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Architecture and Function of 
Mechanosensitive Membrane 
Protein Lattices
Osman Kahraman1, Peter D. Koch2, William S. Klug3 & Christoph A. Haselwandter1

Experiments have revealed that membrane proteins can form two-dimensional clusters with regular 
translational and orientational protein arrangements, which may allow cells to modulate protein 
function. However, the physical mechanisms yielding supramolecular organization and collective 
function of membrane proteins remain largely unknown. Here we show that bilayer-mediated elastic 
interactions between membrane proteins can yield regular and distinctive lattice architectures of 
protein clusters, and may provide a link between lattice architecture and lattice function. Using 
the mechanosensitive channel of large conductance (MscL) as a model system, we obtain relations 
between the shape of MscL and the supramolecular architecture of MscL lattices. We predict that the 
tetrameric and pentameric MscL symmetries observed in previous structural studies yield distinct lattice 
architectures of MscL clusters and that, in turn, these distinct MscL lattice architectures yield distinct 
lattice activation barriers. Our results suggest general physical mechanisms linking protein symmetry, 
the lattice architecture of membrane protein clusters, and the collective function of membrane protein 
lattices.

Superresolution light microscopy and electron cryo-tomography have revealed1–4 that integral membrane 
proteins can form large clusters with regular and distinctive translational and orientational protein arrange-
ments. Cooperative interactions in such membrane protein lattices may provide a general mechanism for cells 
to modulate protein function5,6. Self-assembly of membrane protein lattices requires energetically favorable 
direct protein-protein7–9 or indirect lipid bilayer-mediated interactions10–12 and, for the ground-state archi-
tecture of planar lattices to be anything other than hexagonal, interactions must be directional. Directionality 
of bilayer-mediated interactions can be induced by the discrete symmetry of membrane proteins, which 
occur in a variety of different oligomeric states13–15. Molecular dynamics simulations have suggested16–19 that 
bilayer-mediated interactions can yield ordering of membrane proteins. While the membrane elasticity theory 
underlying bilayer-mediated protein clustering has been studied in some detail20–44, only little is known about 
the lattice architectures due to elastic interactions between specific integral membrane proteins, and how lattice 
architecture and elastic interactions affect protein function.

In this Article we study the most favorable (minimum-energy) lattice architectures, and corresponding mod-
ulation of protein function, due to bilayer-mediated elastic interactions between mechanosensitive membrane 
proteins. A diverse range of integral membrane proteins have been shown to be mechanosensitive20,45 and, in 
particular, the gating of prokaryotic46 and eukaryotic47 ion channels depends on the mechanical properties of the 
surrounding lipid bilayer. We employ the bacterial mechanosensitive channel of large conductance (MscL)20,46 as 
a model system to develop relations between protein symmetry, lattice architecture, and the collective function 
of membrane protein lattices.

MscL switches from a closed to an open state with increasing membrane tension20,46. Protein crystallography 
has yielded tetrameric48 as well as pentameric49,50 MscL structures. The physiological significance of pentameric 
MscL is well established51,52. In contrast, direct experimental evidence of tetrameric MscL has so far only been 
obtained in vitro14,52–54, it is uncertain whether MscL can occur as a tetramer in vivo, and the physiological sig-
nificance of tetrameric MscL is a matter of debate14,15,52–54. In particular, it has been proposed that MscL can only 
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occur as a pentamer in vivo52,53 or that, while pentamers are predominant, MscL can occur as a mixture of differ-
ent oligomeric states in vivo14,15, with different MscL oligomeric states having specific functional roles or serving 
as assembly intermediates. Interestingly, a number of different experiments have shown14,52–54 that the oligomeric 
state of MscL can be modified by selectively truncating MscL, tuning the lipid or detergent compositions used 
in in vitro experiments, or varying the temperature. In this Article we take the available MscL structures as our 
starting point, and consider the lattice architectures and collective functions of clusters of both tetrameric and 
pentameric MscL, as well as mixtures of tetrameric and pentameric MscL.

In vitro and in vivo studies have suggested that bilayer-mediated interactions stabilize large clusters of hun-
dreds of MscL55, that MscL activation is affected by clustering55,56, and that MscL number is strongly regulated in 
response to environmental stimuli57, indicating55,56 that bacteria may use MscL clustering, and bilayer-mediated 
interactions, to modulate MscL function. In the remainder of this Article, we first describe how bilayer-mediated 
interactions can be efficiently calculated for the large MscL clusters observed in experiments, and then use this 
approach to predict the minimum-energy lattice architectures for tetrameric and pentameric MscL, and to sug-
gest how differences in lattice architecture affect MscL activation.

Methods
Bilayer-mediated protein interactions.  Bilayer-mediated protein clustering may be driven by curva-
ture deformations21–34, bilayer fluctuations31,32–37, or thickness deformations24,38–44. Experiments and previous 
theoretical work on MscL suggest20,43,55,56 that, at the small protein separations relevant for MscL clusters, thick-
ness-mediated interactions between MscL are dominant (see Fig. 1). We therefore focus on thickness-mediated 
interactions which, in the simplest formulation, are governed by an elastic energy of the form58
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where the thickness deformation field ( , )u x y  is one-half the bilayer hydrophobic thickness mismatch, Kb is the 
bending rigidity, Kt is the thickness deformation modulus, a is one-half the hydrophobic thickness of the unper-
turbed lipid bilayer, and, for generality, we consider59 the coupling of the membrane tension τ to u as well as to 
area changes. Experiments roughly yield =K 20b  k TB  and =K 60t  kBT/nm2 20,58, which we used here, but the 
values of these effective parameters20 generally change with bilayer composition60. Unless indicated otherwise, we 
set τ = 0. The continuum theory exemplified by equation (1) does not capture detailed molecular  
effects16,17–19,61,62, but encapsulates many crucial properties of protein-induced bilayer deformations20–44,58 and, in 
particular, has been found previously20,55,56,63,64 to explain key aspects of MscL clustering and gating.

Modeling tetrameric and pentameric MscL.  Based on structural data48,49, we model tetrameric and 
pentameric MscL in the closed and open states as described in ref. 65. We summarize here the quantitative details 
of these simple models of MscL shape. The molecular structure of MscL found in Mycobacterium tuberculosis49 
suggests a five-fold clover-leaf shape of pentameric MscL (see MscL in the left panel of Fig. 1), which can be rep-
resented by the contour

Figure 1.  Overlapping bilayer thickness deformation fields induce thickness-mediated interactions 
between MscL. Pentameric (Protein Data Bank accession number 2OAR)49 (left panel) and tetrameric (Protein 
Data Bank accession number 3HZQ)48 (right panel) MscL structures, their five-fold clover-leaf and tetragonal 
representations65 (black curves superimposed on MscL structures), and the corresponding MscL-induced 
thickness deformations u calculated from equation (1) using our finite element approach for the indicated 
arrangements of closed MscL (see Fig. 2 for the thickness-mediated interaction energies associated with 
the MscL arrangements shown). The MscL-induced bilayer thickness deformations depend on MscL shape, 
separation, and orientation, as well as on the effective bilayer properties captured by equation (1).



www.nature.com/scientificreports/

3Scientific Reports | 6:19214 | DOI: 10.1038/srep19214

θ ε θ ω( ) = + ( ( − )) ( )C R [1 cos 5 ] 2

in polar coordinates, where R captures the size of MscL, ε is the amplitude of angular undulations, and ω denotes 
the orientation of MscL with respect to the x-axis. The observed structure of closed pentameric MscL49 suggests65 
an amplitude ε = .0 22 and radius = = .R R 2 27c

penta  nm. Based on proposed structures of MscL in the open 
state66,67, we set ε = .0 11 and = = .R R 3 49o

penta  nm for open pentameric MscL. Similarly, we model the 
tetrameric structure of MscL found in Staphylococcus aureus48 by tetragonal shapes in the closed and open states 
(see MscL in the right panel of Fig. 1). To isolate the effects of MscL shape on bilayer-MscL interactions, we follow 
here ref. 65 and use the same approximate areas for the transmembrane cross sections of tetrameric and pen-
tameric MscL.

On the basis of structural data on MscL, the hydrophobic thickness of MscL in the closed and open states has 
been estimated68 to be = .h 3 8c  nm and = .h 2 5o  nm, respectively. Thus, we use the boundary conditions 
= / − = .U h a2 0 3c c  nm and = / − = − .U h a2 0 35o o  nm for u along the bilayer-protein interface in the closed 

and open states of MscL, where the unperturbed bilayer half-thickness = .a 1 6 nm approximately corresponds to 
lipids extracted from E. coli69 as well as other organisms20,58. Following previous studies on MscL43,63,68,70, we use 
zero-slope boundary conditions along the bilayer-protein interface.

Mixed finite element formulation.  While the anisotropic thickness deformations due to a few proteins 
can be obtained by minimizing equation (1) using perturbation analysis65,71 or finite-difference schemes43,72, cal-
culation of the minimum-energy lattice architectures for large MscL clusters is not practical with either approach. 
The finite element method for solving boundary value problems yields rapid numerical convergence even for 
very complicated integration domains and, hence, provides a suitable approach for computing bilayer-mediated 
interactions in large protein clusters. However, standard finite element implementations are not able to account 
for the dependence of equation (1) on thickness stretch and gradient terms while satisfying the stringent continu-
ity requirements necessitated by the curvature terms. To overcome this challenge we combine59 Lagrange shape 
functions for the thickness stretch and gradient terms with a discrete Kirchhoff triangle (DKT) formulation73 for 
curvature deformations.

Following the standard finite element discretization procedure, we rewrite the variation of the energy in equa-
tion (1) with respect to nodal degrees of freedom U as a summation over elements,
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are integrated over the local coordinates ξ η( , ) of elements and weighted by the element areas Ae. The constitutive 
matrix D is a block diagonal matrix with the lipid bilayer parameters as coefficients. The strain-displacement 
transformation matrix B combines the DKT shape functions H with the linear triangular shape functions M:
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Explicit forms of the DKT shape functions H are given by Batoz et al.73, while the linear triangular shape 
functions M can be found in standard finite element textbooks—see, e.g., ref. 74. We triangulated the bilayer sur-
face using the “Frontal” algorithm from the Gmsh package75. We implemented our finite element formulation in 
C+ +  using the variational mechanics library VOOM and minimized the energies using the L-BFGS-B solver76. 
We checked for convergence using standard procedures77 and also confirmed that the gradients of the thickness 
deformations induced by MscL lattices are sufficiently small for the standard leading-order model in equation 
(1) to be valid (see Supplementary Information Sec. S1 for further details). In the special cases for which analytic 
results on the minima of equation (1) are available71,78, our finite element procedure yields excellent agreement 
with exact analytic solutions.

Simulated annealing Monte Carlo simulations.  To confirm our predictions of the minimum-energy 
lattice architectures of tetrameric and pentameric MscL we carried out Monte Carlo simulations with simulated 
annealing of pair interaction potentials79,80. To efficiently implement the simulations, we first used our finite ele-
ment approach to calculate the thickness-mediated pair interaction energies ω ω( , , )G dint 1 2  between closed and 
open tetrameric and pentameric MscL, where d is the center-to-center distance between the two MscL and ω ,1 2 
are the MscL orientations. We used a translational resolution ∆ = .d 0 25 nm and an orientational resolution 
ω∆ = 3 , from which we constructed an array of interaction energies. We then approximated the interaction 

energy for arbitrary values of ω ω( , , )d 1 2  by first finding the appropriate d row of the interaction energy array by 
rounding ω1 and ω2 to their closest calculated values, and then linearly interpolating the energy around d. For fast 
evaluation of hard-core steric constraints, we constructed an analogous array for the minimum allowed distances 
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ω ω( , )dst 1 2 . Since, for the parameter values relevant for MscL, thickness-mediated interaction energies effectively 
vanish for d 15 nm, we implemented cell list structures79 to accelerate pair evaluations.

In our simulated annealing Monte Carlo simulations, a single Monte Carlo step consists of one displacement 
and one rotation trial per MscL on average. We used a unit displacement δ = .d 0 1 nm and a unit rotation δθ = 3 , 
for which about half of all Monte Carlo moves are accepted at =T T rm, where =T 298rm  K is the room tempera-
ture. The trials are accepted or rejected according to the Metropolis algorithm. In a typical run, we used 106 Monte 
Carlo steps, and decreased the temperature linearly starting from around =T T5 rm to =T 0 during simulated 
annealing. For minimization of pair interaction potentials with respect to only orientational degrees of freedom 
(see Supplementary Fig. S7), we first initialized the system in the lattice symmetry of interest, and then set δ =d 0 
and only performed rotational Monte Carlo moves. We checked that all our results are robust with respect to 
different magnitudes of trial moves and different cooling schemes.

Pairwise additivity 
For curvature- and fluctuation-mediated interactions it has been suggested23,25,32–34 that non-pairwise contribu-
tions to the interaction energy can affect the stability of protein clusters. We find that non-pairwise contributions 
to thickness-mediated interactions modify the interaction strength but, except in special cases (see Supplementary 
Information Sec. S3), do not alter how interactions vary with the shape and arrangement of proteins (see Fig. 2). 
Consistent with the corresponding two-body potentials43,59,71, the multi-body interactions between closed MscL 
in Fig. 2 are weakly unfavorable for center-to-center distances between neighbouring MscL, d, which are greater 
than ≈ . − .d 7 2 7 9 nm (depending on MscL shape and orientation), and strongly favorable for smaller values of 
d. For fixed protein shape and orientation, thickness-mediated interactions are most favorable for the smallest 
value of d allowed by steric constraints on lipid size, =d dst, which corresponds to a minimum edge-to-edge 
protein separation of ≈1 nm. At small d, non-pairwise contributions to thickness-mediated interactions can be 
> k T1 B  in magnitude and, depending on protein shape and configuration, increase as well as decrease the inter-
action energy (see Supplementary Information Secs. S2–S4 for further details).

Lattices of tetrameric MscL 
Thickness-mediated MscL clustering was studied before43,55 using the cylinder model of MscL20,63,70, which does 
not allow for the distinct symmetries of tetrameric and pentameric MscL observed in structural studies48–50. For 
completeness, we summarize here, before turning to tetrameric MscL, the preferred lattice architectures associ-
ated with cylindrical MscL. In the cylinder model of MscL, MscL-induced lipid bilayer deformations are isotropic 
about individual MscL and, hence, thickness-mediated interactions between MscL depend on the separation but 
not on the orientation of MscL43. Allowing for planar clusters of interacting MscL, favorable MscL lattice archi-
tectures may be provided by lattices with honeycomb (three-fold), square (four-fold), or hexagonal (six-fold) 
symmetry. Calculating thickness-mediated interactions between many cylindrical MscL, we find that the honey-
omb lattice is preferred at intermediate d, and the close-packed hexagonal lattice with =d dst provides the 
ground-state lattice architecture55 (see Supplementary Fig. S5(a)).

For the observed shapes of MscL48,49, thickness-mediated interactions between MscL not only depend on the 
separation but also on the orientation of MscL59,71 and, as a result, are inherently directional (see Fig. 1). In par-
ticular, in the case of clusters of tetrameric MscL, we find that the distinct symmetry of tetrameric MscL and 
resulting directionality of thickness-mediated interactions yield a characteristic large-scale architecture of 
tetrameric MscL lattices which is different from the lattice architecture implied by the cylinder model of MscL 
(see Fig. 3). We first consider infinite honeycomb, square, and hexagonal lattices of tetrameric MscL, for which we 
evaluate the interaction energy per MscL by constructing unit cells with, by symmetry, zero slope of u normal to 
their bilayer boundaries (see Supplementary Information Sec. S3 for further details). We find that the honeycomb, 
square, hexagonal, and shifted square lattice architectures of tetrameric MscL yield qualitatively similar but, 
depending on the relative orientation of neighboring MscL, quantitatively distinct lattice energies. In particular, 

Figure 2.  Pairwise additivity of thickness-mediated protein interactions. Thickness-mediated interaction 
energy, Gint, per closed MscL obtained from equation (1) for four tetrameric MscL and five pentameric MscL 
(solid curves), and corresponding pairwise interaction energies (squares and pentagons), versus center-to-
center distance between neighbouring MscL, d. Inset: Difference between multi-body and two-body interaction 
energies, ∆Gint, versus d. The vertical lines =d dst indicate steric constraints on MscL configurations. We use 
the same MscL arrangements as in Fig. 1.
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the face-on square lattice with =d dst and the corresponding shifted square lattice, which are equally densely 
packed, have very similar bilayer deformation footprints and provide the ground-state lattice architectures for 
infinite lattices of tetrameric MscL. Restricting the minimum allowed d to values >dst, we predict that the hexag-
onal and tip-on square lattices become favorable as the minimum allowed d is increased.

For finite clusters of tetrameric MscL, we have explicitly calculated ground-state lattice energies up to a cluster 
size of ≈1000 MscL (Fig. 3 inset), which corresponds to the upper limit on MscL number observed in vivo57. 
Comparison of finite and infinite lattice energies shows that cluster size can strongly affect the magnitude of the 
lattice energy per MscL, but does not affect the competition between square, honeycomb, and hexagonal lattice 
architectures (see Supplementary Fig. S6). However, tetrameric MscL are misaligned at the boundaries of the 
shifted square lattice, which increases the energy density of its cluster boundaries compared to the face-on square 
lattice. We predict that, due to this boundary effect, the face-on square lattice has a lower energy than the shifted 
square lattice (by > )k T4 B , and thus provides the ground-state lattice architecture for finite clusters of tetrameric 
MscL.

Lattices of pentameric MscL 
Pentameric MscL yield distinctively different lattice symmetries compared to tetrameric MscL (see Fig. 4). We 
first consider honeycomb, square, and hexagonal lattices with all MscL oriented in the horizontal direction, and 
with MscL orientations optimized at each d by Monte Carlo simulations79 with simulated annealing80 of pair 
interaction potentials (Fig. 4(a)). As in the case of thickness-mediated interactions between cylindrical MscL, 
the hexagonal (honeycomb) lattice is preferred at small (large) d independent of the orientational ordering and 
cluster size considered (see Supplementary Information Sec. S4). Thus, the directionality of thickness-mediated 
interactions between pentameric MscL59,71 does not affect the competition between honeycomb, square, and hex-
agonal lattice symmetries. Indeed, in planar lattices the five-fold symmetry of pentameric MscL necessarily leads 
to frustration of directional interactions81.

However, allowing for distorted lattices with local orientational ordering82–84 we find that the hexagonal lattice 
does not provide the ground-state lattice architecture for pentameric MscL (Fig. 4(b)). Since the distorted lat-
tices do not have a unique d we compare lattice energies as a function of the area packing fraction φ. Our results 
suggest that, at the largest φ allowed by steric constraints, an MscL arrangement similar to the closest packed of 
the distorted lattices (bottom-left lattice in Fig. 4(b)), which corresponds to a distorted hexagonal lattice with 
alternate rows of MscL aligned in opposite directions, provides the ground-state lattice architecture, and that, in 
disperse clusters with variable d, face-on orientation of three neighbouring MscL (top-right lattice in Fig. 4(b)) 
yields a favorable lattice architecture for a range of φ.

Simulated annealing of MscL clusters 
We have confirmed our predictions of the minimum-energy MscL lattice architectures at =d dst, and larger 
(fixed) d, through Monte Carlo simulations79 of translational and rotational diffusion of MscL with simulated 
annealing80 of pair potentials (see Fig. 5). In agreement with the multi-body calculations in Figs 3 and 4 we obtain, 
in the ground state, face-on square lattices of tetrameric MscL (Fig. 5(a) and Supplementary Video S1) and dis-
torted hexagonal ordering of pentameric MscL with alternate rows of MscL aligned in opposite directions 
(Fig. 5(b) and Supplementary Video S2). Subunit-counting experiments have suggested14,15 that, at least in vitro, 
MscL can occur as a mixture of different oligomeric states. Simulated annealing of mixtures of tetrameric and 
pentameric MscL indicates that, in the ground state, tetrameric MscL forms a face-on square lattice in mixed 
MscL clusters (Fig. 5(c) and Supplementary Video S3), with the preferred distorted hexagonal arrangement of 
pentameric MscL being further distorted to accommodate tetrameric MscL lattices. These results also follow from 
Figs 3 and 4 by noting that the ground-state lattice energy is lower for tetrameric than pentameric MscL.

Figure 3.  Lattice architecture of tetrameric MscL. Thickness-mediated interaction energy per closed 
tetrameric MscL, Gint, versus center-to-center distance between neighbouring MscL in infinite honeycomb, 
square, and hexagonal lattices for face-on (dashed curves) and tip-on (solid curves) orientations of MscL, and in 
the shifted square lattice (squares). Honeycomb, square, and hexagonal lattices have three, four, and six nearest 
neighbours per lattice site, respectively. Vertical lines indicate =d dst. Inset: Difference between the ground-
state energies of shifted square (squares), and face-on hexagonal (hexagons), lattices and the face-on square 
lattice per closed tetrameric MscL, ∆Gint, as a function of square-root of number of MscL, L, offset by the 
energy difference at → ∞L . Boundary effects decay as /L1 .
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Activation of MscL lattices 
Based on the available structural models of MscL in the open state, equation (1) predicts63,65 a substantial differ-
ence in thickness deformation energy between the open and closed states of MscL, which accounts for the basic 
experimental phenomenology of MscL gating at dilute MscL concentrations20,64. In crowded membranes, the 
gating of MscL clusters has been observed55 to be inhibited by an activation barrier, which slows the gating of 
MscL clusters. This activation barrier was attributed55 to the steric confinement of closed MscL in densely-packed 
MscL clusters. In particular, gating of MscL is accompanied by a substantial increase in the MscL cross-sectional 
area, by ≈20 nm2 per MscL85. As a result, when a cluster of closed MscL, assembled at small (or zero) membrane 
tension, is subjected to a large membrane tension, opening of MscL in the interior of the cluster would require an 
energetically costly large-scale reorganization of the lattice architecture to accommodate the increased 
cross-sectional area of open MscL. In contrast, for MscL lying along the cluster perimeter, only a relatively minor 
lattice arrangement is required to accommodate the open state (see Fig. 6(a) insets), and the resulting activation 
barrier is small compared to MscL located in the cluster interior. We find that the magnitude of this activation 
barrier of ground-state lattices depends on MscL symmetry, and increases approximately linearly with membrane 
tension (see Fig. 6(a)). The increase in the activation barrier of MscL lattices with increasing membrane tension 
in Fig. 6(a) can be understood from an intuitive perspective by noting that an increase in membrane tension 
yields43 a decrease in the preferred hydrophobic thickness of the lipid bilayer. The typical lipid bilayer considered 
here has a smaller preferred hydrophobic thickness than closed MscL, and the magnitude of the bilayer-MscL 
hydrophobic mismatch therefore increases with increasing membrane tension. This results in an increased mag-
nitude of favorable interactions between closed MscL43, and a corresponding increase in the activation barrier of 
MscL lattices with increasing membrane tension. The activation barrier is lowest at the corners of MscL lattices, 
and is higher (by ≈ )k T2 B  for tetrameric than pentameric MscL lattices. Assuming an Arrhenius form for the 
reorganization rate of MscL lattices, these results imply that activation of tetrameric MscL lattices is slower by 
approximately one order of magnitude than activation of pentameric MscL lattices.

Structural models of MscL gating suggest15,48 that closed and open MscL have distinct hydrophobic thick-
nesses, yielding43,59,71 weakly favorable thickness-mediated interactions at intermediate d, and strongly unfavora-
ble interactions at small d. To study the ground-state lattice architectures of partially activated MscL clusters55 we 
extended our simulated annealing simulations of translational and rotational diffusion to include open as well as 
closed MscL. We find that, in agreement with experimental observations and previous calculations55, closed and 
open MscL form composite clusters, but segregate into distinct sub-clusters (see Fig. 6(b,c) and Supplementary 
Videos S4 and S5). Based on existing models of the shape of open MscL15,48,65, our simulations suggest that each 

Figure 4.  Lattice architecture of pentameric MscL. Thickness-mediated interaction energy per closed 
pentameric MscL, Gint, for (a) honeycomb, square, and hexagonal lattices versus center-to-center distance 
between neighbouring MscL, and (b) hexagonal and distorted82 lattices versus inverse area packing fraction. In 
(a), triangles, squares, and hexagons correspond to horizontally aligned MscL orientations (bottom left insets; 
Gint for hexagonal lattice reproduced in (b)) and solid curves to MscL orientations optimized at each d through 
Monte Carlo simulations with simulated annealing of pair interaction potentials (top and right insets for a 
=d dst in the tip-on orientation of MscL). In (b), dashed curves correspond to the MscL packings shown in the 

insets. Based on the approximate cluster size observed in vitro55, we constructed pentameric MscL lattices from 
216 MscL (honeycomb lattices), 220 MscL (bottom-right packing in (b)), and 225 MscL (all other cases) (see 
Supplementary Information Sec. S4 for further details). Vertical lines indicate =d dst.
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sub-cluster of closed or open MscL shows the ground-state lattice architecture of tetrameric or pentameric MscL 
in Figs 3 and 4, and that neighbouring closed and open MscL are separated by a characteristic center-to-center 
distance ≈ .d 9 5 nm (see Supplementary Information Sec. S7 for further details).

Summary and conclusions 
We find that bilayer-mediated elastic interactions can yield ordering of mechanosensitive membrane protein 
clusters, linking membrane protein shape to the architecture and collective function of membrane protein lattices. 
We followed here experiments on MscL clustering20,55,56 and focused on minimum-energy lattice architectures 
due to thickness-mediated interactions between MscL10–12,24,38–44. In general, thermal fluctuations, membrane het-
erogeneity, and molecular effects not captured by the continuum approach16,17–19,61,62, as well as curvature-34 and 
fluctuation-mediated31,32–37 interactions, may also affect the architecture and function of membrane protein lat-
tices. In particular, due to the frustration of directional interactions in pentameric MscL lattices, the local orien-
tational ordering of pentameric MscL in the predicted distorted hexagonal lattices may be perturbed substantially 
by thermal fluctuations. More generally, thermal fluctuations will diminish long-range order in MscL lattices, and 
hence the predicted MscL lattice architectures will only be preserved locally (see Supplementary Information Sec. 
S6). Previous theoretical estimates suggest68 that fluctuation-mediated interactions between MscL, while weak 
compared to thickness-mediated interactions, are favorable, and thus might further stabilize MscL clusters.

We predict that, for MscL clustering driven by thickness-mediated interactions10–12,24,38–44, tetrameric48 and 
pentameric49 MscL yield distinct lattice architectures and lattice activation barriers. In particular, our calcula-
tions suggest that, locally, clusters of tetrameric MscL show a four-fold symmetric translational ordering with 
neighboring MscL in a face-on orientation, while clusters of pentameric MscL show an approximately six-fold 
symmetric translational ordering with alternate rows of pentameric MscL aligned in opposite directions. We pre-
dict that, in mixed clusters of tetrameric and pentameric MscL, the preferred distorted hexagonal arrangement of 
pentameric MscL is further distorted to accommodate face-on square lattices of tetrameric MscL. Furthermore, 
we find that lattices of tetrameric MscL have a higher activation barrier than lattices of pentameric MscL and 
that, in both cases, the lattice activation barrier increases approximately linearly with membrane tension. Our 
calculations suggest that activation of tetrameric MscL lattices is slower by approximately one order of magnitude 
than activation of pentameric MscL lattices. Finally, we predict that MscL can form mixed clusters of closed and 
open MscL, with open and closed MscL segregated into distinct sub-clusters which show the face-on square or 
distorted hexagonal lattice architectures associated with tetrameric or pentameric MscL, respectively. The pre-
dicted lattice architectures of mixed clusters of closed and open MscL may be experimentally accessible in vitro 
through suitable modifications of bilayer-MscL interactions20,55,64,86, but may not be accessible in vivo due to the 
short lifetimes of MscL in the open state.

Our predictions may be most straightforward to test experimentally by extending existing in vitro assays55,56 
for investigating MscL clustering to account for different oligomeric states of MscL. In particular, tetrameric 
and pentameric MscL, as well as mixtures of tetrameric and pentameric MscL, can be produced in vitro14,52–54 by 
selectively truncating MscL, tuning the lipid or detergent compositions, or varying the temperature. While not 
all MscL oligomeric states thus produced may be fully functional, such in vitro studies may nevertheless allow 
direct experimental tests of the predicted relations between MscL symmetry and MscL lattice architecture. More 
speculatively, the relations between MscL oligomeric state, MscL lattice architecture, and MscL lattice activation 

Figure 5.  Spontaneous ordering of MscL clusters through thickness-mediated interactions. Ordering of 
closed (a) tetrameric (right panel and Supplementary Video S1), (b) pentameric (Supplementary Video S2), and 
(c) tetrameric and pentameric (Supplementary Video S3) MscL obtained through Monte Carlo simulations of 
translational and rotational diffusion with simulated annealing of pair interaction potentials. The left panel in 
(a) shows a typical (disordered) configuration used to initialize the simulations. We used periodic boundary 
conditions with 100 MscL. (See Supplementary Information Sec. S5 for further details.)
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barrier found here may provide novel approaches for probing the oligomeric state of MscL in vivo to address 
whether MscL only occurs in its pentameric state in vivo52,53, or whether MscL may occur as a mixture of different 
oligomeric states in vivo14,15. Considering that a wide range of membrane proteins are mechanosensitive20,45,46,47, 
we suggest that experiments on the link between MscL symmetry, lattice architecture, and collective lattice func-
tion predicted here will yield general insights into how membrane organization broadens the repertoire of protein 
function.
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