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ABSTRACT: The availability of structures and linked bioactivity
data in databases is powerfully enabling for drug discovery and
chemical biology. However, we now review some confounding issues
with the divergent expansions of public and commercial sources of
chemical structures. These are associated with not only expanding
patent extraction but also increasingly large vendor collections
amassed via different selection criteria between SciFinder from
Chemical Abstracts Service (CAS) and major public sources such as
PubChem, ChemSpider, UniChem, and others. These increasingly
massive collections may include both real and virtual compounds,
as well as so-called prophetic compounds from patents. We address
a range of issues raised by the challenges faced resolving the NIH
probe compounds. In addition we highlight the confounding of
prior-art searching by virtual compounds that could impact the
composition of matter patentability of a new medicinal chemistry lead. Finally, we propose some potential solutions.

■ CHEMISTRY AND BIOACTIVITY DATA: FROM
FAMINE TO FEAST TO OVERLOAD

It is hard to imagine now that in the early 2000s there was
a dearth of chemistry and bioactivity data that were publicly
accessible. Yet in the decade since the appearance of the large
publically accessible PubChem1 and ChEBI databases2 we are
arguably approaching an era of drug-discovery-related data
overload as data generation, with high-throughput methods, is
used to populate increasingly large databases.3 Having just passed
53 million compounds, PubChem4 has undoubtedly made the
largest aggregated contribution to public or open chemistry and
biology data, collating thousands of assay results against cells or
biological targets for 2 million compounds. This will soon be
complemented not only by the European Lead Factory,5 which
will focus on high throughput screening (HTS) and data
generation, but also by a Knowledge Management Center that
will capture data from the National Institutes of Health (NIH)
“Illuminating the Druggable Genome” (IDG) program.6 When
we consider the availability of additional large chemical or
biology related databases such as ChemSpider,7 ChEMBL,8

UniChem,9 BindingDB,10 and BARD,11 as well as the emergence
of Google as a de facto merged chemistry source,12 two aspects

come into focus. The first is that the era of the aforementioned
“multistop datashops” (and the essential big data integration
challenges this presents) is here to stay. The second is that public
and commercial chemistry and bioactivity data sources will
increasingly diverge. Users are thus faced with the necessity to
compare content between the former but also to guess the
proportion of unique structures in the latter (since, by definition,
the latter do not openly benchmark themselves against each other
or the former). Consequently, it is our view that commercial
chemistry databases like SciFinder13 from Chemical Abstracts
Service (CAS) will be unable to keep pace with the totality of
public chemistry data. It should however be noted that they
ensure high curation quality14 of their largely manually extracted
data, with the assistance of software tools. The public domain
resources, however, beyond their submission filtration pipelines,
are dependent on the quality of depositing sources (analogous
to the case with GenBank for primary sequence data). Multiple
reviews of public domain data sources indicate that, in the main,
data quality issues arise that are independent of the submitter.15
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Logically, some kind of comparative database qualitymetrics need
to be generated and reported by a completely independent party.
This would need a sampling strategy agreed by all those sources
(commercial and public) prepared to participate in such a bench
marking study.
Our view that commercial chemistry databases will be unable

to keep pace is especially validated as patent data continue
to become openly available. For example IBM has deposited
2.6 million extracted patent compounds, SCRIPDB 6.6 million,
and SureChem 9.4 million into PubChem. The European
Bioinformatics Institute (EBI) recently acquired the SureChem
operation and will expand the extraction pipeline to populate
SureCHEMBL at EBI.16 Efforts by a number of groups to extract
chemical structures and content from patents and uncurated
scientific papers17 open up even more automated data flows
whose scale precludes human verification.18 In addition there are
close to a billion virtual molecules in databases like the chemical
universe database, GDB,19 and at the other end of the scale are
relatively small repositories of real molecules that may never
appear in the pages of a journal.20 A basic survey of some of the
larger chemistry and biology data resources we are aware of is
shown in Table 1 and highlights some of the differences in the
content (vendor compounds, virtual compounds, etc.). It is
important to put the scale of these big databases into context by
considering that we are likely far from having a database of all
possible chemistry, since a single simple empirical formula could

potentially result in hundreds of millions of molecules with the
same atomic composition.21

A previous study has compared the content of several public
and commercial databases.22 This showed that the commercial
databases captured a significant proportion of unique content
and suggested they were complementary. However, even with
the massive amount of public and commercial chemistry and
bioactivity data now available in the various databases, finding the
necessary information effectively remains difficult. As an example
there are challenges in using molecular structures alone to search
for and ascertain whether there is already biology or screening
data associated with them, whether they are desirable as chemical
probes or lead compounds, and for assessment of novelty for
patent claims.23 Differentiating between those molecules (the
“usual suspects”) known to have liability or reactivity issues,24

approved drugs,25 useful probes,26 prophetic compounds,27 text
abstracted compounds, and nominal probes with no provenance
links in database records, is certainly now more complicated
(Figure 1). This difficulty can be seen for even small defined sets
of compounds, such as the National Center for Advancing
Translational Sciences (NCATS) molecules for repurposing28

or the NIH Molecular Libraries Program (MLP) probes.29 The
NIH MLP probes were initially the subject of a crowdsourcing
analysis in which 11 scientists scored an initial set of 64 probes
based on their own criteria of being acceptable or not.26 This
work has recently been greatly extended to 322NIHMLP probes

Table 1. Summary Statistics for the Public and Commercial Chemistry Databases above or near Half a Million Structures
(at the Time of Writing), Most of Which Include Linkages to Bioactivity and Biological Dataa

name
total

(million) URL notes

GDB13 977 http://www.gdb.unibe.ch/gdb/home.html Virtual compounds, no bioactivity data

SciFinder 89 http://www.cas.org/products/scifinder Includes 28 million vendor compounds

UniChem 71 https://www.ebi.ac.uk/unichem/ Includes 15 million SureChEMBL from patents

PubChem 53 https://pubchem.ncbi.nlm.nih.gov/ Includes 42 million vendor compounds and 15 million from
patents

CSLS 46 http://cactus.nci.nih.gov/cgi-bin/lookup/search Update status unclear

ChemSpider 32 http://www.chemspider.com/ Includes 12 million vendor compounds

Reaxys 25 http://www.elsevier.com/online-tools/reaxys 5.1 million medicinal chemistry data

ZINC 23 http://zinc.docking.org/ All vendor compounds, 8.1 million in PubChem

GOSTAR 6.3 https://gostardb.com/gostar/ Activity linked

Thomson Pharma 4.3 http://www.thomson-pharma.com/ Counted inside PubChem

Liceptor 3.2 http://www.evolvus.com/products/databases/liceptordatabase.html

ChEMBL 1.4 https://www.ebi.ac.uk/chembl/ 0.94 million inside PubChem

BindingDB 0.45 http://www.bindingdb.org/bind/index.jsp
aNote that apart from the three sources that have update cycles within PubChem (Thomson Pharma, ChEMBL, and BindingDB) all the others are
likely to have at least a proportion of unique content (e.g., extractions from different journal articles).

Figure 1. The “usual suspects” lineup, representing molecules of different classes from public and commercial databases, illustrating the difficulty of
selecting desirable ones. From left to right, the documented probe is ML010 (CID 17757274), the drug is valsartan (CID 60846), a prophetic
compound is from CAS 1164083-19-5 from WO 2001056358 (not in PubChem or ChemSpider),42 a text extracted compound is from
US2012004098217 (CID 57498937), and one of the probes with incomplete data linkage is ML160 (CID 824820).
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(at the time of this study) using the selection criteria of a single
medicinal chemist.30

The data needs for medicinal chemistry differ from those of
biology. While both medicinal chemists and biologists seek high
quality biology data to support their target choices, medicinal
chemists also require information on freedom to operate by
searching the literature for compounds identical to, similar to,
or that are substructures of their leads, a search process we call
“medicinal chemistry due diligence”. The NIH MLP probes are
stored on PubChem and describe one or several probes with
detailed rich biology but lack sufficient information for the
medicinal chemist. We explored what a medicinal chemist might
do in the early stages of medicinal chemistry due diligence using,
as an example, the NIH MLP probes. Currently the most widely
used and complete source of literature relevant to a putative lead

resides in the CAS databases, very often accessed through the
SciFinder software. We uncovered significant obstacles that a
medicinal chemist would face trying to translate public sector
probe discovery into a typical medicinal chemistry due diligence
search.
Attempting to track the status and provenance of this set of

NIH MLP probes30 (which we have clustered to simplify the
visualization, Figure 2) exemplifies the complexity of linking
current biology and chemistry data30 and led directly to this
review. For this reason we have used this set to discern trends
that are reflected in the wider database “ecosystem”, which will
now be described as examples. To many that are not seasoned
explorers of these databases, we hope that this will be
enlightening prior to your future quest to find information that
is relevant. To those readers that have encountered these same

Figure 2.Chemical structures for 322 NIHMLP probes (http://molsync.com/demo/probes.php) have been clustered into 44 groups for visualization
purposes, using ECFP_6 fingerprints58 and using a Tanimoto similarity threshold of >0.11 for cluster membership. The threshold was chosen
empirically in order to show a representative selection of the kinds of molecules found within the set of probes. For each cluster, a representative
molecule is shown (selected by picking the structure within the cluster with the highest average similarity to other structures in the same cluster). The
clusters are decorated with semicircles which are colored blue for compounds that were considered high confidence based on our medicinal chemistry
due diligence analysis. This analysis suggests that there is not an obvious correlation between structural composition and whether they pass themedicinal
chemist’s logic.30 Red is for those that are not. Circle area is proportional to cluster size, and singletons are represented as a dot.
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issues, we hope that this increased attention will bring awareness
to those involved in curating and funding such databases and that
solutions will follow in due course.

■ EXAMPLE 1. COMPLEXITIES IN FINDING THE NIH
MLP PROBES IN PUBCHEM

With just a few exceptions as we shall describe, NIH MLP probe
compounds can be identified from NIH’s PubChem Web-based
book29 summarizing 5 years of probe discovery efforts. A probe
compound is defined as essentially an excellent lead compound:
very high binding affinity and ideally a well understood binding
mode, high selectivity, good solubility, and low toxicity.26

MLP probes are identified by a Molecular Libraries (ML)
number and by a PubChem compound identification (CID)
number that can be readily found by searching the NIH probe
book.29 Compared to many peer reviewed published formats,
the NIH probe book is exemplary in being concise, but also
information rich in both chemistry and biology. Subheadings
across probe reports illuminate the importance and utility of each
compound. Extensive out-linking (provided these do not decay)
also adds to the user-friendliness of the reports. However, while
some reports cover the medicinal chemistry aspects well, others
are only designated by the PubChem substance identification
(SID) number, which requires added effort to find the salient
chemistry details. In this case, the probe is primarily characterized
by a biological activity and SID link. Also, it was found that
searching certain ML numbers listed in the book would not
retrieve a CID in PubChem. In addition, a detailed Excel
spreadsheet summary (WebTable 121012.xlsx) found on the
NIH MLP Web site31 contained data on only about two-thirds
of the probes.32 It appears that the concise organization found in
the more recent probe reports may have been lacking at the
outset. A few compounds were also identified that were originally
described as NIH MLP probes but for which there is no probe
report. We have recently compiled and shared the available
information on the 322NIHMLP probes we were able to resolve
in an easily searchable collection available on Collaborative Drug
Discovery (CDD)’s public database33 as a free resource for the
community34 as well as elsewhere.35

■ EXAMPLE 2. IDENTIFIER AND STRUCTURE
SEARCHES IN SCIFINDER REVEALS AN EXTREME
DISCLOSURE

As we move beyond the NIH MLP probes to other databases
to find more data on these or other compounds, we encounter
further issues. The process of converting CID identifiers to
CAS registry numbers can be used to obtain a summary of the
number of literature references in SciFinder, and this identifier
conversion is essential to medicinal chemistry due diligence. For
example, when a high throughput screening (HTS) hit becomes
of potential value in lead optimization, it is essential to conduct
exact, substructure, and similarity searches on it.
Literature descriptions of structure−function relationships

are of value even if the prior literature report on the chemistry is
in a very different field of biology to the current interest. There
is a fundamental explanation for this observation, as diverse
targets are under evolutionary pressure to interact with common
signaling ligands.36 In this sense ligand chemistry (at least for
orthosteric ligands) is more conserved than target structure. This
finding, coupled with the known conservation of biology target
motifs,37 is consistent with the knowledge that similar chemistry
motifs tend to recur across varied biology. Computationally, this

observation is also found in the RECAP technology38 in which
known drugs are fragmented and chemistry motifs are
reconnected in new patterns to give new and often unexpected
biological activities. These connected observations are also
relevant to the behavior of medicinal chemists, who have been
characterized, we think incorrectly, as conservative because they
often tend to use and reuse the same chemical motifs in the com-
pounds they make.39 Rather, we think this medicinal chemistry
behavior is better characterized as pragmatic as professional
survival depends on creating compounds to meet project goals,
and the use and reuse of chemical motifs previously shown to
have useful biological activity are a proven successful strategy.
SciFinder’s use of SMILES input rather than InChI or

InChIKey preserves chemistry structure tautomeric information,
which could be important for medicinal chemistry analysis and
patent law, where tautomer structure can be critical. It is interesting
that the SciFinder choice is consonant with the same selection for
the Journal of Medicinal Chemistry digital structure capture.40

Structure searches within SciFinder are subject to the well-known
issuesmore broadly associatedwith chemistry structure drawing and
include problems with stereochemical depiction, unclear double
bond geometry, and unclear links between free base and salt
forms.15,41 When SciFinder refuses a structure search because of
stereo bond depiction problems, the structure can be edited to
remove stereo information from offending bonds, and the correct
structure must be deduced from the pattern of literature citations.
It should be noted that if the structure search within SciFinder

fails to find a CAS registry number, the search can be repeated as
a similarity search to ensure that the registry number was not
missed because of a salt form. Once the CAS registry number is
found, the total number of literature references with biological
activity captured in SciFinder can be retrieved. It is at this point
that any reference to the 2009 Goldfarb U.S. patent application
on life extension in eukaryotic organisms (US 2009016354542)
should be noted.
US2009016354542 contains a data table (Figure 16 in the

patent ref 42) on 499 compounds with PubChem substance IDs.
However, SciFinder abstracts 6018 substances. How can this be?
The patent includes the phrase, referring explicitly to (PubChem
assay ID) 775, “the contents of which are herein incorporated
in their entirety by reference”. This is full data disclosure taken
to an extreme via subsummation of public HTS data into a patent
by reference. While only 5796 substances from the HTS were
referenced as “use” substances in SciFinder, 132 781 compounds
were specified in the HTS (i.e., 32% of the entire Molecular
Libraries screening collection, MLSMR). Thus, while this may be
an exceptional patent abstraction example in SciFinder, it non-
etheless illustrates how intellectual property (IP) due diligence
searching can be confounded. Across the set of 322 NIH MLP
probes, 72 intersect with the CIDs from AID 775, so a significant
proportion will also intersect with the US20090163545
exemplifications. We were initially worried that a reference to
this patent application was somehow an indicator for a flawed
or promiscuous compound. We now believe the prevalence of
references to this single patent application is an example of how
complete data disclosure can lead to unexpected and potentially
harmful consequences when performing IP due diligence.

■ EXAMPLE 3. THE PARALLEL WORLDS OF
COMMERCIAL AND PUBLIC DATABASE
DISCLOSURE DO NOT COMPLETELY INTERSECT

We expected that the chemical structures of all the NIH MLP
probes would be abstracted by SciFinder. This proved not to be
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the case, raising the possibility of two parallel worlds of dis-
closure: the proprietary commercial database world of chemistry
data abstracted by SciFinder and another data rich world of
publically available and predominantly NIH funded chemistry
and biology screening data, largely in Web format but not
abstracted by SciFinder. Three CID examples are provided
in Table 2, including one of the NIH MLP probes and two
Web-only provenanced bioactive structures.
If this trend were to continue, intellectual property due

diligence would be rendered even more difficult, requiring
searching of multiple parallel disclosure formats at the same
time.23 Other intellectual property/legal due diligence issues may
arise from the parallel worlds of public and commercial data.
Much of the data input into public chemistry databases comes
from deposition of massive numbers of compounds from
chemical vendors (previously termed “vendor dilution effect”
because only a minority of these compounds can be linked to
bioactivity data43), many of them suffering from significant
quality issues in structure representation as evidenced by our
experiences. For example the ChemSpider7,44 database required
processing millions of chemical compounds for deposition, some
of which had quality issues that required removal. Such data
quality issues continue to plague chemistry databases and require
vigilance.15,41b From previous work with a chemistry compound
vendor, we estimate that at least half of “commercially available”
compounds have never been made but rather are compounds
that suppliers think can be made and that are listed as available
in an attempt to elicit customer interest. These are commonly
known as “make-on-demand” (MOD) compounds and are
segregated in databases such as the ZINC database.45 Most such
compounds are identified by a chemical structure depiction and
are annotated with some type of database identifier, but no other
experimental data on the chemical depicted by the chemical
structure drawing exist. On the basis of spot checks, about one-
third of such low data value compounds found in PubChem
do not appear in the CAS registry system.46 For low data value
compounds, the lack of abstraction by CAS can be viewed in a
positive light, since abstracting such compounds could dilute the
value of those abstracted real compounds, which are associated
with experimental data. SciFinder had previously initiated
abstraction of data from the ChemSpider database and had
deposited over 300 000 chemicals from the database into the
registry,47 and this was discouraged by the hosts of ChemSpider
because they had no way of distinguishing MOD compounds
from synthesized and fully characterized chemicals. To our
knowledge, CAS has not taken any ChemSpider data since the
Royal Society of Chemistry (RSC) acquisition in 2008 (i.e., that
is credited as such in SciFinder) and there has not been any
agreement between RSC and CAS regarding ChemSpider data.

■ EXAMPLE 4. INTEGRATION AND INTERSECTIONS
OF DATABASES AND THE NEED FOR BIOASSAY
ONTOLOGY ADOPTION

Understanding associations between chemical structures and
biological assays is a further challenge, since there is essentially
no standardization for describing the protocols for obtaining
activity metrics (IC50, Ki, Kd, etc.) against a biological target,
besides plain English text with scientific jargon. Because this form
is intractable to software, it is impossible to determine whether
two measurements of activity from different research groups are
comparable, other than to have an expert read the full text for
both descriptions. The use of a standard ontology, such as
BioAssay Ontology,48 across such databases would be helpful.
This would enable enhanced searching and comparison, allowing
for the automated aggregation and organization of assays to do
sophisticated structure−activity relationship analysis and identify
artifacts. Despite the benefits to the community, it currently
requires substantial time and expert ontology understanding
to correctly annotate each bioassay, so it has not been widely
adopted. Efforts are currently underway to design a hybrid
manual/automated method for making it relatively fast and easy
for scientists to add semantic annotations to their bioassay
protocols, which could improve the current situation.49

This discussion leads us to ask whether compounds in
databases without any experimental data and without any link
to potential utility should be considered as prior art. This class
of compounds is growing dramatically, especially in the public
databases, and the utility is arguably markedly less than for
prophetic compounds (defined in the Glossary) in patents,
which may not be real compounds in an experimental sense but
for which the relationship to experimentally tested compounds is
at least clear. Such prophetic compounds have been abstracted in
SciFinder since December 2007. As we have described earlier, the
days when one could assume SciFinder had captured everything
relevant to the entire global realm of bioactive chemistry are
perhaps well passed. By definition, no quantitative assessment
(such as the statistics of structure matching) across databases is
possible without access to all of them, and to our knowledge this
has not been undertaken to date. As the largest commercial
source (Table 1) SciFinder contains organics, inorganics,
organometallics, and “tabular inorganics”. Their reported
(September 2014) total of 89 million substances would merge
to a smaller collection of unique organic molecules if converted
to InChiKeys followed by tautomer collapse (i.e., using just the
14-character connectivity layer). We can also estimate some-
where between 50 and 60 million InChiKeys are “in the wild”12

mainly via the Google indexing of PubChem and ChemSpider,
but there could be other sources of unique structures (including
virtual compounds as described earlier). The intersections and
differentials between SciFinder, PubChem, and ChemSpider and

Table 2. CIDs from Selected Sources without Exact Structure Matches in SciFinder (November 2014)

CID source

CID 56593118 ML226 probe inhibitor of lysophospholipase 1 [AID: 2202]
CID 46905036 ML233 probe agonist of the APJ receptor [AID: 2580]
CID 53301938 ML258 probe inhibitor of Bcl-B [AID: 720677]
CID 45100448 ML179 probe inverse agonist of LRH-1 [AID: 504933]
CID 70789094 ML353 probe modulator of mGlu5 [AID: 686927]
CID 71819646 http://opensourcemalaria.org/, open source antimalarial active
CID 71819647 http://opensourcemalaria.org/, open source antimalarial active
CID 77014274 http://www.chemotion.net/, open chemistry publishing
CID 78243694 http://www.chemotion.net/, open chemistry publishing
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other databases (Table 1) are, to date, unknown and require
quantification. In the future, with SciFinder opening up an STN
application programming interface (API) for pharmas,50 assess-
ment of this overlap may become feasible. Other databases such
as SureChEMBL may also overlap with PubChem (12.5 million
compounds, of which 9.4 million are in PubChem). The
ContentMine initiative51 extracting molecules from documents
could also further emphasize that SciFinder is perhaps no longer
the definitive site for chemistry prior art checking. As SciFinder is
based primarily on abstraction of compounds from the chemical
literature and patents, it should be noted that the distinction of
the public compound databases to host data that may never
be published means that these databases will also continue to
deviate until the commercial databases determine how to extract
quality data from the public platforms.

■ CONCLUSIONS
From our own observations, we have identified a number of
barriers to performing medicinal chemistry due diligence that
arise due to the lack of integration between public and private
data repositories. Even obtaining structures and associated data
fromwell-funded public efforts like the NIHMLP probes and the
NCATS molecules for repurposing28 in PubChem or elsewhere
is profoundly challenging. A medicinal chemist can hardly avoid
being exposed to the debate calling for more data sharing and
as much public exposure to primary data as possible. A rational
response is enhanced by case studies of what can go wrong. For
example, in our work on the NIH ML probes, we discovered a
confounding case where the nominal subsummation of a public
HTS screen into a patent application impacts over 20% of probes
from a range of institutions. In addition, prophetic compounds
in SciFinder and vendor molecules deposited in many public
databases that include some proportion of probable MOD
compounds complicate prior art designations. While we propose
some more modest solutions for the highlighted issues, the one
with the biggest potential impact would be if SciFinder generated
and search-indexed the InChI identifiers (strings and keys), now
effectively universally adopted by public chemical databases.52

This would need to be in addition to using SMILES which retain
the tautomeric structure of value to medicinal chemists and
patent lawyers alike (as described earlier).
The “multistop datashop” database challenge can be high-

lighted by the hypothetical novelty checking requirement for
a new chemical structure proposal from a medicinal chemist or
chemical biologist. This is equally important for someone in
open source drug discovery who simply wants an answer to “what
is out there that is similar” and who may even eschew IP on
principle (e.g., their first response to a similarity match might be
to make collaborative contact).53

Those who seek to stake an IP position need exactly the same
answer but in the different context of prior art and freedom
to operate, i.e., the competitive landscape in structure terms.
The issue for both of them is that all of the big four databases
(SciFinder, PubChem, ChemSpider, and UniChem) have at least
some unique content via differential source selectivity (as defined
by an InChI not in the other three). Ipso facto all four databases
need to be searched (although currently UniChem can only
be interrogated for exact matches). Add to this the many open
source (online) lab notebooks on the Web, and the increasing
implausibility of being able to check everything “out there”
becomes clear.
Perhaps what is also needed is a shift toward more collabora-

tion or openness in terms of availability of chemistry and biology

data.53,54 At the very least there needs to be increased
communication between the various databases that are both
public and proprietary in order to ensure the gulf does not
widen further. Additionally they need to address some of the
issues raised here. This would help to resolve discrepancies we
have highlighted and to make analyses on what data exist for
compounds more streamlined. For example, while in review,
an article by Antolin and Mestres described 178 MLP chemical
probes55 that overlapped with our description of over 300 MLP
chemical probes.30 We think a meeting or discussion should be
convened with all interested database parties. It could very well
be conducted at a future American Chemical Society National
Meeting or elsewhere.
From previous public efforts to collate the data on melting

point and solubility data, significant differences between dif-
ferent published studies56 have been described for the same
compounds. Recent efforts mining patents have also shown
differences in biological data for the same compounds, based on
themethod of dispensing used.57 These limited examples suggest
there are benefits to making chemistry, biology screening, and
other molecule related properties data accessible because it
promotes new analyses and re-evaluation, which ultimately
benefits science. We should note that despite our hopes that such
a meshing of data is possible and would be of high value to the
community, major hurdles exist to prevent this from happening
in the short-term to middle-term future, as there is still simply
too much commercial value to the hosts of the proprietary
databases at present. We hope our experiences encourage the
scientific community to develop creative solutions to enable a
more comprehensive analysis of chemistry and related biological
screening data. Clearly CAS and the other commercial vendors
have to take notice and respond to the current rapidly evolving
chemistry database situation; otherwise, their market may be
rapidly eroded by these growing public efforts.
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■ GLOSSARY
Compound identifier CID is the permanent identifier for a

unique chemical structure in PubChem,
but the unique structure still can be a
mixture of enantiomers or stereoisomers.

Prior art Composition of matter cannot be
obtained in a patent application if the
compound in question is prior art. Prior
art results from disclosure of the structure
of the compound as well as a method for
its synthesis.

Probe compound An excellent lead compound: very high
binding affinity and ideally with well
understood binding mode, high selectiv-
ity, good solubility, and low toxicity.26

Prophetic compound All compounds annotated by IUPAC
name for which there is no experimental
(chemistry or biology) in the patent.
These differ from the real compounds
(which have at least some data) and from
Markush structures which are derived
from the usual conglomeration of generic
structures and x, y, z, R1, R2, etc. In
theory even Markush structures could
count as prior art. In practice, patent
examiners mostly ignoreMarkush in their
novelty appraisal (>90% of U.S. patent
applications eventually become issued
U.S. patents). The very few patents that
end up as disputes and that do have very
close scrutiny end up very late in time in
the federal district court system, many in
Wilmington, DE.

Substance identifier SID identifies a depositor-supplied mol-
ecule (SID) and is assigned by PubChem
to each unique external registry identi-
fication provided by a PubChem data
depositor. Themolecule structure may be
unknown, for example, a natural product
identified only by name or a compound
identified only by an identifier

Tabular inorganic Multiple components registrations in
CAS. The structure is unknown, it has a
nonstoichiometric fractional composi-
tion or range of compositions, it is a 3D
lattice structure, or a discrete structure
does not exist.
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