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Abstract: Seasonal succession in bacterioplankton is a common process in marine waters. However,
seasonality in their spatial turnover is largely unknown. Here, we investigated spatial turnover of
surface bacterioplankton along a nearshore-to-offshore gradient in the East China Sea across four
seasons. Although seasonality overwhelmed spatial variability of bacterioplankton composition,
we found significant spatial turnover of bacterioplankton along the gradient as well as overall seasonal
consistency in biogeographic patterns (including distance–decay relationship and covariation of
community composition with distance to shore) with subtle changes. Bacterioplankton assembly
was consistently dominated by deterministic mechanisms across seasons, with changes in specific
processes. We found overall seasonal consistency in abiotic factors (mainly salinity and nitrogen
and phosphorus nutrients) shaping bacterioplankton composition, while phytoplankton showed a
similar influence as abiotic factors only in spring. Although key taxa responsible for bacterioplankton
spatial turnover showed certain season-specificity, seasonal switching between closely related taxa
occurred within most dominant families. Moreover, many close relatives showed different responding
patterns to the environmental gradients in different seasons, suggesting their differences in both
seasonally climatic and spatially environmental preferences. Our results provide insights into seasonal
consistency and variability in spatial turnover of bacterioplankton in terms of biogeographic patterns,
ecological processes, and external and internal drivers.

Keywords: bacterioplankton; spatial turnover; seasonality; community assembly; biogeographic
pattern

1. Introduction

Marine bacterioplankton are important contributors to biogeochemical cycles, and understanding
their spatiotemporal variability and underlying mechanisms is fundamental in unveiling how they are
functioning across space and time [1]. A large number of studies, based on the long-term observations
in certain stations such as San Pedro Ocean Time-series station (SPOT), Bermuda Atlantic Time-series
study (BATS), and Western English Channel (L4), have demonstrated the ubiquity of seasonality
and/or annual recurrent patterns in diversity and composition of bacterioplankton communities across
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global marine ecosystems [2–7], with higher dynamics in the surface waters compared with the deeper
waters [8]. Seasonal succession in bacterioplankton community composition is commonly driven by
seasonal changes in environmental conditions such as water temperature, nutrients, and phytoplankton
(as reviewed in [9]). On the other hand, seasonal variability of environmental conditions may depend
on geographic factors such as latitude and distance to shore of the sampling stations [10,11]. With the
change of latitude or distance to shore, multiple environmental gradients could be formed in coastal
waters, thus leading to spatial turnover of bacterial communities [12,13]. Some previous studies have
considered the coastal areas with ecological gradients as ideal models for understanding the interplay
of seasonal and spatial variability in bacterioplankton communities [10,14]. However, the seasonality
in biogeographic patterns and underlying processes of bacterioplankton along coastal environmental
gradients is largely unknown.

The balance of seasonal and spatial variability of coastal bacterioplankton communities largely
depends on spatial scale, environmental gradient strength, and their interactions. When at a local scale
and/or across weak environmental gradients, seasonality in bacterioplankton community composition
was likely more considerable compared with its spatial variability [15]. With an increase in spatial
scale and/or environmental gradient strength, the larger changes of environmental conditions over
space and/or enhanced dispersal limitation due to the longer geographic distance lead to a pattern
where spatial variability overwhelms seasonality [14]. Spatial variability of bacterial communities
in coastal waters can be simultaneously constrained by abiotic factors, including salinity [16,17],
water temperature [7,18], suspended particles [13] and nutrients [7,19], and spatial factors [10,11] in
various oceanic provinces. Biotic factors like phytoplankton biomass and composition can also be
crucial drivers [20,21]. Collectively, spatial turnover of bacterial communities is likely governed by
complex interactions among abiotic, biotic, and spatial factors. Therefore, a seasonal perspective on
the relative influence of three categories of factors on shaping bacterial community composition is
crucial to confirm whether the same factors would have similar explanatory power in spatial turnover
of bacterial communities across seasons.

Since the biogeographic patterns (beta-diversity patterns such as distance–decay relationship)
of microbial communities and related factors have been extensively reported across global marine
ecosystems [1,22–24], recent attention has been paid beyond the patterns to underlying processes [25,26].
The processes shaping biogeographic patterns involve two major categories: deterministic (mainly
including heterogeneous selection and homogeneous selection) and stochastic (mainly including
dispersal limitation, homogenizing dispersal, ecological drift due to random birth/death events,
and diversification) [27]. The relative importance of selection and dispersal limitation on governing
microbial community assembly in aquatic biomes is usually inferred by variation partitioning involving
both environmental and spatial explanatory variables [13,23,28,29], but this aim often cannot be achieved
when a large amount of variation explained by spatially structured environmental conditions and/or
considerable variation remains unexplained, because measured/unmeasured environmental and spatial
factors may both contribute to multiple fractions of compositional variation [27]. This is somewhat a
pattern along coastal ecological gradients [13,30]. Some recent studies have employed null models
based on both phylogenetic and taxonomic turnover [31] to quantify assembly processes of bacteria,
archaea, and/or microeukaryotes in marine [26,32] and lacustrine waters [25,33]. However, the existence
and extent of seasonality in processes governing microbial biogeography across ecological gradients
are poorly estimated.

Many studies go beyond beta-diversity patterns to focus on specific taxonomic groups driving overall
community variability across coastal environmental gradients [34–36]. For example, Fortunato et al.
determined key bacterial taxa defining specific aquatic environments across a river-to-ocean gradient in
the Columbia River coastal margin, and some of the indicator taxa also showed a seasonal signature [34].
Furthermore, seasonal switching between closely related bacterial taxa exhibiting distinct season
preferences was found in the coastal marine waters, suggesting that seasonal succession of bacterial
communities driven by switching between close relatives could be important for maintaining ecological
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functions in different seasons [35]. However, little is known about the seasonal consistency and
specificity of the taxa driving the compositional variation of bacterial communities across the spatial
gradient. Furthermore, phylogenetic relationships of these taxa in different seasons are unassessed.

In this study, we sampled the surface waters along an ecological gradient from nearshore sites
off Xiangshan coast to offshore sites over ~70 km in the East China Sea (Figure 1), as a representative
system for studying spatio-seasonal variability of bacterial communities across surface waters with
multiple environmental gradients [37]. Bacterioplankton communities were characterized by 16S
rRNA gene sequencing data from four seasons. Using multivariate analyses and null models, we aim
to answer three main questions: (1) Under the scenario that seasonal succession in bacterial community
composition would likely occur, would bacterioplankton communities show seasonal variability in
biogeographic patterns (e.g., distance–decay relationship or covariation of community composition and
distance to shore) and underlying processes? (2) Would the same factors have a similar influence on
driving spatial turnover of bacterioplankton across seasons? (3) What are the phylogenetic relationships
and environmental preferences of the key taxa responsible for spatial turnover of bacterioplankton in
different seasons?
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Figure 1. The map of sampling sites (with IDs as A, B, C, D, and E) and specific stations in each season.
Due to the weather and sea conditions, the geographic coordinates of representative stations of each site
actually being sampled are somewhat different in four seasons but within a radius of 5 km (except the
one for site A in the winter, target site missed because of misreading the coordinates on board).

2. Materials and Methods

2.1. Study Area, Sampling, and Analyses of Seawater Physicochemical Properties

We sampled surface waters (at the depth of ~0.5 m) from five sites along a nearshore-to-offshore
gradient located off the eastern Xiangshan coast to the East China Sea in four cruises: late summer
(Sep. 2013: transition between summer and autumn when the weather conditions were very close
to mid-summer in the study area), autumn (Oct. 2013), winter (Jan. 2014), and spring (May 2014)
(Figure 1). According to the water depth, sites A, B, and C are classified as nearshore sites, while sites
D and E are classified as offshore sites [37]. Due to the weather and sea conditions, the geographic
coordinates of representative stations of each site actually being sampled are somewhat different in four
seasons but within a radius of 5 km (except the one for site A in the winter, where it was believed that the
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target site had been reached because of misreading the coordinates on board) (Figure 1). Five biological
replicates were collected for each station in different seasons, except for site E (three replicates) in the
late summer and site D (not sampled due to the terrible weather and sea conditions) in the spring.
Thus, a total of 93 water samples were obtained. The water samples were pre-filtered through a
sterilized 100-µm pore size nylon mesh, and then microbes were collected using a 0.2-µm pore size
polycarbonate membrane (Millipore, Madison, WI, USA). The sterile tubes containing the filters were
stored in a box with dry ice. The filters were brought back to the laboratory within 6 h and stored
at −80 ◦C. Water temperature, pH, and dissolved oxygen (DO) were measured on board using a
probe (YSI550A, Yellow Springs, OH, USA), while salinity was measured using a MASTER-S28M
salinometer (ATAGO, Tokyo, Japan). Nitrate, ammonium, nitrite, total phosphorus (TP), phosphate,
chemical oxygen demand (COD), and chlorophyll-a (Chl-a) were determined according to standard
methods [38]. The concentration of dissolved inorganic nitrogen (DIN) is calculated as the sum of
nitrate, ammonium, and nitrite. Total organic carbon (TOC) was determined using a multi N/C 3100
analyzer (Analytik Jena, Jena, Germany). The metadata including geographic coordinates of the sites
and water environmental parameters were provided in Dataset S1.

2.2. DNA Extraction, 16S rRNA Gene Amplification, and Illumina Sequencing

Total DNA from the filters was extracted using PowerSoil DNA Isolation Kit (MOBIO,
Jefferson City, MO, USA), which is suitable for water samples with a considerable amount of
suspended particles. The V3-V4 region of bacterial 16S rRNA genes was amplified using primers
338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) with
dual barcodes. An aliquot of 10 ng purified DNA template from each sample was amplified in
triplicate with a 20-µL reaction system under the following conditions: denaturation at 95 ◦C for 3 min;
then 28 cycles of denaturation at 95 ◦C for 30 s, annealing at 55 ◦C for 30 s, and extension at 72 ◦C
for 45 s; with final extension at 72 ◦C for 10 min. Triplicated PCR products were pooled together,
purified with magnetic beads, quantified using a Quant-It Pico Green kit with a Qubit fluorometer
(Life Technologies, Carlsbad, CA, USA), and sequenced on an Illumina MiSeq machine (Illumina,
San Diego, CA, USA). The sequence data are available under accession number PRJNA612952 in the
BioProject of NCBI (https://www.ncbi.nlm.nih.gov/bioproject/).

2.3. Sequence Processing

The paired reads were joined using FLASH with default setting [39]. The joined pairs were
then processed using QIIME 1.9.1 [40]. Briefly, the sequences were quality-controlled using the
split_libraries_fastq.py script at Q20 [41]. The remaining sequences were chimera detected using
UCHIME [42]. After filtering chimeras, the remaining sequences were clustered into operational
taxonomic units (OTUs, >97% sequence similarity) using the pick_open_reference_otus.py script with
the SortMeRNA & SUMACLUST method [43–45]. The most abundant sequence for a given OTU was
selected as the representative sequence and then taxonomically assigned against SILVA 128 database.
The representative sequence of OTUs were aligned using PyNAST [46], and a phylogenetic tree was
generated from the filtered alignment using FastTree [47]. Archaea, chloroplast, mitochondria, and the
sequences that were not assigned to bacteria were removed, as were singletons. A total of 2,169,998 clean
bacterial reads, ranging from 12,457 to 32,318 per sample (mean 23,333) remained. To normalize
the sequencing depth of each sample, the bacterial OTU table was rarefied at 12,450 sequences per
sample using the QIIME script single_rarefaction.py for further analyses. We used chloroplast 16S
rRNA gene data to present the composition of dominant eukaryotic phytoplankton [6]. A separate
chloroplast OTU table was generated and then rarefied at 130 sequences per sample for further analyses.
The representative sequences of chloroplast OTUs were taxonomically assigned against PhytoRef
database [48] using Blastn [49] (the hit with the smallest e-value).

https://www.ncbi.nlm.nih.gov/bioproject/
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2.4. General Statistical Analyses

We used ArcGIS 10.4 to calculate the nearest distance of each sampling station to the land (shore).
Principal coordinate analysis (PCoA) was applied to visualize taxonomic (OTU) turnover based
on Bray–Curtis dissimilarity using the QIIME script beta_diversity_through_plots.py. One-way and
two-way crossed analysis of similarity (ANOSIM) were applied to test the significance of compositional
difference of bacterial communities between sites across seasons using PRIMER-E v5.0 (PRIMER-E Ltd.,
Plymouth, UK). The distance-based multivariate linear model (DistLM) was applied to determine the
key drivers of compositional variation of bacterial community using DISTLM forward 3 program [50].
Variation partitioning analysis (VPA) was applied to estimate the relative importance of abiotic, biotic,
and spatial factors in shaping community composition with (partial-)Constrained analysis of principal
coordinates (CAP) based on Bray–Curtis dissimilarity using the R package ‘vegan’ [51]. Eukaryotic
phytoplankton taxa at the order level were involved as biotic variables. Spatial variables were derived
from principal coordinates of neighbor matrices (PCNM) of geographic coordinates to obtain all
detectable spatial scales [52]. Forward selection was performed to select the best subsets of abiotic,
biotic, and PCNM variables, respectively, using DISTLM forward 3 program [50]. Significance tests
were done with 999 permutations, and all R2 values were adjusted as described by Peres-Neto et al. [53].
Similarity percentage analysis (SIMPER) was applied to identify key OTUs dominantly responsible
for spatial turnover of bacterial community composition in each season using PAST [54]. A heatmap,
showing seasonal and spatial dynamics of the top 20 OTUs most contributing to the compositional
variation of bacterial communities across the gradient in each season, was created by the R package
‘pheatmap’ [55]. A maximum-likelihood phylogenetic tree was constructed using MEGA 7 to present
phylogenetic relationships among these OTUs [56].

2.5. Quantification of Bacterial Community Assembly Processes

To use Stegen’s null modelling framework for inferring assembly processes of bacteria,
it is a prerequisite to test phylogenetic signal in niche differences between species [31]. Briefly,
the environmental optima for all bacterial OTUs were calculated as relative abundance-weighted mean
values for the measured environmental variables, and niche differences between OTUs were calculated
as Euclidean distances between optima for all variables [57]. We then used Mantel correlograms
to estimate the correlation coefficients between niche differences and phylogenetic distances across
different distance classes with the R function ‘mantel.correlog’ in the package ‘vegan’ [51]. Significance of
these correlations was tested using 999 permutations with Holm correction.

We used a two-step null modelling approach to quantify the relative influence of the processes
governing spatial turnover of bacterial communities [31]. Firstly, the deviation of observed phylogenetic
turnover between communities from its null modelling distribution was measured to infer the
balance between deterministic and stochastic assembly processes. If significant phylogenetic signal
in between-OTU niche differences can be found across short phylogenetic distances, we can
estimate phylogenetic turnover between communities by abundance-weighted β-mean nearest taxon
distance (βMNTD) metric, calculated by the R function ‘comdistnt’ in the package ‘picante’ [31,58].
The distribution of null βMNTD (βMNTDnull) was created by randomly shuffling OTUs on the
phylogenetic tree 999 times. The difference between observed βMNTD (βMNTDobs) and the mean of
βMNTDnull in the unit of standard deviations of the null distribution is expressed as SES.βMNTD
(standardized effect size of βMNTD), also as known as β-nearest taxon index (βNTI). Significant
deviation of βMNTDobs from the null expectation with |βNTI| >2 indicates deterministic processes
(selection). βNTI > +2 or < −2 infers heterogeneous selection or homogeneous selection in governing
between-community differences or similarity, respectively. Nonsignificant βNTI values (|βNTI| < 2)
infers stochastic processes in governing turnover between communities. The second step uses modified
Raup-Crick metric [59] that evaluates the standardized deviation of observed Bray–Curtis dissimilarity
from the null distribution (RCbray) to disentangle various stochastic processes [31]. The distribution of
null Bray–Curtis dissimilarity was created by randomly assembling each pair of communities 999 times.
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When |βNTI| < 2, RCbray > +0.95 or < −0.95 infers that dispersal limitation or homogenizing dispersal
governs compositional difference or similarity between communities, respectively, while |RCbray| < 0.95
infers that compositional turnover between communities is undominated by any single process above
and may be governed by multiple stochastic processes including drift, weak selection, and/or weak
dispersal [27,60]. Finally, the percentages of each process among all pairwise comparisons were
calculated according to the βNTI and RCbray values.

3. Results

3.1. Spatial and Seasonal Changes of Abiotic Factors and Eukaryotic Phytoplankton

Nutrient-related factors including DIN, TP, and phosphate showed overall high to low gradients
from nearshore to offshore sites in all seasons but lacked consistency in seasonal patterns across sites,
except that the concentration of phosphate in all sites was significantly lower in spring compared
with that in other seasons (Figure S1). Water temperature fit the common seasonal pattern in the
subtropical area (summer > autumn ≈ spring > winter) and was stable among sites, while DO showed
an overall opposite seasonal pattern. Salinity gradually increased from nearshore to offshore sites
(except in the autumn) and showed somewhat seasonality. In addition, TOC showed a large spatial
fluctuation without a unified seasonal pattern. The concentration of Chl-a in the summer and spring
was overall higher than that in the autumn and winter. Since the relative abundance of cyanobacterial
reads was much lower than that of chloroplast reads across space in all seasons (data not shown),
eukaryotic phytoplankton likely contributed to most of the phytoplankton biomass in this area,
corresponding to our previous report [37]. Eukaryotic phytoplankton communities (profiling based
on the chloroplast 16S rRNA gene data) were dominated by Cryptophyta (41.5% in average across
sites over seasons), Bacillariophyta (38.9%), Chlorophyta (4.9%), Raphidophyceae (4.8%), Haptophyta
(2.4%), and Euglenozoa (1.2%) (Figure S2). In addition, clear seasonal succession was found in the
composition of eukaryotic phytoplankton, which was dominated by Thalassiosirales, Bacillariales,
and Pyrenomonadales in the summer; Thalassiosirales, Cymatosirales, and Pyrenomonadales in the
autumn; Thalassiosirales and Pyrenomonadales in the winter and spring (Figure S2).

3.2. Seasonal Patterns of Dominant Bacterial Taxa along the Gradient

In general, bacterial communities were predominated by Gammaproteobacteria (31.6% in average),
Alphaproteobacteria (23.0%), Actinobacteria (12.7%), Bacteroidetes (11.6%), and Betaproteobacteria
(9.2%) (Figure 2a). Seasonality in the relative abundance of dominant phyla or proteobacterial
classes was overall stronger compared with their spatial shifts across sites. This overwhelming
seasonal pattern was reflected by the highest abundance of Gammaproteobacteria (44.6%) in the
summer, the highest abundance of Deltaproteobacteria (4.3%) and the balanced abundances of
Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria in the autumn, the highest abundance
of Betaproteobacteria (18.7%) in the winter, and the highest abundance of Actinobacteria (24.7%)
in the spring. The overwhelming seasonal pattern was also reflected at the family level, though
the spatial variability was considerable, especially between nearshore and offshore sites in the
summer and spring (Figure 2b). We observed seasonal transitions between families within the same
phylum or proteobacterial class. Taking Gammaproteobacteria for example, Oceanospirillaceae,
Pseudoalteromonadaceae, and Alteromonadaceae were overall enriched in the summer, SAR86
commonly peaked across the spatial gradient in the autumn and in the nearshore sites in the spring,
and Halomonadaceae and Cellvibrionaceae were discriminatorily enriched in the winter. The class
Alphaproteobacteria was overall dominated by Rhodobacteraceae in the summer, and by the balanced
combination of Rhodobacteraceae and Rhodospirillaceae in the autumn, while the Suface_1 clade of
SAR11 was enriched in the winter and spring.
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Figure 2. Relative abundance of dominant bacterial phyla and proteobacterial classes (average relative
abundance >1% at least in one season) (a) and families (average relative abundance >2% at least in one
season) (b).

3.3. Seasonal and Spatial Turnover of Bacterial Community Composition

The OTU composition of bacterial communities varied with season (Figure 3a). The compositional
difference between each pair of seasons or sites was generally significant as tested by two-way crossed
ANOSIM (all p < 0.01), and the seasonality was stronger than spatial variability (Table S1). However,
according to a finer view in each season, we did not find significant differences between two offshore
sites (D and E) in the summer and winter and between sites B and C in the winter (Figure 3b–d and
Table S2). In addition, there was no significant difference among the three nearshore sites in the
spring (Figure 3e and Table S2). We found significant strong correlations between the first two PCoA
coordinates (as indicators of community dissimilarity) and the nearest distance to land (DTL) of the
sites in the summer, autumn, and winter (all p < 0.001), suggesting a gradual compositional turnover
of bacterial community along the coastal gradient, but this was not the case in the spring (Figure 4).
In addition, bacterial communities fit the distance–decay pattern in all seasons with overall more
negative slope values in the winter and spring than those in the summer and autumn (Figure S3).
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Figure 4. Correlations between bacterial community composition (indicated by the first two coordinates
of PCoA) and the nearest distance to land of the stations in each season. The red lines present
binomial fitting.

3.4. Drivers of Spatial Turnover of Bacterial Community Composition across Seasons

DistLM based on a full-season dataset demonstrated that water temperature and DO were the
most important environmental drivers of the seasonal variation in bacterial community composition
(Table S3). Marginal tests of DistLM showed that nutrients (N- and P-related factors), salinity, and DTL
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all significantly contributed to spatial variation in bacterial community composition in four seasons.
In general, VPA showed that the pure effect of spatial factors on compositional variation of bacterial
communities was insignificant in all seasons (Figure 5a–d). Abiotic factors solely explained greater
variation than eukaryotic phytoplankton solely did regardless of season, while the variation solely
explained by phytoplankton reached the highest level in the spring (7.13%). The environmental factors
(including abiotic and biotic factors) solely explained 24.2%, 23.2%, and 21.7% of variation in the
summer, autumn, and spring, respectively; however, a pure environmental effect was weak in the
winter. The shared fraction of environmental and spatial factors explained more variation than any
category of factors solely did across seasons (ranging from 26.0% to 37.3%). In addition, the largest
fraction of variation was still unexplained (ranging from 46.5% to 61.5%).
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Figure 5. Variation partitioning of the Bray–Curtis dissimilarity between bacterial communities with
physicochemical variables, eukaryotic phytoplankton, and spatial variables in the summer (a), autumn
(b), winter (c), and spring (d). Physicochemical: physicochemical factors. Phytoplankton: eukaryotic
phytoplankton at the order level based on the chloroplast 16S rRNA gene data. PCNM: spatial
eigenvector converted from principal coordinates of neighbor matrices. Overlapped fractions represent
the shared explained variance. Blank fractions present that R2 values < 0 after being adjusted.

3.5. Processes Governing Bacterial Community Assembly

A significant phylogenetic signal was observed in the niche difference between bacterial OTUs
across relatively short phylogenetic distances (Figure S4), fitting the assumption of phylogenetic
null modelling based on βMNTD [31]. Bacterial community assembly was dominantly governed by
deterministic processes relative to stochastic processes in four seasons (Figure 6). Selection governed
87.2%, 63.2%, 81.2%, and 70.7% of community turnover in the summer, autumn, winter, and spring,
respectively. In all seasons, selection (mainly heterogeneous selection in the summer, autumn and
spring, and a balanced combination of heterogeneous and homogeneous selections in the winter) was
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8.7–17.8 times more important than dispersal-related processes in governing bacterial community
assembly. In addition, a very low proportion of compositional turnover was undominated by any
single process (probably by a combination of drift, weak selection, or/and weak dispersal [27]) in the
summer, but these stochastic processes were considerable in the other three seasons (corresponding to
15.6–20.0% of community turnover).
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Figure 6. Summary of ecological processes governing bacterial community assembly in each season.
The percentage of each process was the relative contribution to all pairwise comparisons between sites.

3.6. Key Taxa Responsible for Spatial Turnover of Bacterioplankton in Different Seasons

Most of the key OTUs that dominantly drove the spatial turnover of bacterial communities showed
a season-specific pattern, while 20.6% of the key driver OTUs showed some ubiquity in multiple
seasons with only one in all seasons (Figure 7). The key driver OTUs in the summer were mainly from
the families Pseudoalteromonadaceae, Oceanospirillaceae, Alteromonadaceae, and Rhodobacteraceae.
Most Pseudoalteromonadaceae OTUs were positively correlated with phosphate, and negatively
correlated with pH, while the Oceanospirillaceae OTUs showed consistency in their responding
pattern to environmental conditions, that is, positive correlations with water temperature and N-
and P-nutrients, and negative correlations with DTL, salinity, pH, and TOC (Figure 8a). However,
the Rhodobacteraceae OTUs showed distinct responding patterns to environmental conditions,
while the Alteromonadaceae OTUs showed a very weak association with measured environmental
factors. The key driver assemblages were more phylogenetically diverse in the autumn, including
members of SAR86, Halomonadaceae, Alcanivoracaceae, Alteromonadaceae, Hydrogenophilaceae,
Methylophilaceae, Rhodospirillaceae, Rhodobacteraceae, Flavobacteriaceae, Nitrospinaceae, and OM1
(Figure 7). In general, these OTUs showed two opposite responding patterns to environmental
conditions and some taxonomic dependency (Figure 8b). In the winter, we found a shift of driver
assemblages to SAR11 (Surface_1), Rhodobacteraceae, Flavobacteriaceae, and OM1, and then to
Halieaceae, SAR86, SAR11 (Surface_1), Cryomorphaceae, Flavobacteriaceae, and OM1 in the spring
(Figure 7). Most of the key OTUs in both winter and spring were associated with environmental
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conditions, except that all the SAR11 OTUs were not significantly correlated with any measured
environmental factors (Figure 8c,d).

We further found seasonal switching between closely related OTUs, responsible for spatial turnover
of bacterial communities, within many families including SAR86, Alteromonadaceae, Rhodobacteraceae,
Cryomorphaceae, Flavobacteriaceae, and OM1 (Figure 7). However, these close relatives commonly
exhibited distinct patterns in their distribution from nearshore to offshore (Figure 7) as well as in
response to environmental conditions (Figure 8) in different seasons. In addition, the key driver OTUs
shared by multiple seasons also showed seasonal inconsistency in the distribution patterns along the
gradient and the associations with environmental conditions (Figures 7 and 8).
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Figure 7. Dynamics of key bacterial OTUs (operational taxonomic units) dominantly responsible for
spatial turnover of bacterial community composition across sites over seasons. The heatmap shows
average relative abundance of the top 20 OTUs contributing the most compositional variation of
bacterial communities along the gradient in each season as identified by Similarity percentage analysis
(SIMPER; see detailed results of SIMPER in Dataset S2). The color keys following a given OTU indicate
that the OTU was a key driver of spatial turnover in specific season(s). The phylogenetic tree was
constructed using MEGA 7.0 with the maximum likelihood method.
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4. Discussion

4.1. Seasonal Succession Patterns of Bacterioplankton

We found that seasonality overwhelmed spatial variability of bacterial community composition.
In contrast, at the similar spatial scale, the spatial variability dominated patterns were found across a
river-to-ocean gradient in the Columbia River margin [14] and along a nearshore-to-offshore gradient in
the Sargasso Sea [10], corresponding to the stronger environmental gradients over space (salinity in the
former and water temperature in the latter) compared with those in this work. Here, the strong seasonal
succession in bacterioplankton could be due to the strong seasonal changes in water temperature
and DO concentration. The Tara Ocean project has demonstrated temperature and DO as two most
influential factors shaping global patterns of marine bacterioplankton [1]. Moreover, seasonal shifts in
bacterioplankton composition also commonly follow the changes in Chl-a in temperate/subtropical
regions [4,7,9,61]. We also found that Chl-a played a role in driving bacterioplankton seasonal
succession, as Chl-a only significantly contributed to the compositional variation of bacterioplankton
when the all-season dataset was considered.

The seasonal succession patterns of bacterioplankton were also pronounced at the family level,
as were differences between nearshore and offshore sites, especially in the summer and spring.
For example, Flavobacteriaceae and Cryomorphaceae (Bacteroidetes) were only enriched in the
offshore sites compared with nearshore sites in the summer and spring. Members of Bacteroidetes
are versatile in degradation of phytoplankton-derived dissolved organic matter (DOM), and typically
become dominant in bacterioplankton in productive seasons [62–65]. This suggests phytoplankton
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blooms and/or unique phytoplankton composition in the offshore waters in the summer and spring,
which was evidenced by overall higher Chl-a concentration in both seasons and the unique composition
of eukaryotic phytoplankton in the spring. In addition, Rhodobacteraceae with members frequently
associated with DOM degradation during phytoplankton blooms [9,66] was also enriched in the
offshore waters in the summer. The seasonal succession patterns largely depend on the distance to
shore, which typically structures pronounced gradients in salinity and nutrients from coastal zones to
open ocean [9]. Given the overall seasonal consistency in the gradients of salinity and N- and P-nutrients
in the study area, the interplay between abiotic environmental conditions and phytoplankton dynamics
likely determined the distinct seasonal succession patterns of bacterioplankton between nearshore and
offshore waters, though temperature and DO shaped the major succession trend for the entire area.

4.2. Seasonality in Biogeographic Patterns of Bacterioplankton and Underlying Processes

Under the baseline of strong seasonal succession in bacterial composition, we also found overall
significant spatial turnover of bacterial communities. Many previous studies have characterized the
spatial turnover of bacterioplankton composition along coastal gradients [13,67–69], but the extent of
seasonality in biogeographic patterns and the underlying processes are largely unknown. In this study,
we tested two biogeographic patterns: (i) covariation of community composition and distance to shore
(land) (Pattern I) and (ii) distance–decay relationship (Pattern II). Wang et al. found significant Pattern
I in the Sargasso Sea by integrating data from many different months for years [10], but the existence
of seasonality was not concerned. In our work, seasonal consistency in Pattern I was evidenced by
significant correlation between DTL and PCoA 1 and 2 coordinates in the summer, autumn, and winter,
but the spatial turnover of bacterial communities in the spring did not fit Pattern I. On the other hand,
compositional variation of bacterial communities fit Pattern II, but with variability in spatial turnover
rate as indicated by the slope of the model. This suggests the co-existence of certain seasonal consistency
and subtle dynamics in biogeographic patterns of bacterioplankton along the coastal gradient.

Null modelling revealed a consistent determinism (selection)-overwhelming mechanism governing
bacterial community assembly across seasons. Using the same approach, Wu et al. found that selection
was 1.4 times more important than dispersal limitation in shaping bacterial communities in the open
ocean of East China Sea [26], while Logares et al. found that prokaryotic communities were governed,
in a balanced manner, by selection, dispersal limitation, and drift in global sunlit-oceans [70]. The more
selection-overwhelming pattern in the present area relative to these two surveys could be due to
the smaller scale of ours, at which dispersal limitation is expected to be weak [71]. Pattern II can be
driven by selection, dispersal limitation, and/or drift when interplayed with dispersal limitation [23].
The overall weak dispersal limitation in all seasons was corresponding to the insignificant pure
effect of spatial factors in VPA, suggesting that the consistent distance–decay pattern here should
be mainly governed by selection. Unlike the heterogeneous selection-dominance in the summer,
autumn, and spring, bacterial community assembly in the winter was governed by both heterogeneous
and homogeneous selections in balance, which is corresponding to the less compositional variation
explained by variation (heterogeneity) in environmental conditions (including pure and shared effects
in the VPA) than that in the other three seasons. On the other hand, the relative importance of
stochastic assembly processes of bacterioplankton showed seasonal shifts with higher stochasticity
in the autumn and spring. The mediators of the balance of deterministic and stochastic assembly
processes of bacterioplankton in dynamic marine ecosystems should be considered as a future direction.
Collectively, to some extent, we found consistency in a determinism-dominated mechanism underlying
bacterial community assembly across seasons as well as the existence of seasonality in actual processes.

4.3. Relative Importance of the Factors Driving Spatial Turnover of Bacterioplankton

Many studies have considered salinity as the master factor shaping bacterial community
composition across coastal gradients from estuary to ocean [14,16,72]. We also found salinity associated
with compositional variation of bacterioplankton along the gradient in three seasons (except autumn).
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A recent study found that bacterial communities across a nearshore-to-offshore gradient in the Sargasso
Sea were primarily shaped by distance to shore and temperature [10]. Water temperature and DTL
were also potential drivers of compositional variation of bacterial in the summer, autumn, and winter
as revealed by DistLM (Table S3). Moreover, N- and P-related factors showed seasonal similarity
in the extent they influenced the compositional variation of bacterial communities along the spatial
gradient, corresponding to their overall high to low gradients from nearshore to offshore in four
seasons. To some extent, these results suggest seasonal consistency in abiotic factors shaping bacterial
community composition.

Some recent works have provided evidence about the greater importance of biotic interactions
relative to biotic environmental conditions in coastal waters during certain periods like spring
phytoplankton bloom [6]. However, the biotic factors represented by phytoplankton were overall
less important in driving spatial turnover of bacterioplankton, as indicated by the insignificant effect
of Chl-a (as an indicator of phytoplankton biomass) on compositional variation of bacterioplankton
in each season (Table S3). Thus, phytoplankton could only act as a driver of seasonal succession
of bacterioplankton, since the effect of Chl-a on compositional variation was only significant across
seasons. The insignificant or weak pure effect of eukaryotic phytoplankton taxa in the VPA of summer,
autumn, and winter further confirmed that not only biomass but also composition of phytoplankton
played less important roles in spatial turnover of bacterioplankton. Only in the spring eukaryotic
phytoplankton showed a similar influence as abiotic factors in shaping bacterial communities along
the spatial gradient, corresponding to the largest between-site variation in phytoplankton composition
in this season.

Since many abiotic factors (including water temperature, pH, DIN, TP, phosphate) were
auto-correlated with DTL (Table S4), the influence of two categories of factors may not be detangled.
The VPA also demonstrated that a large amount of variation was explained by a shared fraction of
environmental and spatial factors. However, the overwhelming role of selection in governing spatial
turnover of bacterial communities suggests that environmental factors (varied with DTL) mainly
drove the covariation pattern of community composition and DTL (Pattern I). In addition, the largest
community variation remaining unexplained did not necessarily mean high stochasticity in bacterial
community assembly but indicated the existence of unmeasured environmental drivers of selection in
our survey. Collectively, the quantification of community assembly processes provides a powerful
supplement to distinguish the relative importance of environmental and spatial factors in shaping
bacterial communities.

4.4. Phylogenetic Perspective and Environmental Preference of the Key Taxa Responsible for Spatial Turnover
of Bacterioplankton

To understand how individual taxa as internal drivers of bacterioplankton spatial turnover rather
than the whole community respond to environmental conditions (as external drivers), we identified
the key driver OTUs responsible for a large amount of compositional variation of bacterioplankton in
each season. Although some key driver OTUs, such as the members of Pseudoalteromonadaceae and
Oceanospirillaceae, showed season-specificity, we found seasonal switching between closely related
OTUs within most dominant bacterial families. Switching between closely related species is a common
process in seasonal succession of microbial communities in the temperate/subtropical sites [35,73].
For example, switching between phylogenetically close OTUs with either summer or winter preferences
was observed within the families Rhodobacteraceae, Synechococaceae, and Cryomorphaceae in
the Pivers Island Coastal Observatory (PICO) site and this process was repeated annually [35].
Distinct Thaumarchaeota Marine Group I and Nitrospina assemblages were likely partners responsible
for complete nitrification in the SPOT station at different times of the year [74]. Ecological divergence
in closely related microbes was typically found along spatial and temporal gradients [75], which has
been considered as a strategy for microbial communities to maintain specific ecological functions
under dynamic conditions over space and time. Beyond the perspective from a single time-series site,
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we further revealed that many close relatives showed different responding patterns to the environmental
gradients in different seasons, suggesting their differences not only in seasonally climatic preference
but also in spatially environmental preference. Our results somewhat reflect the complex interplay of
time and space in diversification of bacterioplankton. On the other hand, we also found taxonomic
and phylogenetic dependency in environmental responding patterns in each season (especially in the
autumn); that is, the driver OTUs from the same bacterial family or being more phylogenetically close
likely respond to the environmental conditions in more similar manners in the same season. Therefore,
the distinct distribution patterns of closely related OTUs along the gradients in different seasons could
also be due to the interactions of unmeasured environmental factors (such as DOM composition) with
those that have been characterized in this study. These interactions may also partly explain the seasonal
inconsistency in the distribution pattern and the associations with the same environmental factors of
many key driver OTUs shared by multiple seasons. Another explanation is that these shared OTUs
showed less preference of specific season, which may hold wider niche breadth, thus enhancing the
stochasticity in spatial distribution and environmental preference.

5. Conclusions

This study confirms the existence of seasonality in spatial turnover of coastal bacterioplankton
along a nearshore-to-offshore gradient in the East China Sea. Our results go beyond the seasonal
succession patterns in bacterioplankton in composition to the seasonal consistency and variability in
their spatial turnover by disentangling the biogeographic patterns, ecological processes, and external
and internal drivers across seasons, highlighting the importance of a seasonal perspective on bacterial
community assembly in marine ecosystems. Furthermore, we found similar or distinct environmental
preferences of the closely related taxa responsible for bacterioplankton spatial turnover in the same or
different season(s), respectively, indicating the complex interplay of time and space in diversification
of marine bacterioplankton.
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