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Modeling homeostasis mechanisms 
that set the target cell size
Cesar A. Vargas‑Garcia1,2*, Mikael Björklund3,4 & Abhyudai Singh5,6,7

How organisms maintain cell size homeostasis is a long-standing problem that remains unresolved, 
especially in multicellular organisms. Recent experiments in diverse animal cell types demonstrate 
that within a cell population, cellular proliferation is low for small and large cells, but high at 
intermediate sizes. Here we use mathematical models to explore size-control strategies that drive 
such a non-monotonic profile resulting in the proliferation capacity being maximized at a target cell 
size. Our analysis reveals that most models of size control yield proliferation capacities that vary 
monotonically with cell size, and non-monotonicity requires two key mechanisms: (1) the growth 
rate decreases with increasing size for excessively large cells; and (2) cell division occurs as per the 
Adder model (division is triggered upon adding a fixed size from birth), or a Sizer-Adder combination. 
Consistent with theory, Jurkat T cell growth rates increase with size for small cells, but decrease with 
size for large cells. In summary, our models show that regulation of both growth and cell-division 
timing is necessary for size control in animal cells, and this joint mechanism leads to a target cell size 
where cellular proliferation capacity is maximized.

Cell size control is a fundamental aspect of biology observed at different domains of life, but in most cases 
remains poorly understood3–9. Two popular models for cell size control have been extensively studied and 
debated10. In the “sizer” or the size-checkpoint model, cell-cycle transitions occur after attainment of a minimum 
cell mass or size, whereas in the “adder” model cells add a fixed amount of size in each division cycle independent 
of the daughter size. Strong evidence for adder has been reported in a diverse set of prokaryotes11–21 and budding 
yeast22. In cultured mammalian cell lines both adder, sizer and intermediate models can be observed23,24, while 
in the mouse epidermis in vivo, a sizer behavior is apparent25.

Recent experiments in animal cells revealed an intriguing observation about cellular proliferation that ties 
deeply into size control, suggesting an evolutionary reason why cells aim to maintain a certain size. In these 
experiments1, cells within a population were first sorted into several subpopulations based on cell size, and then 
the net proliferation (relative fold-change in cell count) was quantified for each cultured subpopulation after 
72 h. Throughout the paper we refer to this relative increase in cell counts as the proliferation capacity. Interest-
ingly, data across several cell types shows a non-monotonic bell-shaped profile, where the proliferation capacity 
is maximized at a target cell size (Fig. 1). Importantly, apoptosis rates were similar for large and average-sized 
cells, and hence the decrease in proliferation at higher sizes is not simply due to elevated cell death1,26–30. Cel-
lular proliferation measured via dye-dilution experiments showed identical trends for varying cells sizes (see 
supplementary figure S4 in1), providing another experimental confirmation for the existence of a target cell size 
where the proliferative capacity is maximal. A key focus of this work is to uncover cell size homeostasis mecha-
nisms that drive such a non-monotonic proliferation profile. In particular, we explore what forms of size-based 
regulation of the cell growth rate, and the timing of mitosis, are necessary and sufficient for the proliferation 
capacity to be maximized at a target cell size. We proceed by first considering a deterministic formulation of 
the problem, followed by a systematic analysis ruling out incompatible size-control mechanisms, and finally 
identifying mechanisms consistent with experimental data.
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Problem formulation
In the experimental work of Miettinen and Björklund, Developmental Cell, 20161, flow cytometry is used to sort 
an original cell population into several subpopulations with different cell sizes. Each subpopulation bin has a 
couple of thousand cells initially, and the relative fold-change in cell count is measured after 72 h. Given the very 
large number of cells present within each size bin, we take a deterministic approach that predicts that average 
number of divisions incurred by an individual cell within each cell size category.

In its most simplistic form, cell size control can be deterministically modeled as

where Vn is the size of a newborn cell in the nth generation22,31–33, V̄ > 0 represents the discrete-time model’s 
unique fixed point, and parameter a takes values in [0, 2]. Here aVn + (2− a)V̄  is the mother cell size just 
prior to mitosis, and symmetric division of a mother cell into two daughters yields the newborn size in the next 
generation. Specific values of a correspond to well-known strategies for regulating the timing of cell division:

Values of a between zero and one imply an adder-sizer mixture, and such combinatorial control of cell size have 
been proposed in many organisms24,32,34–36. As per (1), given an initial newborn cell size V0 , the newborn sizes 
over generations evolve as

and converge to limn→∞ Vn = V̄  for 0 ≤ a < 2 with convergence being faster for smaller values of a. For exam-
ple, for a sizer ( a = 0 ) the correction in cell size happens in a single generation with Vn = V̄ , n ∈ {1, 2, . . .} . Note 
that for a = 2 there is no convergence to V̄  , i.e., Vn = V0, n ∈ {0, 1, 2, . . .} , and this corresponds to a neutrally-
stable fixed point. Not surprisingly, a = 2 is non-homeostatic in the sense that, the variance in the newborn size 
grows unboundedly over time in the presence of arbitrary small noise37,38.

The growth in cell size within a generation is described by the following ordinary differential equation

(1)Vn+1 =
aVn + (2− a)V̄

2
,

(2)a =







0 Sizer: cell division occurs at a fixed size threshold 2V̄ .
1 Adder: division occurs upon adding a fixed size V̄ from birth.
2 Timer: for an exponentially growing cell, division occurs after a fixed time from birth.

(3)Vn = V̄ +

(a

2

)n
(V0 − V̄), n ∈ {0, 1, 2, . . .},

Figure 1.   Cellular proliferation capacity is maximized at a target cell size. (a) Using forward scatter intensity 
(FSC) as a proxy for cell size1,2, flow cytometry is used to sort an original unsynchronized cell population (grey) 
into several subpopulations with different cell sizes. Each subpopulation is cultured for 72 h (approximately 
3–5 cell generations), and proliferation capacity is quantified by measuring the relative change in cell counts. 
Interested readers are referred to the material and methods of1 for further details. (b) Measured proliferation 
capacity is plotted as a function of the average subpopulation FSC at the time of sorting for three different cell 
types: Jurkat cells (human T lymphocyte cell line), HUVEC (human umbilical vein endothelial cells; a primary 
cell line) and Kc167 (a widely used Drosophila cell line). The original cell size distribution is shown in grey. 
Experimental data presented here was taken from Fig. 3D of Miettinen and Björklund, Developmental Cell, 
20161.
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where v(t) is the size of an individual cell at time t since the start of cell cycle and the function f describes a 
general size-dependent growth rate. We use this model to predict the cell-cycle durations across generations. 
Following the nomenclature used in39, we define the change in cell size per unit time as the growth rate. As per 
this definition, a constant f would correspond to a linear growth in cell size, and f (v) ∝ v would correspond 
to an exponential growth in cell size. Given v(0) = Vn at the start of the cell cycle, the time taken to reach the 
mother cell size needed for division is

We further generalize (5) to

constraining newborns to stay in the cell cycle for a minimal duration Tmin before mitosis can take place. In 
essence, our model captures two key features of size control: size-based regulation of cell growth (via function 
f) and size-based regulation of division timing (via parameter a). We next discuss how these features determine 
cellular proliferation as observed in Fig. 1.

Starting from a single newborn cell of size V0 , the number of cell cycles that occur in a fixed time duration 
Tf  is the maximum values of N ∈ {0, 1, 2, . . .} such that

i.e., the maximum number of generations such that the sum of cell-cycle durations across generations is less than 
Tf  . Given a, f, Tmin , Tf  , jointly solving (3), (6) and (7) quantifies the proliferation capacity 2N for a given initial 
cell size V0 . For example, if T(V0) < Tf  but T(V0)+ T(V1) > Tf  , then the cell will undergo only one round of 
doubling ( N = 1 ) to have two cells. Similarly, if T(V0) > Tf  then N = 0 and there will be no cell doublings. In 
the context of the data presented in Fig. 1, we are particularly interested in model features that lead to N vary-
ing non-monotonically with V0 . Our analysis shows that most models for size homeostasis cannot capture this 
non-monotonic behavior, and we identify selected scenarios that are consistent with it. To get analytical insights 
into the shape of N vs. V0 we make two simplifying assumptions: Tmin = 0 and N is approximately obtained by 
solving the equation

Note that N obtained from the exact inequality (7) is essentially the floor of N (or the greatest integer less than 
or equal to N) obtained from the approximate equality (8). In other words, if we obtain N = 4.3 from the equal-
ity (8), then the actual number of divisions based on the inequality (7) will be N = 4 . As the floor function is a 
monotonic function, the shape of N vs. V0 is preserved between (7) and (8). Insights obtained from analytical 
results are illustrated by numerically computing N via (7) for a given Tmin > 0.

Results
Sizer‑based cell division is incompatible with a non‑monotonic proliferation profile.  The sizer, 
where mitosis is triggered upon reaching a prescribed size threshold 2V̄  , is perhaps the simplest (and the oldest 
proposed) mechanism for size homeostasis40–42. In this case, the duration of the first cell cycle

decreases with increasing initial size V0 . Recall that for a sizer, the newborn sizes and cell-cycle durations for all 
subsequent generations ( n ≥ 1 ) are constant and given by

Solving 
∑N

n=0 T(Vn) = Tf  yields the following number of cell cycles incurred in a fixed time duration Tf

As T(V0) is a decreasing function of V0 , the extent of proliferation 2N increases with increasing V0 . Basically, a 
large cell quickly completes the first cell cycle, and has more time to complete subsequent rounds of replication. 

(4)
dv

dt
= f (v), v(0) = Vn

(5)T(Vn) =

∫ aVn+(2−a)V̄

Vn

dv

f (v)
.

(6)T(Vn) = max

(

Tmin,

∫ aVn+(2−a)V̄

Vn

dv

f (v)

)

,

(7)
N
∑

n=0

T(Vn) ≤ Tf ,

(8)
N
∑

n=0

T(Vn) = Tf .

(9)T(V0) = max

(

Tmin,

∫ 2V̄

V0

dv

f (v)

)

,

(10)T(Vn) = T(V̄) = max

(

Tmin,

∫ 2V̄

V̄

dv

f (v)

)

, n ∈ {1, 2, . . .}.

(11)N =
Tf − T(V0)

T(V̄)
+ 1.
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Thus, sizer-based division ( a = 0 ) is inconsistent with the non-monotonic cellular proliferation seen in Fig. 1, 
irrespective of how cellular growth is regulated via function f. Given the constraints on the parameter a, we next 
explore if similar constraints arise on the growth rate.

Exponential or linear growth in cell size is incompatible with a non‑monotonic proliferation 
profile.  Let’s consider exponential growth in cell size during the cell cycle

where α is the exponential growth coefficient. It follows from (3) and (5) that in this case

and the sum of cell-cycle durations is a decreasing function of V0 , but an increasing function of N. As a con-
sequence, a larger sized initial cell will have to undergo many more cell cycles such that the sum 

∑N
n=0 T(Vn) 

remains fixed and equal to Tf  . Thus, cellular proliferation increases with initial cell size irrespective of how divi-
sion timing is regulated (i.e., the value of a). This point is exemplified in Fig. 2a for an adder ( a = 1 ) by plotting 
the proliferation capacity as a function of V0 by numerically solving (7). An important implication of this result 
is that while exponential growth coupled with some form of division control may explain size homeostasis in 
prokaryotes and microbial eukaryotes, it does not yield the bell-shaped proliferation profiles seen in animal 
cells (Fig. 1).

Next we consider linear growth in cell size

that yields

Interestingly, depending on the value of a one can get different monotonic profiles for the proliferation capacity. 
For a sizer ( a = 0 ), N always increases with increasing V0 . For an adder ( a = 1 ), the sum becomes invariant of 
V0 leading to a constant N = αTf /V̄  . Finally, when a > 1 , the sum 

∑N
n=0 T(Vn) is an increasing function of both 

V0 and N, and in order to keep it constant, N must decrease with increasing V0 . In summary, our analysis shows 
that both linear and exponential models of cell size dynamics cannot explain the non-monotonic proliferation 
capacity.

Non‑monotonic cell growth rate is necessary and sufficient to drive a non‑monotonic prolif‑
eration capacity for an adder.  We next focus our attention on the physiologically relevant case of the 
adder, where for a = 1

(12)
dv

dt
= αv, v(0) = Vn

(13)
N
∑

n=0

T(Vn) =
1

α
log

(

aN +

(

2N − aN
)

V̄

V0

)

(14)
dv

dt
= α, v(0) = Vn

(15)
N
∑

n=0

T(Vn) =
1

α

N
∑

n=0

(a− 1)Vn + (2− a)V̄ =
NV̄

α
+

(a− 1)(V0 − V̄)

α

1−
(

a
2

)N

1− a
2

.

Figure 2.   Monotonic growth rates coupled with Adder-based division control yield monotonic proliferation 
capacity profiles. Exponential growth (a), or an increasing growth rate followed by saturation (b) together 
with the Adder model always lead to a proliferation capacity monotonically increasing with size. In contrast, 
a decreasing growth rate together with an Adder yields a decreasing proliferation capacity (c). Newborn 
cell size (x axis) is normalized by its mean. Proliferation capacity, growth rate, and size at division (y axes) 
are normalized by their corresponding values for the mean newborn size. The proliferation capacity for the 
exponential growth case is computed by solving the equations (21)–(23) from the “Methods” section. In the 
saturating growth rate case, proliferation capacity is calculated using (24), (22), and (23) from the “Methods” 
section.
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After a change in variables, the sum of the cell-cycle durations can be written as

As one can see, if f is a monotonically increasing function, then 
∑N

n=0 T(Vn) would be a decreasing function of 
V0 (for fixed N), and an increasing function of N (for fixed V0 ). Applying the same logic as before, N obtained by 
solving 

∑N
n=0 T(Vn) = Tf  would an increasing function of V0 . Similarly, a monotonically decreasing function f 

will lead to N decreasing with increasing V0 . Thus, for an adder, monotonic growth rates yield monotonic pro-
liferation capacity profiles (Fig. 2). Moreover, a non-monotonic proliferation capacity profile arises if the growth 
rate is non-monotonic. We illustrate this point with the following cell size dynamics

with two additional constants k > 1 and Vth > 0 . Here growth is exponential for small newborns ( f ∝ v ) and 
proliferation capacity increases with initial cell size. However, for large newborns, growth rate is decreasing 
( f ∝ v1−k ), and proliferation capacity decreases with size (Fig. 3a). Interestingly, the non-monotonicity is pre-
served for values of a smaller than one, but with an additional feature—proliferation capacity can again increase 
for very large newborns (Fig. 3b). While such an increase is not seen in the data, it is possible that sizes needed 
for this effect fall outside the physiological range.

Finally, we point out that a non-monotonic proliferation capacity profile can arise for a monotonic growth 
rate, but this requires a > 1 , i.e., the size added from cell birth to division increases with newborn size. For 
example, consider a saturating growth rate

(16)Vn+1 =
Vn + V̄

2
=⇒ Vn = V̄ +

V0 − V̄

2n
, n ∈ {0, 1, 2, . . .}.

(17)

N
∑

n=0

T(Vn) =

N
∑

n=0

∫ Vn+V̄

Vn

dv

f (v)

=

N
∑

n=0

∫ V̄

0

dz

f (z + Vn)

=

∫ V̄

0

dz

f (z + V0)
+

∫ V̄

0

dz

f
(

z + V0+V̄
2

) + . . .+

∫ V̄

0

dz

f
(

z + V̄ + V0−V̄
2N

,
) .

(18)
dv

dt
= f (v) =

αv

1+ (v/Vth)
k
,

(19)
dv

dt
= f (v) =

αv

1+ v/Vth
,

Figure 3.   A non-monotonic growth rate coupled with Adder-based division control maximizes proliferation 
capacity at a target cell size. (a) A non-monotonic growth rate together with an Adder ( a = 1 ) yields a target cell 
size consistent with data in Fig. 1. (b) A non-monotonic growth rate together with an Adder-Sizer combination 
( a < 1 ) results in a complex profile: a bell-shaped proliferation capacity for most physiological cell sizes, but it 
again increases at higher sizes. (c) A monotonically increasing growth rate can drive a bell-shaped proliferation 
capacity if a > 1 , i.e., size added in a cell-cycle duration increases with daughter cell size. Newborn cell size (x 
axis) is normalized by its mean. Proliferation capacity, growth rate, and size at division (y axes) are normalized 
by their corresponding values for the mean newborn size. The proliferation capacity for the saturating growth 
case is computed by solving the equations (24), (22), and (23) from the “Methods” section. For the non-
monotonic growth rate case, proliferation capacity is calculated using (25), (22), and (23) from the “Methods” 
section.
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that corresponds to k = 1 in (18). As before, small newborns grow exponentially ( f (v) = αv ) and proliferation 
capacity increases with size. Large newborns grow linearly ( f (v) = αVth ) and based on our earlier discussion on 
linear growth in cell size, proliferation capacity decreases with size when a > 1 (Fig. 3c). Combining these two 
results, a > 1 with a saturating growth rate results in a non-monotonic proliferation capacity profile.

Discussion
Our results suggest that size-based regulation of both growth and timing of cell division are necessary determi-
nants of a target cell size. This finding is consistent with experimental data from23, who showed that modulation of 
both growth rate and cell cycle duration is needed for size control in mammalian cells. However, joint regulation 
by itself is not sufficient to maximize cellular proliferation capacity, as our analysis of simple size control models 
reveals that monotonically increasing growth rate, coupled with any sizer-adder combination leads to prolifera-
tion capacity increasing with the initial cell size (Fig. 2). Importantly, our analysis rules out the following classical 
and popular explanations for cell size control as these are incompatible with a bell-shaped proliferation profile:

•	 Sizer-based regulation of cell-division timing, irrespective of the cellular growth rate f(v).
•	 Timer-based regulation of cell-division timing, irrespective of the cellular growth rate f(v). For a timer, the 

cell-cycle duration is invariant of the newborn size, and hence, the proliferation capacity will be independent 
of the initial cell size.

•	 Adder-based regulation of cell division timing with a cellular growth rate f(v) that varies monotonically with 
cell size.

•	 Exponential ( f ∝ v ) or linear (f is constant) growth of cell size, irrespective of how division timing is regu-
lated.

We uncover two scenarios that lead to cellular proliferation capacity being maximized at a target cell size. The 
first scenario involves a saturating growth rate of the form (19), where for small newborns the growth rate is 
proportional to size (i.e., exponential growth in cell size) and for large newborns the growth rate is a constant 
(i.e., linear growth in cell size). While such a growth rate together with a Timer (size-independent cell-cycle 
length) is sufficient for size homeostasis37,38, existence of a target cell size requires division timing to be controlled 
such that a > 1 i.e., size added in each division cycle increases with newborn size (Fig. 3c). Note that increasing 
a beyond 1 reduces the stability of the fixed point Vn = V̄  , that is ultimately destroyed at a = 2 . The reduced 
stability will manifest in larger newborn size fluctuations in the presence of noise31.

The second scenario involves a non-monotonic f(v) as in (18), where growth rate increases with cell size for 
small cells, but decreases with size for sufficiently large cell. Our analysis leads to a powerful result for adder-based 
control of mitosis timing—a non-monotonic growth rate is necessary and sufficient to drive a non-monotonic 
proliferation capacity profile (Fig. 3a), and these profiles persist for a sizer-adder mixture (Fig. 3b). Such decrease 
in growth rates for large cells has been reported in animal cells28,29,39,43, and is possibly attributed to a decreased 
surface area-to-volume ratio leading to insufficient nutrient exchange for supporting growth44,45. The growth rate 
of Jurkat T cells, as measured via oxygen consumption and mitochondrial activity, increase with size for small 
cells, but decrease with size for large cells1. Another recent study also showed that growing budding yeast and 
primary mammalian cells beyond a certain size leads to impaired cell-cycle progression, and the authors attribute 
this to cytoplasmic dilution or a reduced DNA to cytoplasm ratio, although in these cases the cells were grown 
substantially beyond their normal range27. Overall, the findings reported here are consistent with many experi-
mental observations, including the recent single-cell tracking of several mammalian cell types, where the authors 
showed that size added in a cell-cycle duration is independent of the newborn size as per the adder model23,46.

In summary, our results uncover novel insights into size control principles, and provide a mechanistic expla-
nation for the existence of a target size in proliferating animal cells. It is important to point that these findings 
are from cultured proliferating animal cells (spanning drosophila and human cells) as traditionally studied in 
the context of cell size control and there is no evidence that yeast and bacteria would behave similarly. These 
results will motivate other studies to validate and extend predictions beyond mammalian cells. For example, the 
unicellular alga Chlamydomonas reinhardtii has a very long G1 period, which allows cells to grow in size up to 
thirty fold47. In addition, single-cell expression profiling of large/small cells within the same population combined 
with mathematical modeling may also shed light on the molecular origins of non-monotonic growth rates48–53.

Methods
To build Fig. 2a we assume the cell grows as per

where the growth rate was set to α ≈ 1/48 h−1 . Then we solve

where the minimum cell cycle time was set to Tmin = 20 h . Parameters a and V̄  required to compute Vn were set 
to 1 and 30 μm, respectively. We stop solving (14) until we meet the criteria for N

(20)
dv

dt
= αv,

(21)T(Vn) = max

(

Tmin,

∫ 2Vn+1

Vn

dv

αv

)

,
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where the length of the experiment is Tf = 72 h . We compute the proliferation capacity using

where Tf−
∑N

n=0 T(Vn)

T(Vn+1)
 is a linear interpolator that connects N and N + 1 divisions.

For the saturating growth rate case (Fig. 2b), we used

where Vth = 25 μm. We performed the same steps as per the exponential growing case (2(a)) with same param-
eters. In Fig. 3c we use the same saturating growth rate but set a = 1.5.

Figure 3a,b used the non-monotonic growth rate function and solve the equation

where k = 3 and Vth = 20 μm. We set a = 1 in Fig. 3a and a = 0.6 in Fig. 3b.
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