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Glioblastoma multiform is the most aggressive primary type of brain tumor, representing
54% of all gliomas. The average life span for glioblastoma multiform is around
14–15months instead of treatment. The current treatment for glioblastoma multiform
includes surgical removal of the tumor followed by radiation therapy and temozolomide
chemotherapy for 6.5 months, followed by another 6 months of maintenance therapy with
temozolomide chemotherapy (5 days every month). However, resistance to temozolomide
is frequently one of the limiting factors in effective treatment. Poly (ADP-ribose) polymerase
(PARP) inhibitors have recently been investigated as sensitizing drugs to enhance
temozolomide potency. However, clinical use of PARP inhibitors in glioblastoma
multiform is difficult due to a number of factors such as limited blood–brain barrier
penetration of PARP inhibitors, inducing resistance due to frequent use of PARP
inhibitors, and overlapping hematologic toxicities of PARP inhibitors when co-
administered with glioblastoma multiform standard treatment (radiation therapy and
temozolomide). This review elucidates the role of PARP inhibitors in temozolomide
resistance, multiple factors that make development of these PARP inhibitor drugs
challenging, and the strategies such as the development of targeted drug therapies
and combination therapy to combat the resistance of PARP inhibitors that can be adopted
to overcome these challenges.
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1 INTRODUCTION

Glioma is defined as one of the primary brain tumors that are categorized based on their origin cells
such as astrocytic tumors (anaplastic astrocytoma or glioblastoma multiform), oligodendrogliomas,
ependymomas, and mixed gliomas. They are among the most prevalent types of tumors present in
the central nervous system (CNS), accounting for over 80% of overall primary brain tumors which
are malignant (Hanif et al., 2017). Glioblastoma multiform (GBM)/glioblastoma is one such type of
glioma which is highly prevalent and accounts for 54% of all gliomas, among which malignant
primary brain as well as CNS tumors comprise 45.2%, while 16% is carried by primary brain as well
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as CNS tumors. Additionally, it is an aggressive primary
malignant brain tumor, which has been categorized as grade
IV type by the World Health Organization (WHO). The average
life span for GBM is around 14–15 months after diagnosis (Louis
et al., 2007; Ghosh et al., 2018). GBM has a global incidence of
0.59–3.69 per 100,000 live births, with a male-adjusted incidence
rate of 3.97 cases per 100,000 and a female-adjusted incidence rate
of 2.53 cases per 100,000 (Ghosh et al., 2018). GBM most
frequently occurs in the hemispheres of the cerebrum, among
which 95% of GBM originates in the supratentorial area, although
hardly a small percentage of GBM arises in the cerebellum,
brainstem, or spinal cord (Nakada et al., 2011). GBM is
divided into two main subtypes: primary and secondary, and
the term was first coined in Antwerp in 1940 by the German
neuropathologist Hans Joachim Sherer (Kleihues and Ohgaki,
1999). Primary GBM is the most common subtype with 80% of
cases and manifests later in life at the median age of 62 years,
while secondary GBMmanifests earlier in life at themedian age of
45 years (Kleihues and Ohgaki, 1999; Ohgaki and Kleihues, 2009;
Ohgaki et al., 2004; Watanabe et al., 2009). Primary GBM is
associated with overexpression of epidermal growth factor
receptor (EGFR) as well as mouse double minute 2 (MDM2)
gene along with deletion of p16, loss of heterozygosity (LOH) of
chromosome 10q holding PTEN (phosphatase and tensin
homolog), and telomerase reverse transcriptase (TERT)
promoter mutation while secondary class of GBM originates
from low-grade astrocytoma or oligodendrogliomas and often
contain mutations in tumor protein 53 (TP53), ATRX, and
isocitrate dehydrogenase 1/2 (IDH1/2) or overexpression of
LOH of 19q, retinoblastoma (RB), platelet-derived growth
factor A, and platelet-derived growth receptor alpha (PDGFA/
PDGFRa) (Davis, 2016; Hanif et al., 2017). A rare subtype of
GBM named GBM-0 is also added by WHO with an
oligodendroglioma feature, which is characterized as GBM
with regions resembling anaplastic oligodendroglioma, having
GBM-like characteristics and necrosis but without microvascular
proliferation (Louis et al., 2007). The current therapy available for
the treatment of GBM includes clinical removal of the tumor
adjuvant to radiation therapy (RT) with temozolomide (TMZ)
administration. TMZ is a first-line chemotherapeutic agent
widely used in the treatment of GBM; however, resistance to
TMZ is frequently the limiting factor in effective treatment
(Gupta et al., 2019; Singh et al., 2021). The principal pathway
involved in the induction of resistance toward TMZ is through
the activation of multiple DNA repair pathways (MGMT-O6-
methylguanine DNA methyltransferase, MMR-mismatch repair,
and BMR-base excision repair). However, many other pathways
also contribute to developing resistance to TMZ which includes
hyperactivation of DNA repair pathways, aberrant signaling
pathways, epigenetic modifications, autophagy, extracellular
vesicle production, and microRNAs (Singh et al., 2021; Tomar
et al., 2021). Poly (ADP-ribose) polymerase (PARP) inhibitors
have been recently investigated as sensitizing drugs to enhance
TMZ potency. PARP is a class of enzyme that participates in the
BER pathway and is also involved in the MGMT pathway by
physically interacting with and ultimately PARylates MGMT as a
response to TMZ chemotherapy to eliminate adducts of O6-

methylguanine (O6-MetG) from the damaged segment of DNA.
Second, PARP works as a sensor, triggering the BER response
pathways. PARP inhibitor drugs block binding of PARP-MGMT
or PARylation of MGMT, reducing MGMT function and
preventing O6-MetG repair. As a result, the MGMT function
is reduced, resulting in TMZ sensitization and providing a
rationale to sensitize (Wu et al., 2021). PARP inhibitor drugs
have been investigated in GBM patients in a number of clinical
trials. However, multiple factors make the clinical development of
these inhibitors challenging. This review elucidates PARP and the
relevance of PARP inhibitor drugs in the treatment of TMZ
resistance in GBM. Furthermore, the challenges that may arise
during the clinical trials of PARP inhibitors as well as the
strategies to overcome these hurdles are highlighted.

2 ROLE OF POLY (ADP-RIBOSE)
POLYMERASE INHIBITORS IN
TEMOZOLOMIDE RESISTANCE

2.1 Temozolomide and Its Resistance in
Glioblastoma Multiform
TMZ is a type of prodrug which is an imidazotetrazine analog of
an anticancer alkylating agent, dacarbazine. This is commonly
used as a chemotherapeutic agent under the brand name
Temodar (Moody and Wheelhouse, 2014). TMZ is lipophilic
in nature, and it can penetrate the BBB and be taken orally (Lee,
2016). It is a DNA alkylating agent that causes arrest at the G2/M
phase of the cell cycle and subsequently induces apoptosis
(Alonso et al., 2007). At physiological pH, TMZ drug is being
transformed into 5-(3-methyltriazen-1-yl) imidazole-4-
carboxamide (MTIC), a form of an active metabolite which is
again degraded in 5-aminoimidazole-4-carboxamide (AIC) or
methylhydrazine. The cytotoxic response of TMZ relies mainly
on its DNA methylation efficacy, which takes place at the N7 or
O6 guanine position or at the O3 position of adenine within the
genomic DNA. Methylation at O6 guanine causes the addition of
thymine rather than cytosine in front of methylguanine during
the upcoming DNA replication process which further triggers the
death of tumor cells (Lee, 2016). TMZ has been shown to be
effective against human malignancies such as astrocytomas and
melanomas (Middleton et al., 2000; Quirt et al., 2007; Yung et al.,
1999; Hart et al., 2013). In 1999, TMZ was the first approved
medicament used for recently diagnosed glioblastoma treatment
as well as in refractory anaplastic astrocytoma in young patients
by the United States Food and Drug Administration (USFDA).
Patients who are newly diagnosed with adult GBM, when received
concurrent Temodar and radiation, had shown a higher overall
survival count than those who received radiation only (12.1/
14.6 month’s average survival) (Cohen et al., 2005). Therefore, the
currently available treatment for GBM is removal via surgery and
subsequently by RT with adjuvant TMZ. The first-line
chemotherapeutic agent TMZ is used for the treatment of
GBM (Gupta et al., 2019; Singh et al., 2021). Unfortunately,
due to the resistance, only around 50% of patients respond to
TMZ (Lee, 2016). The principal pathway involved in the
development of resistance of TMZ is through activation of
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various DNA repair pathways (MGMT, MMR, and BMR).
However, many other pathways also play a vital role in TMZ
resistance which includes hyperactivation of DNA repair
pathways, aberrant signaling pathways, epigenetic
modifications, autophagy, extracellular vesicle production, and
microRNAs (Singh et al., 2021; Tomar et al., 2021). Recently, poly
(ADP-ribose) polymerase (PARP) inhibitor drugs are being
investigated as sensitizing drugs to enhance TMZ potency
(Wu et al., 2021).

2.2 Poly (ADP-Ribose) Polymerases
PARPs are a new class of enzymes that use β-NAD+ as a substrate
to catalyze transmission of ADP-ribose on target proteins
(i.e., poly ADP-ribosylation) (Amé et al., 2004; d’AMOURS
et al., 1999; Lal and Snape, 2021). The process of attaching
ADP-ribose to target proteins through PARP is known as
PARsylation (Lal and Snape, 2021). PARPs are implied in a
variety of processes at the molecular level, such as
transcription, recombination, replication, DNA repair, and
chromatin structure modulation (Morales et al., 2014). The
PARP family comprises 18 members, encoded by a distinct

gene and has a fixed catalytic domain. Some members of the
PARP family such as PARP1 or PARP2 are widely recognized for
their roles in DNA repair mechanism (Amé et al., 2004). PARP is
a member of the BER complex, which includes XRCC1 protein,
DNA ligase, and the DNA polymerase beta, and is involved in the
BER-mediated pathway in response to single-stranded DNA
breaks (SSBs) (Caldecott et al., 1996). In cell-free conditions, it
has been found that the PARP enzyme in an unmodified form,
attaches strongly to DNA strand breaks and, subsequently, auto-
poly ADP-ribosylation is released, allowing repair enzyme
exposure to access the damaged DNA (d’AMOURS et al.,
1999; Satoh and Lindahl, 1992). Both PARP1 and PARP2 act
as well as share similar partners in the SSR repair mechanism and
BER processes (Amé et al., 2004; Schreiber et al., 2002). PARP1
has been found to play a functional response in nucleotide
excision repair (NER), as NER functions are diminished when
the PARP1 enzyme is being inhibited (Flohr et al., 2003). PARP is
also involved in the MGMT pathway by physically interacting
with it and ultimately PARylates MGMT as an effect of TMZ
treatment to eliminate the O6-MetG complex in double-stranded
damaged DNA, independent of the BER pathway (Wu et al.,

FIGURE 1 | Role of PARP inhibitor drugs in TMZ resistance. At physiological pH, TMZ will be converted into MTIC and this MTIC is further hydrolyzed to
methylhydrazine. The cytotoxicity of TMZ drug depends on themethylating/alkylating ability of methylhydrazine at the N7 or O6 positions of guanines or the O3 position of
adenines in genomic DNA. Methylation at O6 position of guanine causes the addition of thymine rather than cytosine nucleotide opposite to methylguanine during the
subsequent process of DNA replication, which triggers the death of tumor cells. The principal pathway involved in TMZ resistance development is the activation of
DNA repair pathways (MGMT, MMR, and BMR). PARP is a class of enzyme that is being involved in the MGMT pathway by physically interacting with and PARylates
MGMT as an effect of TMZ treatment to eliminate adducts of O6-MetG present in the damaged DNA strand. PARP inhibitors usually reduce the binding of PARP-MGMT
along with PARylation as well as silencing of MGMT expression for O6-MetG repair. Hence, diminishing MGMT activity and rendering sensitization to TMZ. In the MMR
pathway, the O6-meG:C pair gets mismatched after the first round of replication and results in O6-meG:T formation in the progeny DNA. The MMR system repairs the
mismatch of O6-meG:T, by detaching the thymine-containing patch of newly generated strand, utilizing the number of complex proteins such as MSH2, MSH6, MLH1,
and PMS2, respectively. Furthermore, PARP is a part of the BER complex that comprises XRCC1 protein, DNA ligase, and the DNA polymerase beta and is involved in
BER in response to SSBs. PARP inhibitors reduced PARP binding in the BER complex, thus, reducing BER function to repair SSBs. Abbreviation: PARPI, PARP inhibitor;
TMZ, temozolomide; MGMT, O6-methylguanine-DNA methyltransferase; MTIC, 5-(3-methyltriazen-1-yl)imidazole-4-carboxamide; MMR, mismatch repair; O6-MetG,
O6-methylguanine; BMR, base excision repair; N7-meG, N7 methylguanine; N3meA, N3 methyl alanine; O6-meG:C, O6-methyl guanine:cytosine; O6-meG:T, O6-
methylguanine:thymine; SSBs, single-stranded DNA breaks.
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2021). BER, NER, and MGMT are important pathways for
repairing damaged DNA induced by alkylating and
chemotherapeutic drugs. (15,103) Figure 1 elaborates on the
role of PARP inhibiting drugs in TMZ resistance.

2.3 Poly (ADP-Ribose) Polymerase
Inhibitors in Other Cancers
The PARP inhibitors are promising therapeutic agents involved
in the treatment of different types of cancers. They exclusively
produce synthetic toxicity in cancerous cells through homologous
recombination deficiencies (HRDs), and one of the most
prominent mechanisms is via mutations in the BRCA1/2
genes present in cancer cells. Current clinical studies suggest
that PARP inhibitors can play a beneficial role in cancer therapy
irrespective of BRCA1/2 or HRD status (Kim et al., 2021).
Initially classified as an HR deficient cancer treatment,
olaparib has been approved by FDA for the treatment of
serous ovarian cancer as well as breast cancer having a
mutation in BRCA1 or BRCA2 germline (Min and Im, 2020).
Currently, the FDA has approved four PARP inhibiting drugs
(olaparib, rucaparib, talazoparib, and niraparib) to ensure the
treatment of breast carcinoma (having detrimental BRCA
mutation) along with advanced ovarian cancer (Kim et al.,
2021; Min and Im, 2020). The FDA, in May 2020, has also
approved rucaparib and olaparib for young patients who are
diagnosed with metastatic castration-resistant prostate cancer
(mCRPC), having deleterious or suspected deleterious
germline or mutation in somatic homologous recombination
repair (HRR) gene (Maughan and Antonarakis, 2021). Along
with these studies, olaparib has also been approved as a
maintenance drug, used in germline BRCA1/2 mutant
advanced PDAC (pancreatic ductal adenocarcinoma) by the
United States FDA as a phase III Pancreatic Cancer Olaparib
Ongoing (POLO) trials have revealed that the administration of
olaparib (as a maintenance treatment) magnified the progression-
free survival (PFS) rate when compared to a placebo (Chi et al.,
2021; Zhu et al., 2020). The role of multiple PARP inhibitors has
also been evaluated in gastric cancer (GC) conditions as mutated
homologous DNA recombination genes such as BRC1/2, PALB2,
ATM, RAD51C, and ARID1A carry somatic HRD (Sahasrabudhe
et al., 2017). Therefore, various PARP inhibitors either in the
form of mono (olaparib, talazoparib, pamiparib, rucaparib, and
niraparib) or combinational therapy (olaparib + paclitaxel,
olaparib + ramucirumab, and ceralasertib + olaparib) have
gone under multiple phases of clinical trials. Also, FDA has
approved ramucirumab in the treatment of gastroesophageal
union adenocarcinoma or GC (Wang et al., 2021). In addition
to these findings, a contrary role of PARP inhibitors has been
reported in AML (acute myeloid leukemia)/MDS
(myelodysplastic syndrome) conditions as microsatellite
instability was linked to the reduced expression of HR repair
genes (Kontandreopoulou et al., 2021). A phase I clinical trial data
have shown a tolerable response produced by talazoparib (a
PARP inhibitor), with decitabine, a DNA methyltransferase
inhibitor when used against relapsed/refractory AML (Baer
et al., 2022). On the other hand, a review of randomized

controlled trials has reported that the use of different PARP
inhibiting agents such as olaparib, niraparib, rucaparib, veliparib,
and talazoparib significantly enhances the risk of AML/MDS in
comparison to placebo (Kontandreopoulou et al., 2021). Also,
mutation of the IDH1/2 gene in primary AML cells manifested
HR abnormalities as well as a reduction in the expression of
ATM, making AML cells PARP inhibitors susceptible. IDH1/2
inhibitors guard the cells from PARP inhibitors because DNA
damage is reduced due to restoration of ATM expression. As a
result, in IDH1/2 mutant AML, the use of PARP inhibitors with
IDH1/2 inhibitors should be prevented (Molenaar et al., 2018).
Notably, tumors without mutated HR-related genes (such as
small-cell lung malignancies) have shown some susceptibility
toward PARP inhibitors, potentially because of enhanced
replication stress caused by RB1 mutations (Dias et al., 2021).

2.4 Poly (ADP-Ribose) Polymerase
Inhibitors in Glioblastoma Multiform
In addition to other cancers, PARP inhibitors have demonstrated
a significant response in various preclinical and clinical trials of
glioma. Multiple studies investigated the efficacy of PARP
inhibitors as they potentiate the anticancer activity of
chemotherapeutic drugs and radiation when used
simultaneously (Lal and Snape, 2021). Examples of actively
acting PARP inhibitors against GBM, with their preclinical
significance, are summarized in Table 1 while Table 2
comprises the PARP inhibitors which are effective against
GBM, as well as their clinical status.

2.4.1 Preclinical Studies of Drugs Targeting PARP-1 in
Glioma
In 2008, a preclinical study by F. A. Dungey et al. showed that
olaparib improves the radiosensitivity in glioma cell lines (T98G,
UVW, and U-373G). The findings also reveal that olaparib
improves radiosensitivity in a replication-dependent way
which was increased by fractionation (Dungey et al., 2008). In
addition, van Vuurden et al. reported a preclinical study in 2011
that showed olaparib improved radiosensitivity in pediatric high-
grade glioma, ependymomas, and medulloblastoma cell lines.
Also, gene expression profiling of pediatric high-grade glioma,
ependymoma, andmedulloblastoma showed that high expression
of PARP1 has been linked to a poor prognosis (van Vuurden
et al., 2011). Furthermore, a preclinical study by Miknyoczki et al.
in 2007 explored another PAPP-1 inhibitor rucaparib which was
reported effective in sensitizing irinotecan and TMZ resistant
tissues in human GBM xenografts without potentiating the
myelotoxic effects (Miknyoczki et al., 2007). A combination
study of PARP inhibitors was performed by Nile et al. in
2016. This combined preclinical study elucidated the efficacy
of olaparib and rucaparib in sensitizing neuroblastoma or
noradrenaline transporter expressing glioma cells to radiation
exposure. Rucaparib and olaparib were found to be equally potent
inhibitors of PARP-1 functioning. PARP-1 inhibitors were used
in combination with X-rays, and DNA damage was gradually
increased 10-fold 2 h following irradiation (Nile et al., 2016).
Another study of rucaparib by Calabrese et al. reported complete
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regression of tumor for more than 60 days when given in
combination with TMZ. Rucaparib was found to be retained
in xenograft tumors where PARP-1 activity was inhibited up to
70% for at least 4 h (Calabrese et al., 2004). Another PARP-1
inhibitor, niraparib, has been shown to be effective in both in vitro
and in vivo models. Reduced rate of DNA damage repair,
formation of the colony, and relative cell count were observed
in an in vitromodel before RT. pHGA cells were pretreated with a

niraparib sublethal dose of 1 mol/L, and when given prior RT, in
vivo niraparib (50 mg/kg) reduced PARP1 activity and increased
mice survival rate in orthotopic xenograft model of pHGA
(Chornenkyy et al., 2015). Another PARP-1 inhibitor,
talazoparib, increased DNA damage and PARP–DNA
trapping, enhancing cytotoxicity against EGFR-amplified
glioma sphere-forming cells, Additionally, it reduced tumor
growth significantly in EGFR-amplified subcutaneous models

TABLE 1 | Examples of actively acting PARP inhibitors against GBM, with their preclinical significance.

Drug
(compound)

Clinical
significance (comments)

Reference

Olaparib Improved radiosensitivity in glioma cell lines (T98G, UVW, and U-373G).
Improved radiosensitivity of pediatric high-grade glioma, ependymomas, and medulloblastoma cell
lines.
On the other hand, it is found to be a substrate for ABC transporters and has poor BBB penetration

Dungey et al. (2008)
van Vuurden et al. (2011)
Halford et al. (2017) and Vaidyanathan et al.
(2016)

Rucaparib Shown to be effective in sensitizing irinotecan and TMZ resistant tissues in human GBM xenografts
without potentiating the myelotoxic effects.
Also shown efficacy in sensitizing neuroblastoma or noradrenaline transporter expressing glioma cells to
radiation exposure.
Reported complete regression of tumor for more than 60 days when given in combination with TMZ.
It is, however, found to be a substrate for ABC transporters and has poor BBB penetration in GBM
murine xenografts

Miknyoczki et al. (2007)
Nile et al. (2016)
Thomas et al. (2007) and Calabrese et al.
(2004)
Parrish et al. (2015)

Niraparib When given along with RT, it gradually improved mice survival rate in brain tumor models of pediatric
high-grade astrocytoma and diffuse intrinsic pontine glioma.
In phase I clinical trials, it was reported to be safe in advanced solid tumor patients

Chornenkyy et al. (2015)
Sandhu et al. (2013)

Talazoparib Reported sensitivity toward EFGR-amplified glioma sphere-forming cells.
In tumors with DNA repair deficiencies, it has been observed to have synergistic action along platinum-
based drugs and TMZ.
Due to efflux by ABC transporters, brain permeability in GBM xenografts models is limited

Wu et al. (2020)
Sachdev et al. (2019) and Shen et al. (2013)
Kizilbash et al. (2017)

Veliparib Reported highly effective in combination with TMZ in PTEN-deficient GBM mouse models.
Given that the PTEN mutation is found in 36% of GBM patients, this is truly incredible.
Also found effective in the treatment of patient-derived xenograft models and MGMT-unmethylated
GBM cell lines when given along with RT.
Due to the risk of reflux, there is moderate brain penetration with a brain-to-plasma ratio of 50%

Lin et al. (2014) and Wagner (2015)
Jue et al. (2017)
Gupta et al. (2016)

Pamiparib Shown excellent brain permeability in animal studies and improved survival time when combined
with TMZ.

Tang et al. (2015)

CEP-9722 Administered as a prodrug that has better deliverability, oral absorption as well as solubility and
converted to CEP-8983 within 5 min of administration.
Shown to be effective in sensitizing TMZ chemoresistance RG2 rat in GBM tumor model.
In addition, when CEP-9722 was given 1 hour after TMZ, it diminished tumor progression by
approximately 60% compared to TMZ administration alone, which only diminished tumor progression
by approximately 32%

Miknyoczki et al. (2007)

E7016 In a phase I study, when co-administered with TMZ, it inhibited PARP activity and increased DNA
damage in patients with advanced solid tumor.
Reported increased tumor tissue sensitivity to radiation in vitro and in vivo by inhibiting DNA repair
mechanisms in mice bearing U2521 xenografts

LoRusso et al. (2011)
Russo et al. (2009)

A966492 When administered with 1 mM topotecan as well as irradiation, spheroids of U87 glioma cells showed
radiation sensitivity of 1 mM.
Reported lower selectivity for PARP-1 and PARP-2 than that of veliparib but greater than that of
niraparib.
In animal models, there is a high level of brain permeation

Koosha et al. (2017)
Thorsell and Schüler (2017)
Penning et al. (2010)

GPI 15427 Reported to enhance the survival rate when treated with TMZ in SJGBM2 gliomamice and also reduced
tumor infiltration into other healthy tissues of mice.
Shown to increase apoptosis and reduce tumor volume when given prior to radiation in tumor models

Tentori et al. (2003)
Khan et al. (2010)

BTH-8 Reported inhibitory activity against the tumor growth of U87 GBM cell lines with an IC50 of 7.78 ±
1.68 Mm and also reported significant anti-tumor effect against numerous tumor cell lines and also in
vivo tumor models by inducing apoptosis, arresting the cell cycle, and causing DNA DSBs

Guo et al. (2020)

Frontiers in Pharmacology | www.frontiersin.org July 2022 | Volume 13 | Article 9395705

Bisht et al. Role of PARP Inhibitors in Glioblastoma

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


but not in nonamplified models (Wu et al., 2020). Shen et al.
reported that talazoparib specifically targeted tumor cells with
BRCA2, PTEN, or BRCA1 gene mutations with 20- to 200-
fold better efficacy than current PARP1/2 inhibitors.
Talazoparib showed a significant anticancer effect in vivo
against xenografted tumors with DNA repair deficiencies
caused by BRCA mutations and PTEN loss and was found
to be sensitive to well-tolerated doses of talazoparib.
Additionally, when talazoparib was administered in

combination with TMZ, SN38, or platinum-based drugs, it
had additive or synergistic antitumor effects (Shen et al.,
2013). PARP-1 inhibitor veliparib was found to be highly
effective in combination with TMZ in PTEN-deficient GBM
mouse models. Given that the PTEN mutation is found in 36%
of GBM patients, this is truly incredible (Lin et al., 2014). In
addition, Jue et al. found that combining veliparib and RT
inhibits the formation of the colony and increases apoptosis in
most patient-derived cell lines. Furthermore, in a PDX model

TABLE 2 | PARP inhibitor drugs which are under investigation in clinical trials and are active against GBM.

PARP
inhibitor

Aim of the study Objective
of the study

Clinical trial
number

Olaparib A study of pembrolizumab, olaparib, and TMZ in glioma individuals
at phase II.
A phase II clinical trial of olaparib in IDH-mutant subjects having
recurrent high-grade type gliomas
A phase II investigation of olaparib with durvalumab (MEDI 4736) in
IDH-mutant patients with solid tumors. There are three cohorts in
this study: glioma with an IDH mutation, cholangiocarcinoma with
an IDH mutation, and other solid tumors with an IDH mutation.
A phase 2 trial of olaparib in advanced IDH1/2 mutant glioma,
cholangiocarcinoma, or solid tumors.
In a randomized phase 2 trial, olaparib and cediranib were
evaluated by comparing to bevacizumab in patients with recurrent
glioblastoma who had not previously received vascular endothelial
growth factor (VEGF) therapy.
Evaluation in phase I/IIa of olaparib and TMZ along with RT (in
combination) to subjects with unresectable high-grade gliomas

To determine the safety and effectiveness of pembrolizumab,
olaparib, as well as TMZ in combination; to see how well these
drugs work when given together in people with glioma who either
did not respond to earlier treatment or came back after treatment.
The goal of this study was to see how effective olaparib is in IDH-
mutant subjects with recurrent high-grade type gliomas based on
their 6-month growth-free survival rate.
To evaluate the effectiveness of combination therapy by focusing
at the average response rate and disease prevention rate.
It is thought that combining durvalumab and olaparib will be more
beneficial to IDH-mutant patients with solid tumors than either
drug alone.
This study examines the effectiveness of olaparib in treating
cholangiocarcinoma, glioma, and solid tumors which have a
mutation at the IDH1 or IDH2 gene; unable to treat or control with
current treatments; have migrated to other parts of the body.
This randomized phase II trial compares the efficacy of olaparib
and cediranib maleate to bevacizumab in treatment with recurrent
GBM.
Treatment through monoclonal antibodies (e.g., bevacizumab)
may aid the immune system in attacking cancer while also
interferes in tumor cells’ potential to proliferate and spread.
Since normal brain cells do not divide, combining RT with PARP
inhibitors (inhibitors of replication-specific DNA repair pathways)
can improve the condition by increasing the cytotoxic effects of
alkylating agents like TMZ

NCT05188508
NCT03561870
NCT03991832
NCT03212274
NCT02974621
NCT03212742

Niraparib A phase 2 trial performed to evaluate the effectiveness as well as
safety of niraparib with tumor treating fields (TTFields) in subjects
with recurrent GBM.
Measures safety and effectiveness of niraparib with addition to RT
in treating recurrent GBM.
A phase 0 “trigger” study of niraparib in newly diagnosed GBM
and recurrent IDH1, IDH2, and ATRX mutant glioma

Examines the safety and effectiveness of niraparib with TTFields in
individuals having recurrent GBM.
Examines the safety as well as the effectiveness of niraparib in
combination with RT within individuals having recurrent GBM.
Measures effectiveness of niraparib in patients who have
diagnosed with GBM recently and patients with IDH mutation and
ATRX loss is being evaluated in this phase 0 studies with an
expansion phase

NCT04221503
NCT04715620
NCT05076513

Talazoparib Talazoparib in conjugation with carboplatin in subjects having
recurrent high-grade glioma along with deficiency in the pathway
of DNA repair

The purpose of this study is to see if talazoparib works in a glioma
group with enriched biomarkers, as well as to see how a
combinational treatment strategy affects patients, having
recurrent type high-grade glioma that has a DNA repair pathway
deficiency

NCT04740190

Veliparib A phase 2 trial of veliparib (ABT-888) and local exposure to
radiation preceded by veliparib with TMZ as a maintenance
therapy, in recently detected high-grade glioma patients without
mutations in BRAFV600 and H3 K27M.
A randomized trial of phase II/III using placebo or veliparib with
TMZ (combination) in GBMpatients who are newly diagnosed with
hypermethylation of MGMT promoter

Examines the combination effect of veliparib and TMZ as well as
RT in recently detected malignant glioma without BRAFV600 or
H3K27M mutations.
Compares the efficacy of veliparib and TMZ (combination) versus
TMZ alone in the treatment of newly diagnosed GBM.

NCT03581292
NCT02152982

Pamiparib Phase 0/2 assessment of pamiparib in newly diagnosed and
recurrent GBM

Investigated the response of pamiparib in newly diagnosed
(unmethylated MGMT promoter) and recurrent GBM

NCT04614909
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of MGMT unmethylated GBM, treatment with veliparib in a
dose of 12.5 mg/kg in combination with complete brain RT
(4 Gy) caused apoptosis and reduced cell proliferation. When
compared to RT alone or veliparib alone, PDX treated with the
combined treatment had significantly higher survival rates
(Jue et al., 2017). In a study by Tang et al., pamiparib showed
excellent brain permeability in animal studies and improved
survival time when combined with TMZ. The in vitro
combined effect of pamiparib and TMZ in 7 small-cell lung
cancer (SCLC) and 8 GBM cell lines were investigated in this
study. Pamiparib showed a significantly greater synergistic
effect with TMZ in the majority of those cell lines. In addition,
pamiparib showed considerable brain infiltration in C57 mice.
To study the combination of pamiparib and TMZ on SCLC in
the brain, mice models with established H209 xenografts
(intracranial) were used. PARylation in brain or tumor
tissues were significantly inhibited 4 h after 3 mg/kg single
unit oral dose pamiparib. In this intracranial model, the
addition of pamiparib dramatically increased animal
survival compared to TMZ alone (Tang et al., 2015).

2.4.2 Clinical Studies of Drugs Targeting PARP-1 in
Glioma
A phase II clinical study of pembrolizumab, olaparib, and
TMZ is now underway to determine the safety and
effectiveness of these drugs when given in combination in
glioma patients who failed to respond to earlier treatment or
relapse. (NCT05188508) Another phase II clinical trial of
olaparib in IDH-mutant subjects having recurrent high-
grade type gliomas is completed, and this study elucidated
the treatment efficacy of olaparib in IDH-mutant subjects
with recurrent high-grade type gliomas based on their 6-
month growth-free survival rate. (NCT03561870) A phase
II investigation of the combination of olaparib and
durvalumab (MEDI 4736) in IDH-mutant patients with
solid tumors is nearing completion at the University Health
Network in Toronto. There are three cohorts in this study:
glioma with an IDH mutation, cholangiocarcinoma with an
IDH mutation, and other solid tumors with an IDH mutation.
Researchers hypothesized that combining durvalumab and
olaparib will be more beneficial to IDH-mutant patients with

FIGURE 2 | Schematic representation of current challenges along with the possible strategies which can be opted for the efficient clinical development of PARP
enzyme inhibitors used for the treatment of glioblastoma. Development of PARP enzyme inhibitors for glioblastoma is clinically challenging due to multiple factors: limited
blood–brain barrier penetration of PARP inhibitor drugs and development of resistance toward PARP inhibitors (upregulation of drug efflux pumps, reactivation of HR,
targeted-related mechanism of resistance, and reverse mutation of BRCA1/2), overlapping hematologic toxicities of PARP inhibitor drugs when conjugated with
glioblastoma’s standard treatment (radiation therapy + temozolomide). One of the promising strategies to deal with the challenges is the development of targeted drug
therapies and combination therapy (PARPI-IR, PARPI-OHSVs, PARPI-CDKI, PARPI-epigenetic drugs, and PARPI-immunotherapy) to combat the resistance of PARP
inhibitors to overcome these factors. Abbreviations: PARPI, PARP inhibitor; OHSVs, oncolytic herpes simplex viruses; IR, ionizing radiation; CDKI, cyclin-dependent
kinase; NPs, nanoparticles.
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solid tumors than either drug alone. (NCT03991832) Another
phase 2 trial of olaparib in advanced IDH1/2 mutant glioma,
cholangiocarcinoma, or solid tumors is also under
completion. This study examines the effectiveness of
olaparib in treating cholangiocarcinoma, glioma, and solid
tumors which have mutations in the IDH1 or IDH2 gene;
unable to treat or control with current treatments; have
migrated to other parts of the body. (NCT03212274) In a
randomized phase 2 trial, olaparib and cediranib combination
was evaluated by comparing it to bevacizumab in patients with
recurrent GBM who had not previously received vascular
endothelial growth factor (VEGF) therapy. This
randomized trial compares the efficacy of olaparib and
cediranib maleate to bevacizumab in treatment with
recurrent GBM. Treatment through monoclonal antibodies
(e.g., bevacizumab) may aid the immune system in attacking
cancer while also interfering with tumor cells’ potential to
proliferate and spread. (NCT02974621) Evaluation in phase
I/IIa of olaparib and TMZ along with RT (in combination) to
subjects with unresectable high-grade gliomas. Scientists
hypothesized that since normal brain cells do not divide,
combining RT with PARP inhibitors (inhibitors of
replication-specific DNA repair pathways) can improve the
condition by increasing the cytotoxic effects of alkylating
agents like TMZ. (NCT03212742) Niraparib has been
established as an effective drug to treat ovarian cancer, and
multiple clinical studies have reported an increased
progression-free survival rate post therapy with niraparib.
A phase II randomized trial with an estimated enrolment of N
= 30 patients aged > 22 years has been hypothesized to
evaluate the efficacy and safety of niraparib as primary
outcomes and estimation of overall survival and
progression-free survival as secondary outcomes
[NCT04715620]. A phase I multicentered study by
Kurzrock et al. has evaluated the tolerability and efficacy of
niraparib and TMZ in individuals (N = 19) with recurrent
GBM and melanoma, thrombocytopenia, progression of
neoplasm, and leukopenia as major reported adverse
events. At 40 mg, niraparib has shown antitumor activity
(Kurzrock et al., 2014). Phase II study was executed to
study efficacy and toxicity of veliparib in patients N = 66
with diffuse intrinsic pontine glioma. Veliparib 25 mg/m2 was
added to the therapy along with chemotherapy. Grade 3
nervous system disorder, maculopapular rash, and
hemorrhage inside the tumor were found to be major toxic
effects, and there was no significant survival benefit compared
to the control group (Baxter et al., 2020). A phase I tolerability
study by Baxter et al. explored veliparib as maintenance
therapy in combination with TMZ in pontine glioma
patients N = 18. Veliparib 62 mg/m2 was well tolerated in
the study population (Baxter et al., 2020). Ptirowski et al.
(2019) concluded pamiparib 60 mg in combination with TMZ
and radiation therapy was very well tolerated in GBM
patients, with nausea and thrombocytopenia as major
reported adverse events related to treatment. Recently, in
2021, the University of Hong Kong has initiated a study
(NCT04740190) to explore the treatment efficacy of

talazoparib and carboplatin combination in severe grade
glioma patients.

2.4.3 Poly (ADP-Ribose) Polymerase Inhibitors and
Mechanism in IDH1/2 Mutant Cancer Type
IDH1/2 gene mutation was first recognized in the AML as well as
glioma and afterward in numerous other cancers. GBM, low-
grade glioma (Yan et al., 2009), cholangiocarcinoma (Jiao et al.,
2013), acute myeloid leukemia (AML) (Mardis et al., 2009),
chondrosarcoma, and melanoma (Amary et al., 2011;
Krauthammer et al., 2012) have all been linked to IDH1
mutations. According to Parsons et al. (2008), almost 12% of
patients suffering from GBM have IDH1 gene mutation
i.e., R132H type. Although other variants such as R132C,
R132L, and R132S at codon 132 are also found (Parsons et al.,
2008). The 2q33 position of the chromosome carries the IDH1
gene which encodes for the enzyme IDH1 (Balss et al., 2008).
Various studies have reported spontaneous mutations in the
NADP+-dependent IDH1 gene in glioma along with mutation
in the IDH2 gene which is located on 15q26.1 chromosomal
position with a frequent mutation at R172K (sometimes also at
R172K, R172W, and R172M) of R172 (Horbinski, 2013; Yan
et al., 2009). Also, as per WHO classification, GBM has been
classified into two main types. One is IDH-wt (wild type) GBMs
which comprise primary or de novo GBMs while another is IDH-
mut (mutation) GBMs which are secondary or progressive GBMs
(Kaminska et al., 2019). Therefore, within glioma patients, a
mutation in the IDH1/2 gene promotes the growth as well as the
progression of glioma. The conversion of isocitrate to α-
ketoglutarate (αKG) is being catalyzed by these enzymes,
i.e., IDH1/2 to produce nicotinamide adenine dinucleotide
phosphate (NADPH), and due to neomorphic mutations, an
oncometabolite, i.e., 2-hydroxyglutarate (2HG) is being
generated. A study has previously reported that the
accumulation of 2HG inhibits the DNA repair process
mediated by the HR process which results in the condition
known as “BRCAness,” which offers sensitivity to PARP
inhibitors (Dang et al., 2009). On the basis of these results, a
multicenter study has been conducted in which patients suffering
from IDH1/2 mutated gliomas were administered with a
monotherapy olaparib and has shown tolerable response
(Fanucci et al., 2022). Also, as per preliminary findings,
olaparib has been found to be safe as well as effective in
IDH1/2-mutant mesenchymal sarcoma condition (Eder et al.,
2021). Another in vitro research has evaluated the effect of PARP
inhibitors in combination with ATR inhibiting molecules in
IDH1/2-mutant cells and suggested that this combination
therapy elevates the premature mitotic entry in the presence of
IDH1/2 mutations (Sule et al., 2021). Various clinical studies are
still ongoing in different phases in which PARP inhibitors are
used in IDHmutated glioma patients. Niraparib (NCT05076513)
is being evaluated in recurrent IDH-mutant glioma (cohort B)
study, while many combinational drugs like pamiparib/TMZ
(NCT03914742) and radiotherapy along with carboplatin/
talazoparib (NCT04740190) are studied in high-grade glioma
with PTEN-mutant, IDH-mutant, and BRCAness signatures (Sim
et al., 2022). Therefore, PARP inhibitors are one of the promising
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as well as desperately needed domains to be explored more in the
field of neuro-oncology research.

3 CHALLENGES

Clinical development of PARP inhibitors against glioblastoma is
quite difficult because of multiple factors (Figure 2). Some of
them are enlisted as:

3.1 Limited Blood–Brain Barrier Penetration
of Poly (ADP-Ribose) Polymerase Inhibitors
The targeted delivery of therapeutically active compounds into
the CNS is a significant challenge in the treatment of most
neurological diseases. The BBB is one of the most complex
and well-protected neurovascular unit composed of tight
junctions between endothelial cells and brain capillary, which
restrict paracellular diffusion and protects the brain from harmful
chemicals and toxins by separating it from peripheral circulation
(Agarwal et al., 2012; Gupta et al., 2019). Thus, it limits the
exclusion of many anticancer drugs including PARP inhibitors
and undermines their effectiveness (Agarwal et al., 2012; Saran
et al., 2018). In GBM, glioma cells can infiltrate normal brain
tissue some centimeters apart from the tumor, evading surgical
resection and so being secured by a relatively intact BBB (Berens
and Giese, 1999; Pitz et al., 2011). Even though the BBB may be
damaged at or around the tumor core, it stays intact in locations
distant from the core, limiting anticancer drug delivery in these
areas (Levin et al., 1980). This implies that in several GBM
patients, restricted drug delivery to invasive tumor cells could
play a crucial role in therapeutic resistance. This type of failure in
drug delivery needs more exploration in preclinical models. Since
some preclinical models are not developed in the brain such as the
flank model, and some involve mice with well-circumscribed
brain tumors obtained from implanted cell lines that demonstrate
a leaky BBB without any significant invasion (Blakeley et al.,
2009). Preclinical data involving GBM animal models imply that
the efficiency of PARP inhibitors in GBM could be restricted
because of limited transport over the BBB membrane and
heterogeneous glioma response (Gupta et al., 2014; Kizilbash
et al., 2017; Parrish et al., 2015; Gupta et al., 2016). Significant
attempts had been made to acknowledge the brain
pharmacokinetics of PARP inhibitors, and many PARP
inhibitors, particularly the trapping agents like rucaparib and
talazoparib, exhibit efflux liabilities around the BBB, and thus a
complete absence of sensitizing response is observed in
orthotopic models of tumor in spite of great activity in
heterotopic cancer models (Hopkins et al., 2015; Parrish et al.,
2015). These results support the hypothesis that targeted delivery
of drugs within the healthy brain or orthotopically implanted
tumor can simulate their potency in the GBM. Talazoparib, a
PARP inhibitor, enhances the potency of temozolomide in a
variety of tumor types. However, when the pharmacokinetic
parameters of talazoparib were compared to another PARP in
normal rodents, a low ratio of brain-plasma concentration of
talazoparib (approximately 0.02) was observed, indicating that it

lacks effectiveness in the orthotopic type of glioma models
(Parrish et al., 2015; Kizilbash et al., 2017). Alternative PARP
enzyme trapping compound bearing efflux liability as well as
limited distribution around BBB is olaparib (Halford et al., 2017;
Vaidyanathan et al., 2016). Despite the reality that olaparib was
found to penetrate the center of GBM tumors in the phase I
clinical trial in individuals with repetitive GBM (Halford et al.,
2017), these findings must be considered with caution since GBM
cells infiltrate tissues far away from the margins. Rucaparib in
combination with TMZ was found to be extremely effective in a
study performed in short explant cultures (in vitro) obtained from
GBM12, and the same combination (when dosed for 5 days in a
consecutive manner every 28 days for three cycles) significantly
prolonged the tumor regrowth duration by at least 40% in
heterotopic xenografts. However, a PK/PD investigation
following a unit dose revealed that rucaparib deposition within
the brain is related to elevate over left PARP enzymatic activity
(Parrish et al., 2015). Conversely, veliparib seems to have a
significantly greater ratio of brain-plasma concentration
(around 0.47) rather than rucaparib and talazoparib in spite of
its efflux liability toward MDR1 as well as BCRP (Gupta et al.,
2016; Li et al., 2011). In addition, orthotopic GBM models are
sensitized better from veliparib rather than rucaparib and
talazoparib comparatively, although being much less powerful
with respect to PARP trapping (Gupta et al., 2016). This premise
sheds light on the importance of factors like penetrability across
the BBB and efflux liability in orthotopic models of glioma which
has a role to improve efficacy. These findings highlight the
significance of neuronal pharmacokinetic parameters in
preclinical models for the successful clinical development of
innovative GBM therapies.

3.2 Resistance to Poly (ADP-Ribose)
Polymerase Inhibitors
Although PARP inhibitor drugs impart a positive response
initially, many subjects acquire resistance to them, resulting in
disease recurrence. The emergence of resistance to PARP
inhibitor drugs can occur via five basic mechanisms:
overexpression of drug efflux pumps, target-related mechanism
for resistance, restoration of BRCA1 or BRCA2 gene activity,
BRCA1-independent restoration of HR, and restoration of fork
stability.

3.2.1 Upregulation of Drug Efflux Pumps
Overexpression of ABCB1 type transporters (also known as
P-glycoprotein), which are mainly responsible for the efflux of
drugs, has been reported among the earliest reasons for the
generation of resistance to PARP inhibitor drugs. ABCB1 is a
type of ATP-binding cassette (ABC) transporter, which has been
shown to confer resistance to a variety of chemotherapeutic and
many other drugs by limiting their accumulation intracellularly.
The development of resistance against PARP inhibitor is being
mediated by ABCB1, and it was first reported in BRCA1/2-
deficient breast cancer mice models (Rottenberg et al., 2008).
Patients who have received chemotherapy before starting PARP
inhibitor treatment are more susceptible to this resistance
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mechanism, as ABCB1 transporters have been shown to be
upregulated in tumors that are formerly exposed to
chemotherapies because of chromosomal translocations that
occur during treatment through paclitaxel anticancer agent
(Marzolini et al., 2004). Interestingly, resistance may be
overcome by ABCB1 inhibitors (verapamil and elacridar),
which can be used against drug resistance mediated by
ABCB1, in ovarian cancer treated by olaparib and paclitaxel
(Vaidyanathan et al., 2016). Clinical trials with ABCB1
inhibitors have shown unsatisfactory results, and recent
research indicated toward ABCB1 is crucial for effective
immunological response (Chen et al., 2020). Further
investigation is required to clarify the significance of ABCB1
gene screening in developing therapy regimens.

3.2.2 Target-Mediated Mechanism of Resistance
Each available PARP inhibitor drug competes with coenzyme
NAD+ to target the PARP enzymes at its catalytic domain site.
Resistance could thus develop from PARP1mutations that decide
whether it decreases the efficacy of the PARP inhibitor compound
or conserve primary in-built activities of the PARP enzymes when
bound to the PARP inhibitor. In vitro results indicate that the
development of resistance to PARP inhibitors, associated with
point mutations is present not only in the enzyme’s catalytic
region but also present in domains through which PARP1 is being
trapped on the DNA strand (Pettitt et al., 2018; Pettitt et al.,
2013). Confirming these findings, in a PARP inhibitor-resistant
ovarian tumor, a mutated PARP1 was found that does not alter
the mobilization of the PARP1 enzyme toward the damaged locus
of DNA but prevents the trapping of PARP1 (Pettitt et al., 2018).
However, mutations in PARP1 exclusively develop resistance in
cells which are HR-proficient and with hypomorphic BRCA1
mutation in cells and synthetic lethal effect are produced which
causes loss of both PARP1 and BRCA1 in response to BRCA1
activity at the residual level. Another enzyme poly (ADP-ribose)
glycohydrolase (PARG) is an important factor that was found to
play a pivotal role in the generation of resistance toward PARP
inhibitors. This enzyme separates the PAR chain from the
targeted protein. For example, in genetically modified models
of BRCA1/2-deficient mice for breast carcinoma, depletion of
PARG leads to the development of resistance to PARP inhibitor
drugs. Significantly, in these models, PARG lacking cells treated
to inhibit PARP are predicted to maintain enough PARylation at
desired targeted proteins so that they can initiate the signaling
cascade for DNA damage as well as minimize PARP1 protein
trapping onto DNA strand due to remaining PARP activity.
Despite the lack of clinical evidence, two small cohort studies
reported that PARG negative areas accounting for 10% ormore of
the overall tumor mass which have been found in a significant
proportion of tumors present in females suffering from triple-
negative breast cancers (76.8%) or ovarian cancer (78.4%), for
which PARP inhibitors can be used as a therapeutic approach for
both (Gogola et al., 2018).

3.2.3 Reverse Mutation of BRCA1/2
One of the clinically proven mechanisms for the development of
resistance toward PARP inhibiting drugs is reverse mutation and

modification at the epigenetic level, which causes the repetitive
expression of a BRCA1/2 protein and leads to hypomorphic
variations. After long-term treatment with PARP inhibitors or
cisplatin, the mutation in reversion of protein-truncating BRCA1
or BRCA2 gene was first observed in an in vitro study performed
in BRCA2 mutated gene in pancreatic as well as ovarian
cancerous cell lines (Edwards et al., 2008; Sakai et al., 2008).
Patient-derived xenograft (PDX) models of mutated BRCA1 gene
or BRCA1 methylated gene in TNBC disclosed resistant after the
exposure to PARP inhibiting drugs due to intragenic removal
which reinstate the reading sequence of mutant BRCA1, and
absence in BRCA1 gene promoter hypermethylation as well as de-
novo gene fusions that results in upregulated expression of
epigenetically silenced gene BRCA1 (Ter Brugge et al., 2016).
Over many recent years, multiple investigations had identified
that reversions of BRCA1/2 at the genetic level are a cause of
PARP inhibitor resistance during ovarian (Edwards et al., 2008;
Kondrashova et al., 2017; Weigelt et al., 2017; Barber et al., 2013;
Norquist et al., 2011; Domchek, 2017; Lin et al., 2019), prostate
(Quigley et al., 2017; Goodall et al., 2017), breast (Weigelt et al.,
2017; Barber et al., 2013; Afghahi et al., 2017), and pancreatic
cancers (Pishvaian et al., 2017). Interestingly, reversions linked
with PARP inhibitor resistance are not only reported in BRCA1
and BRCA2 but have also been reported in some HR-related
genes including PALB2 and RAD51C/1D (Kondrashova et al.,
2017; Goodall et al., 2017). Due to the challenges of detecting
reversion mutation and the limited usage of PARP inhibitors in
clinical trials, data gathered from massive-scale research to assess
the prevalence of BRCA1/2 gene reactivation in cancer patients
having PARP inhibitor-resistant tumors are missing even now.

3.2.4 Reactivation of Homologous Recombination
Amutation in the NHEJ (non-homologous end-joining) pathway
results in the resurgence of homologous recombination (HR) in
mutant cells of BRCA1/2. BRCA1 induces strand exchange
through its interaction with BRCA2 and PALB2 in normal
cells. Additionally, it antagonizes 53BP1 and impairs the
NHEJ pathway (Isono et al., 2017). 53BP1 is an essential
element of NHEJ machinery and imparts a crucial response in
repairing DNA as well as checkpoint control (Bunting et al., 2010;
Mirman and de Lange, 2020; Zimmermann and De Lange, 2014).
It stimulates NHEJ through decreasing DNA end-resection
process that is essential for HR. Furthermore, it interacts with
a few genes such as RIF1, REV7 and SHLD1, SHLD2, and SHLD3
(shieldin complex) whose resulting complex known as 53BP1-
RIF1-REV7-shieldin axis that prevents incision (Xu et al., 2015;
Zimmermann et al., 2013; Noordermeer et al., 2018). The
depletion of any of the components in this complex has been
implicated in PARP inhibitor resistance in cells that are BRCA1
deficient but notably not in cells that lack the BRCA2 gene
(Bouwman et al., 2010). It is hypothesized that the
suppression of the shieldin axis, i.e., 53BP1-RIF1-REV7-axis,
enables resection at the end and then HR to take place in an
independent manner in BRCA1 while in a dependent manner in
RNF168. RNF168 belongs to the E3 ubiquitin ligase category
enzyme which can activate HR without any need for BRCA1
requirement by interacting directly with PALB2. Dynein light
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chain 1 (DYNLL1) is yet another molecule which has been
associated to develop PARP inhibitor resistance, like 53BP1,
acts by blocking the end resection of DNA in normal cells and
promotes NHEJ. Although it has been reported that DYNLL1,
which is a coding gene for protein, interacts with 53BP1 to limit
terminal resection or that DYNLL1 gene which acts by blocking
resection machinery elements like MRE11 (Lo et al., 2005; Becker
et al., 2018; He et al., 2018), the actual relation between 53BP1 axis
and DYNLL1 remains unknown. Similarly, inhibition of 53BP1
and inactivation of the DYNLL1 gene are linked to PARP
inhibitor resistance (He et al., 2018). The deprivation of
ERCC6L2, which is an additional NHEJ component, has been
reported to reestablish DNA end-resection, leading to incomplete
(half) HR repair and acquiring resistance toward PARP inhibiting
compounds in cells lacking the BRCA1 gene (He et al., 2018;
Francica et al., 2020). Furthermore, upregulation of factors that
promotes HR and inhibits NHEJ, including TIRR134 (Drané
et al., 2017), TRIP13 (Clairmont et al., 2020), and miRNA-622
(Choi et al., 2016), have been reported to protect HR plus
diminish the sensitivity toward PARP inhibiting compounds
in BRCA1 gene-deficient cells. Such results support the
hypothesis which states that the induction of resistance to
PARP inhibitor drugs develops from the failure of DNA end
protection within functionally active BRCA1 diminished cells.
Importantly, the foregoing data indicates that in the HR pathway
mediated by RAD51, BRCA2 protein is critical for the pathway
while BRCA1 protein is somewhat required for the last few steps
in the same pathway.

3.2.5 Reactivation of Fork Stability
Generation of resistance to PARP inhibitor drugs from
reactivation of fork stability is frequent in both BRCA1- and
BRCA2-deficient cells. As stated formerly, BRCA1/2 is needed
not just for HR but, moreover, to maintain the stability as well as
to provide protection to the replication forks during replicative
strain. MRE11 or MUS81 are the two nucleases which are needed
for the formation of halted replication forks. Uncontrolled
excision of unprotected halted forks by MRE11 causes collapse
of the fork and results in elevated instability at the genomic level
in BRCA1/2-deficient cells (Schlacher et al., 2011; Schlacher et al.,
2012; Ray Chaudhuri et al., 2016; Ying et al., 2012). In view of this
fact, loss of protein, i.e. PTIP, a complex of MLL3/4 as well as
nucleosome remodeling element CHD4 impairs MRE11
attachment in obstructed forks; resulting in protection of fork
that leads to PARP inhibitor resistance in cells deficient in
BRCA1/2 (Ray Chaudhuri et al., 2016; Guillemette et al.,
2015). SMARCAL1, a chromatin remodeling complex
depletion, reduces the sensitivity of tumor cells deficient in
BRCA1/2 and causes PARP inhibitor resistance, however, this
effect appears to be cell-type specific (Taglialatela et al., 2017;
Kolinjivadi et al., 2017). Another protein associated with
replication fork protection is RADX; reduction of this protein
in cells deficient in BRCA2 restores protection of replication fork
and reduces the toxic effects of PARP inhibitor compounds
(Dungrawala et al., 2017). Also, preventing MUS81 gathering
by inhibiting the methyltransferase activity of EZH2 induces
protection of fork and partially PARP inhibitor resistance,

especially in cells deficient in BRCA2 (Rondinelli et al., 2017).
Unfortunately, there is conflicting evidence on the involvement of
MUS81, with studies claiming that this nuclease either disrupts
(Dungrawala et al., 2017; Rondinelli et al., 2017) or protects (Lai
et al., 2017; Lemaçon et al., 2017) the unprotected forks;
consequently, whether the cytotoxic response of PARP
inhibiting drugs is affected by MUS81 within BRCA1 and
BRCA2 diminished cells seems unknown (Lemaçon et al.,
2017). Interestingly, loss of PTIP, RADX, or EZH2 does not
improve the functioning of HR in cells having low BRCA1/2,
implying that reactivation of protection of replication fork is a
major aspect for induction of resistance toward PARP inhibitor
compounds (Ray Chaudhuri et al., 2016; Dungrawala et al., 2017;
Rondinelli et al., 2017). Another replication stress factor is
Schlafen 11 (SLFN11) whose depletion lowers the cytotoxic
response of PARP inhibiting compounds in BRCA1/2
proficient as well as BRCA2 diminished cells (Murai et al.,
2016). Lastly, and perhaps most notably, PARP1 is required to
facilitate MRE11 localization to a stalled replication fork. PARP1
deficiency causes synthetic toxicity in BRCA1/2 diminished cells;
however, PARP1 repression prior to BRCA1or BRCA2 depletion
re-establishes the integrity within the stalled forks and increases
cell viability, widely through decreasing MRE11 localization at
the replication fork (Ray Chaudhuri et al., 2016; Ding et al., 2016).
Considering the multifaceted function of PARP1 at the
replication fork, more research is needed to clarify how it may
alter the outcomes of PARP inhibitor-based combination
therapy.

3.3 Overlapping Hematologic Toxicities of
PARP Inhibiting Drugs When Combined
With Standard Treatment for Glioblastoma
(RT and TMZ)
The acceptability of veliparib in conjugation with the standard
treatment of newly diagnosed GBM (RT and TMZ) was
investigated in a phase 1 trial. The study showed that a
daily 10 mg dose (twice a day) of veliparib when
administered orally, with concurrent RT/TMZ was
intolerable in individuals suffering from GBM due to
hematological toxicity (Kleinberg et al., 2013). A
randomized study under phase 1/2 clinical assessment
investigated a combination along with TMZ for treating
persistent GBM with TMZ resistance. The
myelosuppression with grade 3/4 was reported in
approximately 20% of patients, with a usual progression-
free survival (PFS) for 2 months (Robins et al., 2016).
PARP inhibitors in addition to TMZ have also been studied
in neuro-oncology and in the pediatric population. A phase I
study of veliparib in conjugation with TMZ in the juvenile
population suffering from recurrent brain tumors has been
reported. Dose-dependent myelosuppression was observed in
children (Su et al., 2014). Furthermore, in the phase I
concentration escalation study, using olaparib in addition
to TMZ within relapsed GBM patients was performed in
the US. Pharmacokinetics study of orally bioavailable
olaparib against tumor was studied after four doses using
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tumor resection. Olaparib penetrated tumors, with a mean
concentration of 588 nM in the tumor core and 500 nM in the
tumor tissues. When a daily dose of 150 mg of olaparib was
administered for 1–3 days weekly in conjunction with 75 mg/
m2 of TMZ, the response was well tolerated. Totally, 45% of
the evaluable subjects were progression free following
6 months. However, 24 of the 35 evaluable patients
reported adverse effects ≥3. The most frequent symptom
was lymphopenia (51%), followed by neutropenia (26%),
thrombocytopenia (17%), anemia (14%), and fatigue
(Halford et al., 2017). This finding prompted us to conduct
a clinical trial in GBM patients who are newly diagnosed and
treated with olaparib in adjuvant to RT or RT + TMZ
depending on MGMT status stratification (phase 1,
PARADIGM-2). In this PARADIGM-2 study, within a
single trial protocol, patients were allocated into two
respective groups parallelly. Patients who are allocated
within parallel 1 of the study (MGMT methylated) were
administered olaparib in combination with radical RT
(60 Gy in 30 fractions for 6 weeks) with concomitant TMZ
chemotherapy (75 mg/m2 each day throughout RT), followed
by 4 weeks of oral olaparib, subsequently followed by TMZ at
its standard effective dose for six cycles and schedule
commencing 4 weeks post radiotherapy. Patients assigned
to parallel 2 of the study (MGMT unmethylated) received
olaparib with radical RT in combination (60 Gy in 30 fractions
for 6 weeks), and a further 4 weeks of oral olaparib.
Hematological toxicities such as neutropenia grade 4
(lasting for ≥5 days), febrile neutropenia of grade ≥3
(absolute neutrophil count <1.0 × 109/L with ≥38.5°C
fever), and thrombocytopenia of grade 4 (lasts for ≥5 days)
linked with heavy bleeding or requiring platelet transfusion
reported during the treatment period of olaparib in both
MGMT methylated and methylated patients (Fulton et al.,
2018). A newer generation of PARP inhibitor BGB-290
(pamiparib) is now also being studied in clinical trials. A
phase 1b/2 assessment was conducted in patients having first-
line or recurrent/refractory GBM to evaluate the tolerability
and safety as well as the effectiveness of BGB-290 with RT +
TMZ (in conjugation). In a dose-escalation/phase 1b study,
pamiparib was conjugated with RT (arm A) and RT plus TMZ
(arm B) in recently detected unmethylated GBM patients
while arm C of the test has pamiparib in conjugation with
TMZ for methylated or unmethylated recurrent/refractory
GBM patients. The dose expansion or phase 2 study
enrolled up to four cohorts: recently detected unmethylated
GBM patients in arm A as well as arm B, and cohorts of
patients bearing recurrent/refractory GBM divided via
MGMT status (unmethylated/methylated) within arm C.
Patients of arms A or B have been treated till their RT is
completed, while patients in arm C could undergo treatment if
there are no safety concerns or tumor growth. BGB-290 at
60 mg BID in combination with RT/TMZ was well tolerated in
recently diagnosed or recurrent/refractory GBM patients.
However, one dose-limiting adverse event (grade 3 type
febrile neutropenia) was observed in patients of arm B.
Although, treatment-associated adverse effects (≥10%) were

arm A experiences nausea (around 23 percent/2 percent); B
reported a decrease in WBC count (approximately 11 percent/
11 percent); C (none) (Piotrowski et al., 2019).

4 STRATEGIES

4.1 Formulating Targeted Drug Therapies
(Nanoparticles)
The development of nanoscale drug delivery vehicles including
nanoparticles, liposomes, dendrimers, nanomicelles, polymeric
micelles, liposomes, and dendrimers has completely transformed
new drug delivery approaches. These nanotherapeutic techniques
are widely implemented in clinics for the betterment of the
efficacy of active small-molecule inhibitors due to their
remarkable cancer-targeting efficacy and sustained release.
PARP inhibitor drugs are small artificial molecules that have
proven to be one of the most effective new approaches to treating
carcinoma cells with alterations in repair genes of DNA. PARP
inhibitor efficacy has been greatly enhanced due to the
advancement of nanotherapeutic-based delivery of drugs.
Nanoparticles could especially accumulate inside the tumor
and cancer cell’s leaky vasculature, releasing the cytotoxic
compound inside the microenvironment of the tumor cell. But
on the other hand, nanoparticles will not be able to diffuse
through the non-cancerous body tissues as well as organs, so
their toxic response is minimal to non-existent. Targeting PARP
inhibitors to treat cancer frequently results in toxicity; thus, a
delivery carrier is required to encapsulate them (Sargazi et al.,
2021). Several nanovehicles have now been used to transmit
PARP inhibitor compounds in various cancerous cells
(Mensah et al., 2019; Baldwin et al., 2018b; Di Zhang et al.,
2019; Patel et al., 2017; Baldwin et al., 2018a). In a study, a
nanoformulation of olaparib in conjugation with platinum was
developed, and its activity was illustrated in the cell line of ovarian
cancer. The ADME as well as bioavailability profiles were
improved by the nanoformulation. They improved the
therapeutic response by inhibiting cell proliferation (Baldwin
et al., 2018b). In a different study, lipid-based
nanoformulation was developed to deliver olaparib. The
lipospheres are created through melt dispersion along with
nanosuspension via wet processing or evaporation of the
solvent. The ADME profiles or hematological adverse response
of olaparib nanosuspension and lipospheres were compared. The
nanoparticles had a high bioavailability and no toxicity in the
tissues (Pathade et al., 2019). In another study, polymeric vehicles
were used to develop drug carriers. Drug nanocrystals, pectin, and
bioadhesive hydrogel were encapsulated with polylactic acid-
polyethylene glycol and sprayed in the brain’s parenchyma to
treat GBM. The nanoparticles gelled at the calcium concentration
inside the brain. Both olaparib as well as etoposide were packed in
the polymeric carrier synergistically, and for spray-drying
purposes, pluronic F127 was used. Over the course of 120 h,
the drug was released. The nanoparticles had aggregated in the
brain according to fluorescent imaging results. A
pharmacological platform for malignant brain cancers was
introduced by the sprayable hydrogel (McCrorie et al., 2020).
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These simplistic but novel strategic approaches can boost the
activity of PARP inhibitors.

4.2 Combating Poly (ADP-Ribose)
Polymerase Inhibitors Resistance
One of the promising strategies to deal with the resistance of
PARP inhibitors in tumor cell is combination therapy.

4.2.1 Poly (ADP-Ribose) Polymerase Inhibitors With
Oncolytic Herpes Simplex Viruses
Oncolytic herpes simplex viruses (oHSVs) are compounds
synthesized through genetic modification to specifically destroy
cancer cells because of their unique property of reproducing as
well as propagating inside the malignant cells except for the
normal ones. The FDA has approved oHSVs for the treatment of
recurrent melanoma. They actively participate in DNA damage
repair (DDR) manipulation (Kohlhapp and Kaufman, 2016).
MG18L, a recently discovered activity of oHSV, has been
shown to deteriorate RAD51 as well as sensitize GBM stem
cells toward PARP inhibitors, by killing cells in an artificial
lethal like manner both in vitro as well as in vivo. A combined
effect of two, i.e., olaparib and MG181, significantly improves the
condition in PARP inhibitor sensitive cells along with resistant
GBM stem cells derived from tumor cells. Fused treatment
(olaparib + MG181) not just combats PARP inhibitor
resistance but it also broadens the application to malignancies
along with HR-proficient. Especially, when compared to
traditional treatments, oHSVs only destroy tumor cells by not
affecting normal cells, and this implies that they could have
minimal side effects (Ning et al., 2017).

4.2.2 Poly (ADP-Ribose) Polymerase
Inhibitors-Ionizing Radiation Combination
BRCA1 requires localization of the nucleus in order to participate in
homologous recombination-mediated repair of DNA (Wang et al.,
2010). Ionizing radiation can cause BRCA1 to be exported to the
cytoplasm from the nucleus, increasing the sensitivity of PARP
inhibitors in the wild-type BRCA1 and homologous
recombination proficient tumor cells (Jiang et al., 2011; Yang
et al., 2012). The combination therapy can be used only in
patients with p53 wild-type because its synthetic lethality is p53-
dependent (Sizemore et al., 2018). Furthermore, it was reported that
tumors mutated due to the BRCA1 gene developed resistance as a
result of BRCA1-independent homologous recombination
restoration which can be sensitized to radiotherapy (Barazas et al.,
2019). Based on preclinical findings, multiple clinical experiments
were performed in order to optimize the potency of PARP inhibitors-
ionizing radiation combination. A phase-1 concentration escalation
study (open-labelled) in brain metastasis individuals to evaluate the
combination of veliparib with whole-brain radiation therapy and
found better results (Mehta et al., 2015). Furthermore, two phase-I
trials concluded that the PARP inhibitors-ionizing radiation
combination was well-tolerated and produced decent results (Reiss
et al., 2015; Czito et al., 2017). More studies are currently underway
on the basis of encouraging preliminary safety and efficacy outcomes.

4.2.3 Poly (ADP-Ribose) Polymerase Inhibitors-Cyclin
Dependent Kinase Inhibitors Combination
The end resection of DNA is dependent on the activity of cyclin-
dependent kinases. Numerous studies have found that CDKs play
prime roles in PARP inhibitor resistance (Tomimatsu et al., 2014;
Ali et al., 2014; Joshi et al., 2014; Johnson et al., 2016; Ning et al.,
2019; Militello et al., 2019). Dinaciclib, a CDK inhibitor, re-
sensitized triple-negative breast cancer cells that had developed
niraparib resistance. Furthermore, the combination of dinaciclib
and niraparib was extremely effective in pancreatic, lung, colon,
prostate, and ovarian cancer (Carey et al., 2018). Cyclin-
dependent kinase-12 has recently gained more interest in
PARP inhibitor resistance owing to its inactivating somatic
alterations that have been found in various cancers. Several
studies have shown that CDK12 mutation or deficiency causes
cancer cells to be more sensitive to PARP inhibitors (Ali et al.,
2014). In addition to this, cyclin-dependent kinase-12 inhibitors
have reversed de novo and developed PARP inhibitor resistance
in breast cancer cells mutated due to the BRCA1 gene (Johnson
et al., 2016).

4.2.4 Poly (ADP-Ribose) Polymerase
Inhibitors-Immunotherapy Combination
Jiao et al. have concluded that PD-L1 expression was upregulated
by PARP inhibitor in cell lines of breast cancer by inactivated
GSK3, resulting in impaired anticancer immunity. In addition,
the anti-PD-L1 therapy and PARP inhibitor combination show
higher therapeutic effectiveness (Jiao et al., 2017). Independent of
BRCA1/2 mutation, PARP inhibitor-mediated immune response
modulation accords to the therapeutic value. According to recent
findings, PARP inhibitors promote the buildup of cytosolic
fragments of DNA as a result of unsolved DNA lesions,
further activate the DNA-sensing cGAS-STING pathway
which results in stimulating type I interferon production to
further stimulate anti-tumor immunity which is independent
of BRCA status (Shen et al., 2019).

4.2.5 Poly (ADP-Ribose) Polymerase
Inhibitors-Epigenetic Drugs Combination
As stated previously, epigenetic modifications were linked to
PARP inhibitor sensitivity (Kondrashova et al., 2018; Guo
et al., 2018; Fukumoto et al., 2019). The two notable
mechanisms of post-translational gene expression regulation
are histone acetylation and deacetylation (Audia and
Campbell, 2016). Studies concluded that treatment of cancer
cells with histone deacetylation (HDAC) inhibitor and PARP
inhibitor had a synergistic effect because of the induction of
HDAC inhibitor on homologous recombination deficiencies,
which further sensitized the cancer cells to PARP inhibitor
(Jasek et al., 2014; Baldan et al., 2015; Ha et al., 2014; Min
et al., 2015). Numerous mechanisms have been discovered.
Initially, it was found that HDAC inhibitor reduced the DNA
repair gene expression of BRCA1, RAD21, CHK1, and RAD51 via
the transcription factor E2F1 (Kachhap et al., 2010). Additionally,
HDAC inhibitors inhibited HSP90 deacetylation, leading to the
degradation of its substrate RAD52, CHK1, BRCA1, and ATR
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(Kim et al., 2017). Eventually, recent research has elucidated that
acetylation inhibited DNA damage-induced chromatin
PARylation and that HDAC inhibitor therapy significantly
enhances PARP1 trapping at DSB sites in chromatin (Robert
et al., 2016; Abbotts et al., 2019). Besides that, the DNA
methyltransferase (DNMT) inhibitors in low doses stimulated
BRCAnes by decreased regulation of key homologous
recombination gene expression. The DNMTi and PARP
inhibitor combination increased cytotoxicity by enhancing the
PARP “trapping” upon double-stranded break sites independent
of BRCA mutation (Pulliam et al., 2018; Muvarak et al., 2016).
However, the data to evaluate the clinical effectiveness remain
unavailable and need further research.

5 CONCLUSION

Since TMZ is the first-line drug that is effective in the treatment of
GBM, resistance to it is the most serious problem in the context.
PARP inhibitors have recently been used to overcome TMZ
resistance. However, there are a number of factors that make
PARP inhibitors’ clinical development challenging. The limited

BBB penetration, resistance to PARP inhibitors, and
hematological toxicities that occur when PARP inhibitors are
used in combination with TMZ/IR are three of the most
significant challenges in PARP inhibitors’ clinical development.
As a result, this review concludes that challenges can be overcome
if good strategies are implemented. For example, if targeted
delivery is used, the drug can penetrate the BBB and act. The
prevention of off-target toxicity is the second advantage of
targeted delivery. Third, we can overcome PARPI resistance by
using combination therapies. The use of targeted delivery and
combination therapies is one step toward achieving the goal of
successful clinical development of PARP inhibitors in GBM.
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