parameters a4
and a5 can be used to infer whether deactivation of CD8+
T cells is a constitutive process, as represented by parameter
a4, or depends on a negative feedback mechanism mediated
by IFNG or some other signal that is dependent on TILs,
as represented by parameter a5. The parameter distributions
suggest that deactivation of TILs primarily occurs through
a negative feedback mechanism (log ratio a4/a5 = −3.2 ±

1.4), although very few CD8+ T cells that enter the tumor
microenvironment become deactivated (P((a4 + a5)/(kp3a +

kd5a+ a4+ a5) > 0.5) < 0.1).
Given these changes in cytotoxic activity of CD8+ T cells,

we also used the model to infer the fate of CD8+ T cells once
they enter the tumor microenvironment, that is do they die,
proliferate, or deactivate. The low degree of correlation among
these parameters suggests that the parameters associated with
these cell fate processes can be determined independently from
the data (see Figures S3, S6). Specifically, we found that the
rate constants associated with cell death (kd5) and proliferation
(kp3a) of TILs independently increase when the antigen density
increases but the balance between cell death and proliferation
is different between the V2 and V3 models. Using pairwise
scatter plots to highlight the differences (see Figures 5C,D),
the ensemble of parameter values associated with the V2 and
V3 models are clustered in the regions indicated by red and
blue arrows, respectively. Results for both models show that the
majority of values for the cell fate parameters are clustered below
the diagonal suggesting that both kd5+ is greater than kd5−
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FIGURE 5 | Posterior distribution of parameters associated with cytotoxic killing ability and cell fate within the tumor microenvironment. (A) Posterior

density distributions of the parameter values associated with cytotoxic activity of CD8+ T cells, which corresponds to TE3 in the V2 model and TE3a in the V3 model.

The parameter values, c4a for TE3 in the V2 model and c4a for TE3a in the V3 model, were determined separately based on rHuAd5-hgp100 and rHuAd5-hDCT

vaccination data (c4 for rHuAd5-hgp100: solid black line, c4 for rHuAd5-hDCT: gray shaded, c4a for rHuAd5-hgp100: dotted blue line, c4a for rHuAd5-hDCT: solid

blue line). (B) Posterior density distributions of the parameter values associated with the cytotoxic activity of CD8+ T cells following rHuAd5-hDCT vaccination in

successive states of deactivation (TE3a: blue line, TE3b: green line, TE3c: indigo line, TE3d: purple line). The distribution in c4 for the V2 model is shown for

comparison (gray shaded). (C) Pairwise scatter plots for the rate constants associated with cell proliferation (kp3a- and kp3a+) and cell death (kd5- and kd5+) of

newly emigrating CD8+ T cells (TE3 in the V2 model and TE3a in the V3 model). A minus (−) and a plus (+) indicate whether the parameter values were determined

using the rHuAd5-hgp100 or rHuAd5-hDCT data, respectively. Parameter values are shown for both the V2 and V3 revised models, where high probability regions are

indicated by the red and blue arrows, respectively. The dotted lines indicate where the two parameter have equal values. (D) Pairwise scatter plots for the rate

constants associated with cell proliferation (kp3a+ and kp3b) and cell death (kd5+ and kd5b+) of the different states of CD8+ T cells within the tumor. The parameters

kp3a+ and kd5+ correspond to TE3a while kp3b and kd5b+ correspond to TE3b, TE3c, and TE3d. In (C,D), parameter names are given on the diagonal. Above the

diagonal are the pairwise correlation coefficients of the parameters, where the font size is proportional to the value of the correlation coefficient. Pairwise projections of

the marginalized probability density in log10 space are given below the diagonal. Coloring is based upon the estimated 2-D posterior density distributions using kernel

density estimation. The axes for the scatter plots each spans from 10−8 to 108.

and kp3a+ is greater than kp3a−, where a minus (−) or a plus
(+) appended to the parameter symbol indicates whether the
parameter values were determined using the rHuAd5-hgp100
or rHuAd5-hDCT data, respectively. For the V2 model, kp3a−
vs. kd5− is on diagonal while the cluster of parameter values
associated with kp3a− vs. kd5− is above diagonal for the V3
model, which implies that kp3a− > kd5−. In an antigen-dense
environment, kp3a+ vs. kd5+ is above the diagonal for the V2
model and while, for the V3 model, kp3a+ vs. kd5+ is below
diagonal, which implies that kd5+ > kp3a+.

Collectively, results using the V2 model suggest that, in an
antigen-sparse environment, CD8+ T cells that enter the tumor

microenvironment are equally likely to die as to proliferate
(log ratio kp3a− / kd5− = 0.2 ± 1.2). In an antigen-dense
environment, CD8+ T cells are, on average, 40 times more likely
to proliferate than die (log ratio kp3a+ / kd5+ = 1.6 ± 1.3).
In contrast, interpreting the data using the V3 model suggests
that CD8+ T cells that enter the tumor microenvironment
are 12 times more likely to proliferate than die when antigen
is sparse (log ratio kp3a− / kd5− = 1.1 ± 1.5) and, in an
antigen-dense environment, are initially 4 times more likely
to die than proliferate (log ratio kp3a− / kd5− = −0.63 ±

2.0). Once CD8+ T cells commit to a deactivated phenotype,
they are twice as likely to proliferate than die (log ratio kp3b /
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kd5b+ = 0.29 ± 0.93). Collectively, interpreting the data using
the V3 model suggests that both the rate coefficients for cell
proliferation and cell death of deactivated TE3 (TE3b, TE3c, and
TE3d) are greater than newly infiltrating TILs (TE3a) but the
balance between cell fates is different such that the fate favors cell
death of newly infiltrating TILs while deactivated states of TE3

favor cell proliferation.

3.4. Improving Tumor Control by CD8+ T
Cells was Most Sensitive to Increasing
MHC Class I Presentation of Tumor
Antigens
To validate the V3model, we used the model with the statistically
sampled ensemble of parameter values to test whether the
implied assumptions are consistent with experimental studies

that use different experimental protocols. In particular, we
simulated an adoptive cell therapy experiment reported by Zhou
et al. where 3 × 106 pmel-1 CD8 T cells were adoptively
transferred into mice 10 and 15 days after intradermal challenge
with 1× 105 B16 cells (Figure 6) (Zhou et al., 2014). As primary
pmel-1 CD8+ T cells recognize the predominant immunogenic
epitope derived from gp100 (Overwijk et al., 2003), modeling
and simulation of rHuAd5-hgp100 immunotherapy in the B16
model was used as a basis for these adoptive cell transfer (ACT)
experiments. Specifically, ACT was modeled by bypassing the
lymph node compartment and introducing CD8+ T cells directly
into the blood compartment, with the rest of the parameters
remaining the same as calibrated. Given the average blood
volume of a 10 week-old mouse, ACT of this number of CD8+
T cells corresponds to a blood concentration of 2500 cells
per mm3 (Figure 6A). While CD4+ T cells were adoptively

FIGURE 6 | V3 model predicts inhibition of B16 tumor growth by adoptive cell transfer of gp100 CD8+ T cells. (A) Simulated response in the number of

CD8+ T cells under baseline conditions (black) and following adoptive cell transfer (ACT) of CD8+ T cells that occurs 10 and 15 days after implanting B16F10 tumor

cells. (B) Simulated growth in B16F10 tumors under baseline conditions (black curves) and following ACT of gp100 CD8+ T cells (red curves). Simulations were

compared to similar experiments reported in (Zhou et al., 2014) where B16 tumor size was reported in mice without ACT of T cells (black circles) and in mice receiving

ACT of pmel-1 CD8+ T cells that had been silenced for LacZ (red circles) or for Ppp2r2d (blue circles). In (A,B), the most likely predictions are represented by the solid

lines and the long-dashed lines enclose the corresponding 95% credible intervals. (C) Sensitivity analysis was performed by simulating tumor size at 19 days following

changing the corresponding parameters of the V3 model. The box and whisker plots summarize the distribution in the model predictions simulated using the given

change in a model parameter value and an ensemble of parameter values obtained from the converged segments of the Markov Chains.
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transferred simultaneously as the CD8+ T cells, the simulations
incorporated just ACT of CD8+ T cells, as a slight inhibition of
tumor growth was dependent on CD8+ T cells. To match the
basal tumor growth rate, an initial bolus of 5× 105 B16 cells was
used instead of the bolus of 1 × 106 cells used in calibrating the
model. Using model parameters for T cell dynamics associated
with the rHuAd5-hgp100 experiments, the simulated ACT of
gp100 CD8+ T cells provided a similar reduction in tumor size
as experimentally observed (Figure 6B). These results validate
that the inferred parameters for CD8+ T cell-mediated control
of B16 tumors obtained by analyzing the rHuAd5-hgp100 data
accurately simulate ACT of B16F10 tumors using primary pmel-1
CD8+ T cells.

To improve control of tumor growth, Zhou et al. identified a
number of genes that, when knocked down, improve control of
tumor growth. For instance, Ppp2r2d was identified in the in vivo
screen that, when knocked down with shRNA, reduced tumor
size (Figure 6B). As it is unclear as to the biological role that
Ppp2r2d plays in regulating T cell function, Zhou et al. postulated
that Ppp2r2d could play a number of roles in improving IFNG
production by, reducing the propensity for apoptosis of, and
increasing the proliferation rate of tumor infiltrating CD8+ T
cells. As these three mechanisms are uniquely represented by
different parameters in the mathematical model, we performed
a sensitivity analysis to see how altering the corresponding
parameters influences tumor size (Figure 6C). Two parameters,
kc1 and kp3a, were increased by a factor of 105 while the
parameter corresponding to the rate of TIL cell death, kd5a,
was reduced by a factor of 105. Two thousand simulations were
performed with an ensemble of parameter values obtained from
the converged segments of the Markov Chains to generate a
distribution in the tumor growth profiles in response to changing
each of these three parameters in isolation and simultaneously. A
snapshot of the tumor growth profiles obtained at day 19 were
used for comparison. As summarized in Figure 6C, increasing
IFNG production (kc1) slightly reduced tumor size (median for
kc1: 86 mm2 vs. unmodified ACT of gp100 T cells: 92 mm2, p-
value < 0.001) while the other two parameters had essentially no
impact on tumor size (median for kd5a: 92 mm2 and kp3a: 91
mm2, p-values vs. unmodified both > 0.05). In addition, altering
all three parameters simultaneously had no added benefit as the
slight reduction in tumor size was the same as increasing kc1 in
isolation (median for all three: 86 mm2).

As none of the mechanisms proposed by Zhou et al.
seemed to mimic the observed reduction in tumor size, we
explored alternative hypotheses as to how tumor size could be
reduced following ACT of gp100 CD8+ T cells. In particular,
we tested three alternative hypotheses. First, we increased
the retention of TILs within the tumor microenvironment by
altering the preference of gp100 CD8+ T cells for the tumor
microenvironment, that is we decreased K32 by a factor of 105.
Increasing the retention of TILs reduced tumor size slightly
(median for K32: 80 mm2). Second, we decreased the number
of deactivated TILs in two ways by setting the parameters c4b,
c4c, and c4d equal to c4a and by reducing the parameters
a4 and a5 by a factor of 105. Decreasing the number of
deactivated TILs had essentially no impact on tumor size (median

for c4’s equal: 89 mm2 vs. a4 and a5: 91 mm2). The third
alternative hypothesis was to increase the parameter associated
with converting antigen-deficient B16 tumor cells to B16 cells
that present antigen recognized by TILs, that is c3. Increasing
MHC class I presentation had a more pronounced effect on
tumor growth such that an increase by a factor of 10 was sufficient
to eliminate B16 tumor cells (median for c3 decreased by a factor
of 3: 12 mm2 and by a factor of 10: 0.02 mm2). In both cases,
increasing antigen presentation was predicted to reduce tumor
size out to 50 days, where the median tumor size for increasing
c3 by a factor of 3 was 6 mm2 (1st quartile: 1 mm2 and 3rd
quartile: 13,000 mm2) and by a factor of 10 was 0 mm2 (1st and
3rd quartiles: 0 mm2).

As the B16 cell line is known to have defects in the
processing and presentation of gp100 (Leitch et al., 2004),
we also simulated the adoptive cell transfer of CD8+ T
cells that recognize epitopes derived from DCT. While ACT
using DCT CD8+ T cells reduced tumor size relative to
improving the retention of TILs (ACT of DCT T cells: 71
mm2), improving antigen presentation by B16 provided the
best control of tumor growth. As the in vivo experiments
include additional cellular components than included in the
mathematical models, the results suggest that altering Ppp2r2d
may influence the control of tumor growth through an indirect
mechanism. One possibility is that an increase in IFNG
production may increase antigen presentation by tumor cells
indirectly by inhibiting the action of myeloid-derived suppressor
cells.

3.5. In vivo, B16 Tumors Include
Time-Dependent Factors that Limit the
Efficacy of Anti-tumor Immunity
As a common criticism of testing immunotherapies using
syngeneic animal models is that the timing of the initiation of
immunotherapy influences the control of tumor growth (Wen
et al., 2012). For instance, an early pre-clinical study using a
monoclonal antibody against cytotoxic T lymphocyte antigen
(CTLA)-4 in conjunction with a granulocyte/macrophage
colony-stimulating factor (GM-CSF) producing irradiated tumor
cell vaccine found that initiation of the therapy within 4 days
of intradermal challenge with a variant of the B16 cell line was
able to control tumor growth while initiation of the therapy after
8 days was less effective and essentially ineffective after 12 days
(van Elsas et al., 1999). The observed therapeutic effect requires
generating CD8+ T cells against tumor antigens. A number of
possible explanations for the time-dependent loss of efficacy was
proposed. For instance, the magnitude of the immune response
initiated by the therapy may be unable to control tumor growth
at the later time points as tumors grow above a critical size.
Alternatively, the loss of efficacy may be a consequence of tumor-
induced deletion of T cells that recognize tumor-associated
antigens. Finally, the tumor microenvironment may change as a
function of time such that initially themicroenvironment permits
but, in time, develops an immunosuppressive environment that
suppresses a cell-mediated anti-tumor immune response. In vivo
these different mechanisms are intimately linked and are difficult
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to test in isolation. Given that complex dynamic systems respond
in non-linear ways to perturbations, modeling and simulation
can provide insight into the contributions of these different
mechanisms.

Next, we used the V3 model to test whether changing the
timing of rHuAd5-hDCT therapy changes the dynamics of tumor
growth similarly to that observed by Allison and coworkers
(van Elsas et al., 1999) (Figure 7). First, we used the parameter
values for the V3 model to simulate the experiment but reduced
the bolus of intradermal B16 challenge by half to match the
early tumor growth trajectory observed in mice treated with
an IgG control (Figure 7A). Interestingly, the observed growth
of B16 tumors in mice treated with IgG appears to level off
at a tumor size of 350 mm2, suggesting that an increase in
tumor size limits the proliferation rate of tumor cells and the
maximum tumor size is referred to as the carrying capacity. In
calibrating and validating the model, incorporating a carrying
capacity was not necessary as the maximum tumor sizes where
lower at approximately 250 mm2. As the model was not designed
to capture tumor growth around the carrying capacity, we
focused on comparing the model predictions and data below
the carrying capacity. Next, we changed the timing of rHuAd5-
hDCT therapy such that the immunotherapy was initiated 0,
5, and 10 days following intradermal challenge of B16F10 cells
(Figures 7B,C). As the immunization was delayed, the peak in
the number of CD8+ T cells in the blood shifted to longer times
but, interestingly, the maximum number of CD8+ T cells in the
blood decreased (Figure 7B). As the number of CD8+ T cells in
the blood is a dynamic equilibriumwith the tumor compartment,
more CD8+ T cells migrate to the tumor compartment as
the compartment size increases thereby decreasing the number
of CD8+ T cells in the blood. In terms of tumor growth,
the simulated profiles exhibited similar dynamics. Initiation of
rHuAd5-hDCT earlier was able to sustain a reduced rate of tumor
growth for longer but, as the number of CD8+ T cells in the
system declined, tumor growth returned to the same exponential

growth rate. Even if the number of TILs is increased, either
through reducing the negative feedback on clonal expansion of
CD8+ T cells in the lymph node (e.g., by decreasing ka) or
adoptively transferring 100 times more DCT CD8+ T cells (see
Figure 6), a further reduction in tumor growth is limited as the
conversion of MHC class I negative to MHC class I positive cells
(e.g., c3) becomes the rate limiting step for controlling tumor
growth (see Figure 6C). Increasing the rate constant associated
with MHC class I conversion by a factor of 3 (e.g., 3 × c3) in
conjunctionwith immunizing at day 10was still effective (median
tumor size at day 50 with immunizing at day 0: 0.1 mm2, vs. at
day 10: 1.3 mm2). The day 0 plus 3 × c3 results are shown in
Figure 7C, while results for day 10 plus 3 × c3 are not shown
as they essentially overlap. In summary, changing the timing for
immunization was unable to control of tumor growth. Capturing
total control of tumor growth, as observed for the Day 0 and
Day 4 conditions, was dependent on modifying the model in two
ways: by increasing the number of tumor-infiltrating CD8+ T
cells that recognize tumor associated antigens and by increasing
antigen presentation by tumor cells. In comparing the observed
(Figure 7A) vs. simulated (Figure 7C) tumor growth profiles,
the observed tumor growth curves have different trajectories.
Total control of tumor growth characterizes the early time points
(Day 0 and 4). In time, total control transitions to partial
control, which is characterized by a progressive increase in tumor
growth rate but also an increase in steady-state tumor burden.
Collectively, the results are consistent with a model where
immunotherapy can generate a sufficient CD8+ T cell response
throughout the 12-day timeframe to control tumor growth that
initially coincides with an increase in antigen presentation by
tumor cells. However, this increase in antigen presentation by
tumor cells is lost between days 4 and 12. Moreover, the loss
of antigen presentation is independent of changes in IFNG
within the tumor microenvironment as the sensitivity analysis
results suggest that the effect of IFNG is saturated in immunized
animals.

FIGURE 7 | Real B16 tumors incorporate time-dependent factors that limit CD8+ T cell control of tumor cell growth. (A) Simulated growth of B16 tumors

in untreated mice (gray curves) were compared against similar experiments reported in (van Elsas et al., 1999) where growth of B16 tumors was reported in mice

treated with an IgG control (black circles) or with an anti-CTLA4 mAb and a vaccine comprised of irradiated B16 cells modified to express GM-CSF (BL6/GM).

Administering the anti-CTLA4 plus the BL6/GM vaccine was varied from 0 (red squares), 4 (yellow squares), 8 (blue squares), and 12 (violet squares) days following

tumor implantation. (B,C) Intradermal challenge by B16F10 cells was simulated under different conditions where mice were untreated (black curves) or immunized 0

(red curves), 5 (yellow curves), and 10 (blue curves) days with rHuAd5-hDCT following the intradermal challenge. Simulated immunization on day 0 (green curves) or

on day 10 (not shown) was also combined with an increase in c3 by a factor of 3. Simulation results are shown for the number of CD8+ T cells in the blood (B) and

tumor area (C). The most likely predictions are represented by the solid lines and the long-dashed lines enclose the corresponding 95% credible intervals.
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4. DISCUSSION

Identifying local barriers that limit the efficacy of anti-tumor
immunity is a critical barrier for broadening the clinical benefit
of immunotherapies for cancer. Given the challenges associated
with testing hypotheses in humans, pre-clinical mouse models,
like the B16 model for malignant melanoma, play a central
role in identifying how tumors escape from immune-mediated
control. To gain insight into potential keymechanisms associated
with the control of B16F10 tumor growth by CD8+ T cells,
we combined dynamic observations of CD8+ T cell response
and tumor growth following an adenovirus-based vaccination
against tumor antigens with mechanistic multi-scale modeling
and simulation.

The key conceptual shift here is the focus on whether
the postulated network topology of the model can describe
the observed data by eliminating the confounding uncertainty
associated with the model parameters. This was done by using a
Markov Chain Monte Carlo approach to obtain a large statistical
sample of the parameter values that provide predictions similar
to the observed data. To illustrate the approach, we asked
two questions. First, we asked whether the postulated network
topology, that is the modeled biological components and their
associated interactions, is consistent with the observed data.
Drawing from a base model (V1), a new model (V2) was
proposed to better capture observed differences between three
different experimental conditions. To weight the evidence in
support of the competing models, Bayes Ratios suggested that
the data provide strong to very strong evidence in favor of
the V2 over the V1 model. In addition, we assumed that the
phenotype of tumor infiltrating lymphocytes is conserved, but
models incorporating this assumption (V1 and V2) were unable
to capture observed changes in IFNG gene expression. In a
revised model (V3), we assumed that the phenotype of tumor
infiltrating lymphocytes progressively changes, as modeled by
a decrease in cytotoxic killer function and IFNG production.
Here, Bayes Ratios suggested that the data provide weak but
supportive evidence in favor of the modifications included in the
V3 relative to the V2 models. In addition, trying to capture the
IFNG response suggested specific experimental conditions where
additional experiments could help refine our understanding of
the dynamic response of CD8+ T cells to tumor localization.

The second question was whether we could infer the relative
importance of the different mechanisms associated with the
regulation and activity of tumor infiltrating lymphocytes, given
the available data. Using differences in the posterior distributions
of model parameters, the fate of CD8+ T cells upon entering
the tumor microenvironment changed depending on the antigen
density and activation status. For instance, newly infiltrating
TILs prefer to die in an antigen dense environment while those
that survive and become deactivated prefer to proliferate. As a
result of stronger TCR engagement in the absence of adequate
costimulation, the fate of newly infiltrating TILs is consistent
with activation-induced cell death followed by inducing T cell
exhaustion in surviving cells (Wherry and Kurachi, 2015).
In contrast, newly infiltrating TILs prefer to proliferate in
an antigen-sparse environment. In both cases, TILs deactivate

preferentially through a negative feedback mechanism related
to ongoing anti-tumor immunity. The tumor antigens selected
as immunogen had an impact on control of tumor growth
as immunizing against hDCT expanded CD8+ T cells with a
cytotoxic killing efficacy of 10,000 times higher than CD8+ T
cells that recognize epitopes derived from hgp100. However,
the impact of both therapies were limited such that effective
elimination of existing B16F10 tumors also depended on an
increase in MHC class I presentation of tumor antigens. In vivo,
observed changes in efficacy of an immunotherapy administered
at different days following subcutaneous tumor challenge was
consistent with a progressive loss in time of MHC class I antigen
presentation, which was largely independent of changes in IFNG
within the tumor microenvironment and the number of TILs.
In short, increasing the number of TILs that recognize tumor
antigens was necessary but not sufficient to control the growth
of B16F10 tumors effectively.

Loss of MHC class I antigen presentation is a common
mechanism whereby both solid and hematological tumors escape
immune-mediated control of malignant cell outgrowth (Campoli
and Ferrone, 2008). This loss ofMHC class I antigen presentation
can be attributed to either genetic alterations, which remain
conserved within the time window used for transplantable mouse
models, or transient epigenetic regulation. Here, the simulation
results suggest that, between day 4 and day 8, B16 tumors
lose their ability to present tumor antigens via MHC class I
proteins, which results in escape from CD8+ T cell-mediated
control of tumor growth. In this context, IFNG is thought
to be critical in regulating MHC class I protein expression
by tumor cells. In vitro, an increase in IFNG induces many
melanoma cell lines to upregulate MHC class I expression
(Mendez et al., 2008). In vivo, antibody blockade and knock-out
of IFNG abrogates any benefit of immunization in controlling
B16F10 tumor growth (McGray et al., 2014). However, the
simulation results suggest that the effect of IFNG release
within the tumor microenvironment is saturated, therefore
further increases in IFNG will not reduce tumor growth.
Collectively, the results suggest a transient disconnect between
the extracellular signal, that is TILs release of IFNG, and the
tumor response.

The transient disconnect between IFNG signal and tumor
response could occur in a number of different ways. One
mechanism is through epigenetic regulation of the tumor
response via de novomethylation of DNA linked with MHC class
I expression (Khan et al., 2008). For instance, RNAi mediated
knock-down of Dnmt3a, a DNA methyltransferase, had no
effect on the in vitro phenotype of B16 cells but increased
the expression of genes associated with MHC class I antigen
processing and presentation and dramatically reduced tumor
growth in vivo (Deng et al., 2009). Expression of Dnmt3a has
been linked to epithelial-mesenchymal transition (EMT), where
miRNAs that regulate Dnmt3a expression are lost upon EMT
and enable de novo methylation to increase (Cicchini et al.,
2015). In turn, EMT is induced by hypoxia (Cooke et al.,
2012), which can become more prevalent within the tumor
microenvironment as tumors increase in size. Alternatively,
the cellular composition within the tumor microenvironment
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changes following subcutaneous challenge, which can alter
peptide presentation. For instance, myeloid-derived suppressor
cells accumulate within the tumor microenvironment and
produce the free radical peroxynitrite that can nitrate MHC
class I molecules, which inhibits the binding and retention of
processed peptides to tumor cell-associated MHC proteins (Lu
et al., 2011).

Collectively, this work represents one iteration of a design-
build-test cycle, where experimental observations provide design
constraints for the model, a network topology is proposed to
capture the observed behaviors, and the testing stage involves
evaluating the fitness of the math model to capture the
observed data. A common criticism of mathematical models
is that biological components, like myeloid-derived suppressor
cells (Marvel and Gabrilovich, 2015; Parker et al., 2015), or
interactions between these components, like suppression of cell
proliferation by IFNG produced by CD8+ T cells (Matsushita
et al., 2015), thought to play important roles within the tumor
microenvironment are not explicitly represented by the model
topology. While in vivo models naturally incorporate these
network elements, the relative contributions of these elements
in vivo can subtly change in non-intuitive ways depending on
context, which can depend on the experimental design. When
these elements change simultaneously, it is difficult to parse the
unique contributions of each of these elements in coordinating
system response. Ultimately, the goal is to understand how
these elements causally influence the system’s response and
how these elements can be manipulated for therapeutic aims.
As part of an iterative approach where the complexity of the
model is progressively increased or competing hypotheses are
tested, mathematical modeling and simulation plus targeted
experiments provide a more powerful approach to think more
clearly about how a biological network becomes altered in

disease and how this altered network can be restored using
therapeutic means.
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