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Abstract: Photoplethysmography (PPG) as an additional biosignal for a seizure detector has been
underutilized so far, which is possibly due to its susceptibility to motion artifacts. We investigated
62 focal seizures from 28 patients with electrocardiography-based evidence of ictal tachycardia (IT).
Seizures were divided into subgroups: those without epileptic movements and those with epileptic
movements not affecting and affecting the extremities. PPG-based heart rate (HR) derived from
a wrist-worn device was calculated for sections with high signal quality, which were identified
using spectral entropy. Overall, IT based on PPG was identified in 37 of 62 (60%) seizures (9/19,
7/8, and 21/35 in the three groups, respectively) and could be found prior to the onset of epileptic
movements affecting the extremities in 14/21 seizures. In 30/37 seizures, PPG-based IT was in good
temporal agreement (<10 s) with ECG-based IT, with an average delay of 5.0 s relative to EEG onset.
In summary, we observed that the identification of IT by means of a wearable PPG sensor is possible
not only for non-motor seizures but also in motor seizures, which is due to the early manifestation of
IT in a relevant subset of focal seizures. However, both spontaneous and epileptic movements can
impair PPG-based seizure detection.

Keywords: photoplethysmography (PPG); heart rate; signal quality; motor and non-motor seizures;
ictal tachycardia; wearable device

1. Introduction

Wearable devices are increasingly deployed for applications in the home environ-
ment to assist people with epilepsy in their daily life, which is applicable for example
as an early warning system for an upcoming epileptic seizure or for the retrospective
detection/analysis of epileptic seizures in order to optimize treatment strategies.

Biosignals acquired by means of electroencephalography (EEG) are considered as
the standard for the detection of epileptic seizures. However, EEG is routinely used in
a hospital setting due to problems in the long-term stability of signals and due to the
stigmatization associated with scalp electrode [1–3].

Non-EEG biosignals can assess aspects of seizure manifestations and can be recorded
in everyday life with the aid of wearable devices. These biosignals include e.g., accelerome-
try (ACC), electrodermal activity (EDA), body temperature, electromyography, or photo-
plethysmography (PPG). Both individual signal types and their combinations have been
used to detect epileptic seizures [4,5]. So far, mostly bilateral tonic-clonic seizures and
seizures with major motor components have been studied as to their detectability us-
ing non-EEG signals from wearables [6–13]. Thus, the vast majority of wearable devices
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used in epileptic seizure detection are also tailored to the detection of these convulsive
seizures [14,15]. Thereby, motion artifacts are a major source of bad signal quality, and it
has been the common understanding that especially during the ictal phase, PPG signals are
not beneficial for seizure detection [16]. However, it has been shown that the integration
of autonomic signals in the detection of convulsive seizures, based mainly on ECG, can
improve the performance of seizure detection [17–23].

The work presented here does not target the development of a seizure detection
methodology. Instead, we here focus on investigating the quality and usefulness of the PPG
signal during seizures with a clear autonomic component, consisting of an increase of the
heart rate (HR) during the ictal phase [24], which are both regarded as a priori knowledge
here. Studies comparing ictal tachycardia (IT) with scalp and intracranial EEG recordings
have shown that a relevant subgroup of patients with focal seizures has an accompanying
HR increase, frequently as an initial or early clinical seizure manifestation [25–32].

For reasons of comfort, wearables often do not use ECG recordings acquired via
skin electrodes but rather PPG signals to assess heart rate. PPG is an optical measurement
method for recording the change in blood volume over time in peripheral tissue through the
use of LEDs and measured reflection [33]. Other promising opto-electronic methods have
been investigated in recent advances in the field of wearable sensors [34,35]; however, these
are not yet available for clinical use. To study the value of wearables for the identification
of autonomic seizure components, we here perform a comparison of PPG signals recorded
using a wearable designed for scientific studies with video-EEG long-term recordings
including a one-channel ECG. As the reliability of recordings of autonomic phenomena
may depend on the presence of simultaneous movements [16,36,37], we studied three
subgroups of patients with seizures displaying an autonomic component:

• Group 1: Seizures with IT and without epileptic movements (non-motor)
• Group 2: Seizures with IT and with epileptic motor symptoms not affecting the

extremities, including oral automatisms or eye blinking (motor, non-relevant)
• Group 3: Seizures with IT and with epileptic movements involving arms or legs

(motor, relevant)

The groups were divided based on clinical expert annotations of epileptic movements,
as described in the next section. Two threshold crossings were used to define IT, and the
respective time points were related to the EEG onset of the seizure. ECG and PPG signals
were compared with regard to the timing of identification of IT. Our primary aim was to
distinguish patient subgroups in whom an ambulatory identification of ictal tachycardia
based on PPG is feasible for seizure detection. To the best of our knowledge, this is the
first study to provide a comparison between PPG- and ECG-based identification of ictal
tachycardia while also analyzing the effect of movements on PPG signal quality during IT.

2. Materials and Methods
2.1. Data Acquisition

All signals were acquired in the epilepsy monitoring unit of the Freiburg epilepsy
center during continuous video-EEG monitoring, where patients usually stay for a week,
are largely constrained to their bed, and are only able to walk short distances to the
bathroom. This means that they were immobile for longer than usual compared to their
everyday life but not completely inactive. The ECG signal was recorded with bipolar
electrodes placed below the right clavicle and above the left costal arch at a sampling
frequency of 250 Hz. In addition to the routinely recorded EEG and ECG, patients wore the
wristband Empatica E4 device (Empatica SRL, Via Enrico Stendhal 36, 20144 Milano (MI),
Italy), which, in addition to ACC, EDA, and skin temperature also captures HR by means
of PPG signals. ACC and PPG signals were recorded with a sampling frequency of 32 Hz
and 64 Hz, respectively. The data collected by the wearable device were synchronized to
the ECG signals recorded by the video-EEG system [38]. The PPG sensor mainly consists of
a green LED and a photodetector. It is a reflective PPG sensor; thus, the signal is produced
by measuring the amount of reflection of the light emitted into the skin, which changes
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with the volume of blood in the tissue. Therefore, the signal of reflected light shows the
pulsing blood volume from which the heart rate can be determined. Note that the Empatica
E4 device produces a preprocessed and optimized signal for the detection of the pulse
wave, and not the raw PPG sensor response.

Figure 1 gives an overview of the data processing pipeline explained further in the
rest of this chapter.

Figure 1. Overview of the data processing pipeline, from raw data to heart rate used in the further analysis, and the
movement categorization based on ACC (see Section 3.4). The logic filter here describes the step of filtering point rate values
that are not in the range of 40–180 bpm or changed by more than 20% from one value to the next.

For the purpose of this study, only seizures with evidence for an ictal HR increase,
reflecting effects on the autonomic nervous system, were included. This was assessed
quantitatively by a clinical expert (NE) using the simultaneously recorded ECG signal.
Furthermore, only seizures with a minimum seizure duration of 10 s and sufficient ECG
signal quality were analyzed. A maximum of five representative seizures per patient were
selected to minimize potential bias. Two seizures were discarded due to their significantly
longer duration of about 22 min and 45 min, respectively, as compared to all other seizures
in the dataset.

This resulted in a total of 62 seizures from 28 patients with a seizure-related increase
in HR. Detailed information on patient demographics is summarized in Table A1 in the
Appendix A. The ictal phase was defined as the interval between EEG onset and offset of a
seizure, as marked by clinical experts through visual inspection. The corresponding ECG,
PPG and ACC signals were only analyzed in the ictal and peri-ictal phases, i.e., only in
the immediate interval around and including each seizure, lasting from 60 s before EEG
seizure onset to 30 s after EEG seizure offset. All signal modalities were processed using
MATLAB R2020b (MathWorks, Natick, MA, USA).

The respective data segments were divided in a baseline interval (from −60 s to −30 s
prior to EEG onset), a preictal phase (from −30 s prior to EEG onset), the ictal phase, and a
postictal phase (30 s after EEG offset).

The study was performed according to Good Clinical Practice as part of the RADAR-
CNS project (www.radar-cns.org, accessed on 3 September 2021), with ethical permission
(ethics committee vote 538/16); each patient gave informed consent for data acquisition,
storage, and analysis.

www.radar-cns.org
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2.2. PPG Signal Quality Assessment

The quality of a PPG signal is negatively affected by external influences such as body
motion or ambient light that is captured by the sensor. Additionally, physical barriers that
hinder the proper emission, absorption, or reflection of the used light sources can influence
the signal quality. High-quality PPG signals show a stereotypical quasi-periodic and a
positively skewed waveform between consecutive minima [39]. This waveform can be
distorted when affected by one of the aforementioned reasons. Figure 2 shows an example
of a PPG signal with sections of high and low quality, the simultaneously recorded ACC
signal, and the derived HRs from both PPG and ECG.

Figure 2. PPG and ECG signal (upper panel), the simultaneously recorded ACC signal (middle panel), and the derived PPG
and ECG heart rate (lower panel). The PPG signal is composed of sections with high quality when the patient is at rest and
sections of low quality when the patient is active. The PPG signal was automatically assessed using time-resolved spectral
entropy to identify intervals containing artifacts.

Several promising methods have been deployed with the common approach to sepa-
rate the signal from interference caused by motion in order to restore the evaluable part of
the signal [40–44].

A different approach, chosen in this study, would simply discard the low-quality parts
of the PPG signal [45–48]. Taking the quasi-periodic nature of the high-quality PPG signal
as a basis, the power should be concentrated within a very limited number of frequency
components. In contrast to this, a noisy signal exhibits a spectrum with a more even
distribution of signal power. A metric that exploits these facts and which has been shown
to be useful to distinguish between low and high-quality PPG signals [49] is the so-called
spectral entropy (SE) given by:

SE = −
∑

f 2
f = f1

Ŝ( f ) · log2
(
Ŝ( f )

)
log2(N)

(1)

where Ŝ( f ) is the periodogram, which gives an estimate of the power spectral density PSD
S( f ). Note that Ŝ( f ) is normalized to one in the frequency interval [ f1, f2] before calculating
SE and that the denominator assures 0 ≤ SE ≤ 1 with N being the number of frequency
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bins in the interval [ f1, f2]. The quantity SE is equal to 0 for a signal composed of a single
spectral component and equal to 1 for a signal with a constant spectrum. The upper and
lower frequency was set to f 1 = 0.1 Hz and f 2 = 5 Hz, respectively, as we expected the signal
fundamental frequency and higher harmonics to lie within this range. The periodogram
was calculated in a moving time window with a length of four seconds and overlap of
3.75 s. In order to mitigate the effect of broadband spectral leakage, a Tukey window was
applied before the calculation of the periodogram [50].

A threshold of SE = 0.72 was empirically found to be reasonable in order to separate
reliable PPG sections from PPG sections of insufficient quality. A section with a calculated
value SE below that threshold was considered for further evaluation; otherwise, it was
assessed as unreliable.

2.3. PPG and ECG Peak Tracker

The Empatica E4 device provides an estimated inter-beat interval and heart rate,
which were calculated internally from the PPG signal. However, these calculations and
estimations are proprietary and not described in detail, and upon visual inspection, we
found discrepancies to the expected heart rate calculated from our gold-standard ECG.
Therefore, we decided to employ algorithms for heart rate calculation that are already
established, validated, and described in the literature. Local minima of the PPG signal were
automatically detected by using the peak tracking algorithm published by Scholkmann [51].
The algorithm assumes a periodic or quasi-periodic signal that can be superimposed by low-
or high-frequency noise. It searches for a local maximum within a scale st (here a temporal
scale), which is the only parameter that has to be set beforehand. The scaling parameter
was empirically set to st = 0.25 s, which is in good accordance with previous findings [52].
To avoid possible wrong detections of secondary wave peaks, the algorithm was applied to
the negative PPG signal. Detections that occurred during sections of unreliable PPG signal
quality were removed in a postprocessing step.

The Pan−Tompkins algorithm [53] was applied to the ECG signal using the imple-
mentation provided by Sedghamiz [54]. The Pan−Tompkins algorithm is a widely used
method to detect the R peak of the QRS complex of the ECG signal and contains several
filtering operations and a squaring step to better separate out R peaks from the background.

2.4. Derivation of the ECG and PPG HR

The time points of detected R peaks and the time points of local minima, detected
during reliable PPG sections, were transformed to a point rate with unit of beats per minute
(bpm) by taking the inverse of the difference between consecutive peaks in seconds and
multiplying these values by 60 (see the upper and lower panel in Figure 3). Then, the
point rate was resampled to 64 Hz and 250 Hz in correspondence with the sampling rates
of the PPG signal and ECG signal, respectively. This was done by filling the time span
between two consecutive point rate values with values from the latter provided that the
point rate value was both inside the range from 40 to 180 bpm and changed by less than
20% compared to the previous point rate value. Otherwise, the HR algorithm produced
gaps in the output. Subsequently, a symmetric two-stage low-pass filter with a length of
five seconds each was used. The first moving-median filter (Filter 1 in Figure 3) was applied
with the main objective of removing possible outlier sequences and interpolating gaps that
lasted less than five seconds (marked by ‘a’ in Figure 3). The second moving-mean filter
(Filter 2 in Figure 3) was applied to further smooth the HR. As a final postprocessing step,
sections of the possibly non-continuously derivable HR that lasted less than five seconds
were removed (marked by ‘b’ in Figure 3).
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Figure 3. PPG signal, automatically divided into sections of reliable and unreliable quality and detected peaks (upper panel),
and ACC signal showing movements at the same time (middle panel). The PPG heart rate and the associated intermediate
steps; that is, resampling of the point rate, moving median (Filter 1), and moving mean (Filter 2), are depicted in the lower
panel. Short duration gaps are interpolated by Filter 1 (marked by ‘a’), and isolated short PPG HR segments are removed by
a postprocessing step (marked by ‘b’).

2.5. Determination of the Threshold Crossings

Two different threshold crossings were determined from ECG and PPG HR. The time
period for the identification was restricted to the preictal, ictal, and postictal phase. The
first threshold was defined as the first time point following the baseline interval at which
the HR exceeded the baseline HR value by 20% [25,55], which is hereinafter also referred to
as PPG20% and ECG20% for the PPG and ECG signals, respectively. The baseline HR value
was calculated as the median HR between −60 s and −30 s relative to the EEG onset [25,29]
for both the ECG and PPG signal. Prerequisite for the derivation of an averaged baseline
value was a PPG signal with sufficiently high quality for a duration of at least half the
baseline interval; otherwise, no baseline HR value was produced.

The second threshold was defined as the first time point following the baseline interval
at which the HR exceeded 100 bpm, which are hereinafter also referred to as PPG>100 and
ECG>100 for the PPG and ECG signal, respectively.

2.6. Definitions of Movement

Based on the video-EEG recordings, time intervals of clinical seizure manifestations,
including epileptic movements, were annotated by a board-certified expert (NE). Time in-
tervals with epileptic movements in the form of tonic or clonic movements, or automatisms
performed with the arms or legs, either unilaterally or bilaterally, were considered relevant.
Epileptic movements involving the upper or lower limbs but clinically describable neither
as clonic nor tonic nor automatisms were also considered relevant and categorized as not
further classifiable. Oral automatisms and eye blinking were considered as non-relevant
epileptic movements. Note that seizures with hyperkinetic, myoclonic, or atonic motor
manifestations were not present in this dataset.
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Thus, relevant epileptic motor phenomena were based on clinical annotations and
did not refer to movements actually captured by the device. In order to differentiate these
movements from the clinical annotations, we investigate the ACC signal of the wearable
device. For the 3D wrist acceleration signal provided by the Empatica E4 device, a time-
resolved sample wise activity feature a(t) with units of g was calculated by summing the
standard deviation std(·) of the 3D ACC signal in a window of length T [56,57]:

a(t) =
3

∑
i = 1

std
(

ACCi

[
t − T

2
, t +

T
2

])
(2)

with ACCi given by the acceleration in the ith direction. The window length T was set
to 1 s. If a(t) was above a threshold 0.05 g, the patient was assumed to perform active
movements. If the value was below the threshold of 0.05 g, the patient was assumed to be
at rest. The active state was further divided into epileptic and spontaneous movements as
follows: Time intervals with simultaneous relevant epileptic movements were expressed as
epilepticACC. The remaining intervals were attributed to spontaneous movements.

In summary, we distinguish between five categories of movement: relevant and non-
relevant epileptic (based on clinical annotations), and epilepticACC, spontaneous, and rest (based
on clinical annotations and the ACC signal).

2.7. Evaluation of ‘Hits’ and ‘Misses’

We describe seizures as ‘hits’ if a PPG HR threshold crossing was identified. In each
of the seizures studied, it was given that at least one of the two ECG-based thresholds,
that is either ECG20% or ECG>100, was determinable. Seizures are described as ‘misses’
if identification was based solely on ECG, and no threshold crossing could be identified
based on the PPG signal. Note that the definition of hits and misses from information
retrieval or machine learning, in the sense of true positives and false negatives, is not
applicable here. Furthermore, as the work presented here investigates only peri-ictal data
immediately around seizures, where tachycardia is always present in our dataset, false
positives and true negatives cannot be reported as would be the case if seizure detection
was investigated.

Hence, hits and misses were evaluated as follows: To define phases of ictal tachycardia,
the time interval was determined during which the ECG HR was above the threshold: that
is, either 20% above the ECG baseline HR value or beyond 100 bpm. This time interval
was not necessarily restricted to the ictal phase (see Figure 4). In order to investigate the
impact of movements on PPG signal quality, the activity feature a(t) was then evaluated by
calculating the proportions of epilepticACC, spontaneous movements, and resting phases
during this time interval (see Definitions of movement for terminology).

Figure 4. Schematic illustrations of a seizure with IT and corresponding time interval during which,
based on ECG, IT is measurable. The ictal phase is marked in gray.
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3. Results

The results are structured as follows: First, independently of the groups, the number
of PPG-based identifications of IT is summarized both for PPG20% and PPG>100. In the
second part, the number of group-specific identifications is given. In the third part, the
timing of identification of IT, based on PPG, is compared to both ECG and EEG onset. The
fourth part summarizes the impact of movements on the identification of IT. In the final
section, two examples are given for a seizure that was identified (hit) and not identified
(miss) by means of PPG. See also Figure A1 in the Appendix A for an overview of the
analysis process.

3.1. Overall PPG-Based Identification

Table 1 shows that based on PPG and the determination of either PPG20% or PPG>100 or
both, identification of IT was possible for 37/62 seizures (60%) from 21 patients. Considered
separately, the number of hits was 33/62 (53%) seizures from 17 patients for the HR increase
by 20% compared to the baseline HR and 23/51 (45%) seizures from 13 patients for the
HR increase beyond the threshold of 100 bpm. Based solely on the ECG HR, ECG20%
was determinable for all analyzed seizures, while for 11/62 (18%) seizures, the threshold
crossing of 100 bpm was either not reached (n = 8) or not considered due to a baseline HR
above 100 bpm (n = 3).

Table 1. Number of hits and misses and corresponding number of determinable ECG thresholds.

Hits Based
on PPG

Misses Based
on PPG

Total ECG
Thresholds

Identifications
20% increase or >100 bpm 37 (60%) 25 (40%) 62

20% increase 33 (53%) 29 (47%) 62
>100 bpm 23 (45%) 28 (55%) 51

3.2. Identification Based on Seizure Groups

The total of 62 seizures consisted of 19 non-motor seizures, where 15 contained
exclusively autonomic signs and four were classified as focal impaired awareness seizures.
Eight seizures had non-relevant epileptic motor activity in addition to IT, and the remaining
35 seizures showed IT as well as relevant epileptic motor activity. As summarized in Table 2,
in 9/19 (47%) non-motor seizures, 7/8 (88%) seizures with non-relevant epileptic motor
activity and 21/35 (60%) seizures with relevant epileptic motor activity, the identification
of at least one of the two PPG-based thresholds was possible. Non-relevant epileptic
movements were mostly oral automatisms (n = 7) and in one case bilateral eye blinking.
The seizure of this group that was not identifiable by means of the PPG signal involved
oral automatisms.

Table 2. Number of hits and misses based on at least one of the two PPG-based thresholds and
divided into non-motor seizures (group 1) and seizures with non-relevant (group 2) or relevant
(group 3) epileptic movements, respectively.

Hits Based on PPG20% or PPG>100
37/62

Misses Based on PPG
25/62

Group 1 9 10
Group 2 7 1
Group 3 21 14
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Eleven different combinations of motor manifestations (see Table A2 in the Appendix A)
were determined for seizures with relevant epileptic movements, either overlapping in
time or occurring sequentially. It was found that especially in seizures involving solely
automatisms, IT could be determined by means of the PPG signal (hits: n = 9, misses:
n = 1), where IT was identified before the onset of relevant epileptic movements in n = 6
seizures. For all other possible combinations, results were variable.

3.3. Timings of Identification

As shown in Figure 5, patients were mainly at rest during the baseline period and the
preictal phase for all three groups. Based on the earlier of the two PPG-based thresholds,
the identification of IT occurred mainly either before the onset of spontaneous movements
or the initial manifestation of relevant epileptic movements, or during periods when the
patient was at rest. More specifically, in seizures with relevant epileptic motor activity,
the timing of the identification of IT, based on PPG, preceded the initial relevant epileptic
movement in n = 14 cases (median 16.4 s), which occurred simultaneously in n = 2 cases
(within in a range of 1 s) and afterwards in n = 5 cases (median 41.6 s). The earlier of the
two PPG-based threshold crossings occurred mainly during the ictal phase, regardless of
the seizure group. For some seizures, IT was determinable prior to EEG onset (n = 1 and
n = 3 for seizures with non-relevant or relevant epileptic movements, respectively and n = 4
for non-motor seizures).

Figure 5. Seizures rated as hits ordered by timing of identification of IT relative to EEG onset, based on the earlier of the
two PPG-based threshold crossings, and divided into non-motor seizures, seizures with non-relevant epileptic movements,
and seizures with relevant epileptic movements (in this order and separated by the dashed horizontal lines). The timing of
identification of the earlier of the two ECG-based threshold crossings is plotted for those cases in which identification based
on PPG occurred at least 10 s later.



Sensors 2021, 21, 6017 10 of 19

Regardless of the seizure group, the identification of PPG20% preceded that of PPG>100
in 15/19 cases in which both thresholds were crossed.

As is evident from Figure 6, the majority of PPG-based threshold crossings were
found in very good temporal agreement with those based on ECG (n = 30 with absolute
deviation < 10 s), with an average delay of 5.0 s relative to EEG onset. In addition, the
maximum deviation of the PPG- and ECG-based HRs at the time point of PPG-based
detection ranged from 3 bpm for both non-motor and seizures with non-relevant epileptic
movements to 5 bpm for seizures with relevant epileptic movements. Overall, the earlier
of the two threshold crossings, based on PPG, occurred with an average delay of 14.1 s
relative to EEG onset compared to 3.3 s for the earlier ECG-based threshold crossing. The
difference of about 11 s was mainly caused by seven seizures. For these seven seizures,
the deviation between PPG- and ECG-based threshold crossings was more than 10 s, and
the averaged delay relative to EEG onset increased to 53.1 s. In all these seven seizures,
movements—spontaneous or relevant epileptic or both—were present during the delay
interval. Four of these seizures had relevant epileptic movements (group 3). Individually,
there was considerable variation in the timing of threshold crossings relative to EEG onset
for both the PPG and ECG signals.

Figure 6. Time of identification of ECG- vs. PPG-based threshold crossings relative to EEG onset, for those seizures for
which IT was found by at least one threshold crossing. The identification time refers to the earlier of the two (i.e., either
HR > 20% baseline HR or HR > 100 bpm). The dashed crosses at the mean points indicate the 25th to 75th percentile.

3.4. Impact of Movement on PPG-Based Identification

Figure 7 shows the proportions of spontaneous, epilepticACC movements and rest for
all three seizure groups and both the cases where IT was identified and where it was not.
Movement and resting phases are determined from the ACC signal of the wearable device,
and specifically, epileptic movements are defined as overlaps of clinical expert labeling and
ACC activity (see Definitions of movement). This may also replace labeled relevant epileptic
movement as rest if it was not captured by the ACC signal (e.g., P.16:Sz.1 in Figure 5).

For those threshold crossings identified via PPG (hit), the average proportion of
rest and movements did not change from group 1 to group 2, i.e., between seizures
without epileptic movements and those with non-relevant epileptic movement such as oral
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automatisms. As expected, in group 3 with seizures that had relevant epileptic movement,
the average fraction of rest was significantly lower than in the other groups, while the
fraction of spontaneous movements was the same. Looking at those seizures where the
threshold crossings were not identified by PPG (miss), group 1 had significantly higher
average spontaneous motor activity during IT (78%) compared to those where IT was
identified (21%). In group 2, the amount of resting phases was the same for both hits
and misses (78%); however, the threshold crossing was not identified for only one seizure
(see Figure 7), making a comparison between the two problematic. As for group 1, the
proportions of motor activity in group 3 were higher for seizures where IT was not identified
(77%) than for those where IT was identified (60%). Again, as expected, the average
amount of epilepticACC movements was higher than that of spontaneous movements in
group 3. Overall, the lowest average amount of rest (22%) as well as the highest amount of
movement (78%) across all groups, whether IT was identified or not, was present in group 1
for those seizures where the IT was not identified (miss). This shows the major impact of
spontaneous, non-epileptic movements on the performance of PPG-based identification of
tachycardia.

Figure 7. Proportion of spontaneous movements, epileptic movements (epilepticACC), and resting phases during time
intervals of (ictal or peri-ictal) tachycardia for seizures rated as either hit or miss for the respective groups.

3.5. Examples

In Figure 8, one example of a seizure is given with relevant epileptic movements in
which an IT-threshold crossing could be identified (group 3, hits) and one example of a
non-motor seizure in which the threshold crossing of IT could not be identified (group 1,
misses). For each seizure, the simultaneous ECG signal is shown next to the automatically
assessed PPG signal. Furthermore, the ACC signal plus the activity feature a(t) derived
from it and the PPG- and ECG-based HR are depicted. Note that the activity feature a(t) is
displayed in binary form, which is composed of active and rest phases (see Definitions of
movement). The baseline period, the ictal phase, and the time points of the identifications of
IT (if available) are highlighted.
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Figure 8. (a) Seizure with motor automatisms (relev. epi. mov.) performed with the left arm during the ictal phase; the
device is worn on the left wrist. The identification of PPG20% occurs before the initial arm automatisms and is in very
good temporal agreement with ECG20%, whereas PPG>100 is not identified, as ECG>100 is only crossed during the phase of
epileptic movements; (b) Seizure with almost continuous spontaneous movements during the baseline period, the preictal,
ictal and postictal phase. Identification of IT is not possible due to the spontaneous movements. In both panels, the baseline
period and the ictal phase are highlighted in magenta and gray, respectively. Vertical lines mark the timing of identification
of threshold crossings. Both panels show data from a period of 140 s.

4. Discussion

In this study, we provide (a) a comparison between PPG- and ECG-based identification
of ictal tachycardia and its identification in time with regard to the EEG onset, and (b)
analysis of the effect of epileptic and spontaneous movements on PPG signal quality during
IT. Identification of IT by means of the wearable PPG signal was possible in 37/62 (60%)
seizures and occurred, as expected, mainly when the patients were at rest.

An interesting result of this study is that PPG-based identification of ictal tachycardia
was not limited to non-motor seizures. We had hypothesized that IT in non-motor seizures
would be identifiable most frequently, whereas seizures with major motor components
might be missed due to an insufficient PPG signal quality. We found that even in the group
of seizures with relevant epileptic movements, in 60% of seizures, an IT could be identified
using PPG signals. This was mostly due to the fact that the thresholds defining IT were
often crossed before the onset of epileptic movements (Figures 5 and 8, left). This temporal
evolution of ictal HR increase followed by epileptic motor activity has been reported in
previous studies [55,58–60]. In our sample of patients with focal epilepsy, tachycardia
(based on ECG) infrequently occurred only secondary to the onset of epileptic motor
activity (2/35, 6%). This indicates an early ictal epileptic involvement of the autonomic
nervous system rather than secondary adaptive changes in the heart rate during the vast
majority of seizures. In the dataset at hand, PPG- and ECG-based ictal tachycardia had
good temporal agreement in 30/37 seizures in which IT could be identified with both
methods. It is also of high interest that IT was frequently an early seizure manifestation
with an average delay of 5.0 s relative to EEG onset for those seizures with good temporal
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agreement to ECG. The results are in line with the findings from Zijlmans [29], where the
onset of IT was mostly found around electrographic seizure onset. The identification of IT
during the postictal phase occurred only for seizures with epileptic movements (n = 1 and
n = 2 for seizures with non-relevant or relevant epileptic movements, respectively). In all
three cases, this occurred when the PPG signal quality improved after movement artifact
cessation, the heart rate could be calculated again, and it was already above the specified
thresholds.

In contrast, we also found evidence that movements in general may impair the PPG
signal during IT identification. Especially, non-motor seizures (group 1) where the IT could
not be identified were often accompanied by spontaneous movements. On the other hand,
for those seizures in the same group where IT could be identified, the patient was mainly
at rest (Figure 7). This indicates a strong negative effect of spontaneous movements on
the ability to identify IT in non-motor seizures (Figure 8, right), which we expected to be
easily identifiable. Independently, we could see a similar effect in the seizures with relevant
motor phenomena (group 3), albeit to a lesser extent. Seizures in this group where the
IT could not be identified had on average a higher proportion of epilepticACC movements
(53%) than those where the IT was found (36%). It stands out that in our set of seizures,
those in group 3, whether the IT was found or not, often had only minor spontaneous
activity in the preictal phase. However, we could not determine any correlation with
seizure type for these occurrences. For these seizures, other reasons for missing the IT
can be hypothesized, such as influences of external light sources on the PPG sensor or
displaced sensor armbands.

A study from Vandecasteele [16], in which the same device was used, reports a
sensitivity of 32% based on 47 temporal lobe seizures from 11 subjects, where the detection
of IT was restricted to the detection interval lasting from 30 s before to 90 s after EEG onset.
They identified motion artifacts as the main reason for failed detection, although they did
not further specify them as resulting from spontaneous or epileptic activity. They use a
set of rules published by De Cooman [61] to analyze their PPG signals and identify IT.
However, they mention that 11 of the 47 seizures in their dataset were not associated with
IT. Thus, their results should be adapted to include only seizures with IT, such that the
results are comparable to the seizures analyzed in this study, encompassing only 36 seizures
and resulting in an adapted sensitivity of 42%. Our approach was able to identify IT in a
larger percentage of seizures from a more diverse set of patients.

Furthermore, to investigate a potential circadian preference, the Hodges−Ajne test
was applied for both seizures described as hit or miss, which tests for the uniformity of
circular data [62]. The timing of the day of the respective EEG onset was considered as the
circular variable. The Hodges−Ajne test revealed no circadian preferences in our dataset
for the identification of IT based on the PPG signal, meaning that daytime seizures could
be identified as well as nocturnal seizures.

The main limitation of the work presented here is that sensitivity is not reported in
combination with a false alarm rate. The identification of IT was only applied with a priori
knowledge of seizures, such that no detection of seizures was carried out. In a system
that directly applies this methodology, the false alarm rate would be very high due to the
relatively simple requirement of crossing a threshold in the heart rate to identify a seizure.
However, the purpose of this work was not to build a seizure detector but to analyze
patient subgroups with different degrees of epileptic motor components, with the goal of
identifying those where the detection of seizures based on ictal tachycardia by means of
wearable PPG sensors is feasible. Another limitation of this study is the use of thresholds
for tachycardia with fixed definitions. Individualized thresholds optimized per participant
may increase the hit rate for prospective seizure detection methods, due to the dependance
of the baseline heart rate on factors such as age or physical condition [28]. Note also that
we specifically did not evaluate heart rate variability (HRV) features in this analysis. Due
to the larger window sizes needed for their calculation and the much larger dependence
on clean data without any artifacts, these HRV features are better suited for analysis based
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on ECG signals [21]. Here, we specifically wanted to evaluate the use of HR, which is
calculated from the PPG signal, in identifying ictal tachycardia.

For future applications, the influence of motion on the PPG signal quality should also
be considered in a larger temporal context. In addition, the intensity of movements might
be investigated in a multi-class fashion instead of a binary activity feature. To conclude,
IT identification is possible also in seizures with relevant motor phenomena because IT
often precedes epileptic movements. However, spontaneous movements can impair PPG
signal quality during phases of IT, which particularly impairs the detection of IT in non-
motor seizures. Thus, seizures with predominant behavioral arrest may be well suited
for detection of the autonomic manifestation of ictal tachycardia, whereas epileptic motor
manifestations do not preclude patients from profiting from PPG signal analysis for the
identification of seizures. While we have shown that the heart rate from PPG signals could
have some value in increasing the sensitivity of seizure detection systems, a monomodal
application of PPG data would likely result in low specificities. Rather, the results from
this study must be combined into a multimodal system including, for example, both ACC
and EDA signals, to have a chance at reaching a robust seizure detection.
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Appendix A

Table A1. Overview of patient demographics. TLE = temporal lobe epilepsy, xTLE = extratemporal lobe epilepsy.

Patient Age Gender Recording
Duration (Days)

Epilepsy
Origin

Epilepsy
Type

Number of
Seizures

Seizure Duration (s)
[min, max]

1 33 m 5 structural focal (TLE) 1 101
2 32 m 5 structural focal (TLE) 1 59
3 55 m 5 structural focal (TLE) 5 77 [54, 94]
4 9 m 3 structural focal (xTLE) 1 54
5 19 f 4 structural focal (TLE) 1 57
6 35 f 5 unknown focal (TLE) 1 83
7 27 f 5 structural focal (TLE) 5 92 [72, 110]
8 53 f 5 structural focal (TLE) 3 40 [32, 51]
9 14 f 4 structural focal (xTLE) 4 74 [69, 79]

10 21 f 8 structural focal (TLE) 5 53 [47, 61]
11 69 f 7 structural focal (TLE) 2 153 [144, 161]
12 35 f 11 structural focal (TLE) 1 40
13 27 f 5 structural focal (TLE) 4 68 [60, 73]
14 26 f 6 structural focal (TLE) 2 97 [34, 160]
15 48 m 14 structural focal (TLE) 3 69 [61, 77]
16 68 f 6 structural focal (TLE) 2 67 [63, 71]
17 34 f 4 unknown focal (TLE) 2 71 [56, 85]
18 56 m 8 structural focal (TLE) 1 116
19 16 m 3 structural focal (TLE) 1 14
20 26 m 6 structural focal (xTLE) 5 118 [107, 123]
21 48 m 8 structural focal (TLE) 1 79
22 45 m 4 structural focal (TLE) 1 23
23 41 f 8 structural focal (TLE) 4 57 [37, 69]
24 46 f 11 structural focal (TLE) 1 98
25 25 m 4 structural focal (xTLE) 1 162
26 58 f 7 structural focal (TLE) 2 76 [55, 96]
27 22 m 7 structural focal (TLE) 1 232
28 27 f 8 structural focal (xTLE) 1 14

Table A2. Number of identified and non-identified motor seizures and corresponding motor manifestations. Epileptic
movements not further classifiable are referred to as ‘other’.

Motor Type Hits Based on Either PPG20%
or PPG>100 or Both

Misses Based on
PPG

Seizures with non-relevant
epileptic movements

oral automatism 6 1
eye blinking 1 -

Seizures with relevant
epileptic movements

automatism 9 1
automatism, other 2 2
automatism, clonic 1 1

tonic, clonic 3 3
tonic 2 1

tonic, other 2 -
to bilateral tonic-clonic 1 1

to bilateral tonic-clonic, automatism - 2
to bilateral tonic-clonic, clonic, automatism - 1

to bilateral tonic-clonic, other 1 -
other - 2
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Figure A1. Overview of the data analysis pipeline, showing the separation of the seizure set into three groups, and the
three main analysis topics, referencing Section 3.
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