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Simple Summary: The advent of bioinformatics and high-throughput sequencing have disclosed
the complexity of ORFs in ncRNAs. Thus, there is a dire need to deep into the real role of ncRNA-
encoded proteins/peptides. Considerable progress has been achieved in several fields, ranging from
the mechanism translation of ORFs in ncRNAs to various reliable detection means and experimental
approaches. Several studies have been stressing functions and mechanisms of ncRNA-encoded
peptides/proteins in cancers, which are helpful for us to understand the specific biological regulating
procedure. Innovative research on animal models confirms the potential of clinical applications, such
as being tumor biomarkers, antitumor drugs and cancer vaccines. In this review, we conclude the
latest discoveries of ncRNA-encoded peptides/proteins, we are looking forwards to accelerating the
pace of detection and diagnosis development in cancers.

Abstract: It is generally considered that non-coding RNAs do not encode proteins; however, more
recently, studies have shown that lncRNAs and circRNAs have ORFs which are regions that code for
peptides/protein. On account of the lack of 5′cap structure, translation of circRNAs is driven by IRESs,
m6A modification or through rolling amplification. An increasing body of evidence have revealed
different functions and mechanisms of ncRNA-encoded peptides/proteins in cancers, including
regulation of signal transduction (Wnt/β-catenin signaling, AKT-related signaling, MAPK signaling
and other signaling), cellular metabolism (Glucose metabolism and Lipid metabolism), protein
stability, transcriptional regulation, posttranscriptional regulation (regulation of RNA stability, mRNA
splicing and translation initiation). In addition, we conclude the existing detection technologies and
the potential of clinical applications in cancer therapy.

Keywords: peptides/proteins encoded by ncRNAs; translation mechanism; cancers; clinical applications

1. Introduction

In the past several years, numerous studies have shown that noncoding RNAs (ncR-
NAs) are involved in various biological activities, including chromosome modification
and transcriptional and posttranscriptional regulation [1]. Due to their limited protein
coding potential, it was once firmly recognized that ncRNAs didn’t function by encoding
proteins [2]. To date, the open reading frames (ORFs) of all gene loci have not been entirely
disclosed in the human genome, especially the small ORF (sORF), which contains less than
100 aa and has always been neglected. Hence, a range of RNA molecules are classified as
ncRNAs. However, with the aid of proteomics and translation identification methods, we
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have realized that ncRNAs containing ORFs are translatable, including sORFs, even if they
are small and undetectable [3].

For instance, Jackson et al. found that short and non-ATG-initiated ORFs in nonprotein
coding genes could generate stable proteins in mice [4]. Wang et al. found that some long
noncoding RNAs (lncRNAs) could bind to ribosomes through full-length mRNA analyses.
This evidence suggests that lncRNAs have the capacity to produce proteins [5]. Later,
Lu et al. detected 308 new proteins encoded by lncRNAs, one of which, UBAP1-AST6, was
highly expressed in lung cancer cell lines, playing a critical role in cell proliferation. Chen
et al. first stated that eukaryotic ribosomes could theoretically promote the translation
of circRNAs by internal ribosome entry site (IRES) [6]. Subsequently, Nagarjuna et al.
discovered an association between circRNAs and translating ribosomes and detected a
protein encoded by circRNA generated from muscleblind by mass spectrometry (MS) [7].
These findings indicated that ncRNAs yielded proteins or peptides that could serve as
important regulators instead of transcriptional noise in biological activities [8]. Since we
have a new understanding of ncRNAs, it is necessary for us to unveil the mysterious
roles ncRNA-derived peptides/proteins play in cellular activities. In this review, we
summarize the mechanisms of translation initiation in ncRNA-encoded peptides/proteins
and elucidate the vital potential of peptides/proteins encoded by ncRNAs in cancers
(Figure 1) and the possibility of their application in clinical remedies.
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Figure 1. Translation mechanisms of ncRNA-encoded peptides/proteins. Peptides/proteins encoded
by ncRNAs exhibited their effect through modulating signal transduction, cellular metabolism,
protein stability, transcriptional and post-transcriptional activity in cancers.

2. Translation of ORFs in ncRNA
2.1. Translation of ORFs in lncRNAs

Structurally, ORF is a region containing nucleotide sequence in the context of mRNAs
and other RNAs or transcripts that can be translated from the start codon to the stop codon.
The ribosome starts translation from the start codon and elongate peptides chain along
mRNA sequence. When ribosome encounters the stop codon, the elongation terminates.
LncRNAs are the transcripts with mRNA-like feature: capping and polyadenylation, but
they were not thought to be translatable. ORFs are classified into two big groups: canonical
ORFs and noncanonical ORFs (nORFs). In nORFs, there five different types: intergenic
ORFs, upstream ORFs (uORFs), long noncoding ORFs (lncORFs), short coding sequences
(short CDSs), and short isoform ORFs. Studies have verified nORFs can be translated in



Cancers 2022, 14, 5196 3 of 20

to functional, noncanonical peptides. Moreover, translation of lncORFs is mostly indis-
tinguishable from that of ORFs in mRNA, and a strong preference for lncORF translation
often initiates at the AUG start codons. Moreover, a recent report pointed out that mRNAs
containing short CDSs are one subgroup of annotated lncRNAs [9–11]. For example, Chen
et al. found that short lncRNA CDSs could encode functional micropeptides [12].

2.2. Translation of ORFs in circRNAs

CircRNAs are generated by a special process known as backsplicing that links the 5′

and 3′ ends of exons and/or introns. Though circRNAs lack 5′ cap structure, the translation
can be initiated by IRES element, m6A modification or through rolling amplication [13]. The
translation of both poliovirus and encephalomyocarditis virus RNA is induced by IRESs.
While IRESs have been discovered in an increasing number of eukaryotic mRNAs, they
have been identified as crucial RNA scaffolds recruiting ribosomes with the assistance of
IRES-transacting factors (ITAFs) for translation initiation [14]. For example, circ-E-cad RNA
junction reads were detected in glioblastoma (GBM) samples via ribosome profiling, an
IRES was identified, and its activity was measured. Thus, the product circRNA-encoded E-
cadherin could be efficiently translated from circ-E-cad [15]. Dramatically, Chen et al. found
elements of the special circular IRES structure that could facilitate circular IRES translation
activity: a higher GC content and lower minimum free energy (MFE). Further investigation
showed two pivotal regulators in which the 18S rRNA complementary sequence and
40–60 nt stem-loop structured RNA element (SuRE) on the IRES promoted endogenous
circRNA translation [16].

Another cap-independent translation mechanism relies on m6A modification. For
instance, Yang et al. found that the insertion of an IRES sequence into circRNAs could
initiate translation; however, the protein was also encoded in the control group without
an IRES but contained m6A sites. The results suggested that m6A modification could
drive protein translation, which was further verified in several studies [17,18]. Since m6A
modification is enriched in circRNAs, it could be regarded as an “IRES”. Further experi-
ments concluded that the m6A reader YTH domain family protein 3 (YTHD3) could recruit
the translation initiation factor eIF4G2, and the translation procedure was promoted by
the adenosine methyltransferase METTL3/14. Moreover, the m6A-mediated translation
of endogenous circRNAs was predicted to be induced by heat shock [19]. Consistently,
it has been reported that the E7 oncoprotein is generated from HPV-derived circE7 via
m6A-dependent translation in a heat shock manner [17,20]. Traditionally, in linear RNA,
when the ribosome encounters a stop codon, it dissociates from the RNA, and then the
ribosome enters the initiation-elongation-termination process again. In circRNAs contain-
ing an infinite ORF, the ribosome circles the RNA template following an initiation process,
leading to the production of a long repeating peptide. This translation manner is similar to
rolling circle amplification, an isothermal and enzymatic procedure modulated by DNA
polymerases, and it has been revealed in both prokaryotic and eukaryotic systems [21–23].
Interestingly, Liu et al. reported that circEGFR could produce a functional and endogenous
‘rolling-translated’ product termed rtEGFR; although there was no in-frame stop codon,
translation of circEGFR could be terminated by a specific out-of-frame stop codon [24].
This study provides a new understanding of the rolling translation of circRNA.

3. Functions and Mechanisms of ncRNA-Encoded Peptides/Proteins in Cancers

Peptides/proteins encoded by ncRNAs have been confirmed to be related to mul-
tiple bio logical and pathophysiological processes, including muscle regeneration [25],
metabolism [26], embryonic development [27], inflammation and immunity [28]. In addi-
tion, emerging evidence suggests that these peptides/proteins are considerable players in
tumor progression. Here, we will expand upon their roles according to different functions
and mechanisms.
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3.1. Regulation of Signal Transduction
3.1.1. Wnt/β-Catenin Signaling

As a highly conserved pathway, the Wnt/β-catenin pathway is widely involved in
a number of malignant events, such as cell proliferation, cell apoptosis, vasculogenesis
and metastasis [29–32]. In general, β-catenin is located in the cytoplasm and degraded
by the destruction complex, which consists of Axin, adenomatosis polyposis coli (APC),
glycogen synthase kinase 3β (GSK-3β), protein phosphatase 2A (PP2A), and casein kinase
1α (CK1α) in the absence of Wnt ligand. However, when the Wnt ligand combines with
FZD and LRP5/6, β-catenin degradation can be inhibited, and it translocates from the cyto-
plasm to the nucleus, where β-catenin is recruited with TCF/LEF to form a transcriptional
complex regulating target gene expression [33,34]. A recent study revealed circβ-catenin
as an oncogenic circRNA related to the Wnt/β-catenin pathway in hepatocellular car-
cinoma(HCC). circβ-catenin knockdown suppressed the Wnt/β-catenin pathway. The
circβ-catenin translation product was termed β-catenin-370aa, which competitively binded
with GSK-3β; in this case, endogenous β-catenin was not degraded, and the Wnt/β-catenin
pathway was activated. Therefore, circβ-catenin encoding β-catenin-370aa promoted the
proliferation and metastasis of HCC via the Wnt/β-catenin pathway [35]. Similarly, based
on circRNA sequencing data, circAXIN1 was found to be highly expressed in gastric cancer
(GC), and it encoded the protein AXIN1-295aa. As a competitor, AXIN1-295aa interacted
with APC, leading to the inability to form the destruction complex. Subsequently, β-catenin
accumulated in the nucleus, activating downstream genes and inducing tumorigenesis and
progression [36].(Figure 2a).

In conclusion, these findings suggested that peptides/proteins encoded by ncRNAs
combine with the destruction complex to activate Wnt/β-catenin signaling in cancer cells.

3.1.2. AKT-Related Signaling

Numerous studies have revealed that AKT plays a key role in driving different sig-
naling pathways that contribute to cancer growth. Downregulation of certain tumor
suppressors or upregulation of oncogenes can lead to initiation of the AKT-related sig-
naling pathway [37]. For instance, LINC00665 encoded a novel micropeptide, CIP2A-BP,
which was downregulated in triple-negative breast cancer (TNBC) cells. Simultaneously,
PP2A functioned as a tumor inhibitor, while CIP2A served as an oncogene. CIP2A-BP
competed with PP2A subunit B56γ to bind to CIP2A, releasing PP2A and prohibiting phos-
phorylation of AKT. Therefore, the expression of MMP2, MMP9, and Snail was decreased,
and TNBC metastasis was prevented [38]. In addition, HER2-103 encoded by circ-HER2
could induce EGFR/HER3 homo/heterodimer formation and downregulate PI3K/AKT
activation to maintain malignant phenotypes in TNBC. In contrast, HER2-103 silencing
reduced p-EGFR and p-AKT levels, indicating the essential existence of HER2-103 in the
signaling network [39]. Moreover, circ-AKT3 encoded a novel protein named AKT3-174aa,
which was expressed at low levels in GBM. AKT thr308 was easily exposed to p-PDK1 due
to the low expression of AKT3-174aa, promoting AKT activation cascades to decrease tumor
proliferation and reverse radiation resistance [40] (Figure 2b). In summary, these findings
indicated that peptides/proteins encoded by ncRNAs influenced malignant behaviors
through AKT-related signal transduction.
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Figure 2. NcRNA-encoded peptides/proteins regulated signal transduction. (a) β-Catenin-370aa
and AXIN1-295aa competitively bound to component(GSK-3β, APC) in destruction complex to
activate Wnt/β-catenin pathway, promoting proliferation and metastasis in HCC and GC. (b) CIP2A-
BP competitively bound to CIP2A, prohibiting p-AKT and TNBC metastasis; HER2-103 induced
EGFR/HER3 homo/heterodimer formation and downregulated PI3K/AKT activation, promoting
proliferation and invasion in TNBC; AKT3-174aa combine with PDK1 to stimulate p-AKT activation,
prohibiting proliferation in GBM. (c) MAPK1-109aa and SMIM30 interacted with MEK1, SRC/YES1
to regulate MAPK signaling, influencing proliferation and metastasis in GC and HCC; ASK1-272aa
competitively boundto AKT1 to activate ASK1/JNK/p38 signaling, promoting apoptosis in LAUD.

3.1.3. MAPK Signaling

Mitogen-activated protein kinase (MAPK) signaling is a crucial inducer in human
cancers. At least three MAPK signaling module functions have been characterized in
mammalian cells: ERK, JNK/SAPK and p38 MAPK [41]. The MAPK/ERK pathway, also
known as the Ras-Raf-MEK-ERK pathway, is a conservative pathway in tumor progression.
When extracellular stimulating factors bind to transmembrane receptors, the intracellu-
lar response can be triggered. Under these circumstances, Ras activation activates the
protein kinase activity of RAF kinase composed of A-Raf, B-Raf, and C-Raf, and then
the phosphorylation cascade of RAF-MEK1/2- ERK1/2-MAPK1/2 occurs, leading to the
hyperactivation of the MAPK signaling pathway [42,43]. Several ncRNA-peptides/proteins
have been found to function in the MAPK signaling pathway. circMAPK1 suppressed
tumorigenesis and metastasis in GC, and its translational product was MAPK1-109aa.
Although MAPK1-109aa shared most of its sequence with MAPK1, MAPK1-109aa exerted
an entirely opposite function compared to MAPK1. MAPK1-109aa competitively interacted
with MEK1 to inhibit MAPK1 phosphorylation, negatively regulating the proliferative and
invasive behavior of gastric cancer cells [44]. Recently, SMIM30 was shown to be encoded
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by LINC00998 and promoted proliferation and migration in HCC. Remarkably, SMIM30
was proven to be a membrane peptide that could anchor and activate SRC/YES1, which
were essential mediators of signaling pathways in cancers. Then, the SRC/YES1-SMIM30
complex could activate MAPK signaling and promote HCC development [45].

Additionally, apoptosis signal-regulating kinase 1 (ASK1) is a member of the MAP3K
family, which is the main component in MAPK signaling. Various injury stressors and
inflammatory factors can activate ASK1, which results in the activation of the JNK and p38
MAPK pathways, thus promoting cell death [46]. Specifically, ASK1 has been illustrated as
a modulator in chemotherapy-mediated cell apoptosis [47]. Wang et al. detected a circASK1-
encoded isoform named ASK1-272aa in lung adenocarcinoma (LUAD) cells. ASK1-272aa
regulated the inhibitory effect of its host gene on gefitinib resistance. Mechanistically,
ASK1-272aa suppressed ASK1 phosphorylation at the distinct site S83 by competitively
recruiting AKT1, thereby restoring the proapoptotic effect of ASK1/JNK/p38 signaling
and augmenting gefitinib sensitivity in LAUD cells [48] (Figure 2c). Collectively, these
studies documented that peptides/proteins encoded by ncRNAs were essential players in
MAPK signaling.

3.1.4. Other Signaling

A previous study revealed that 9% of HBV-related HCC cases are linked to the ab-
normal activation of JAK/STAT. The JAK/STAT pathway can be activated by various
ligands, such as cytokines and growth factors [49]. The HBVPTPAP peptide encoded by
the lncRNA HBVPTPAP could interact with the transmembrane receptor PILRA, which
negatively regulated JAK/STAT signaling, resulting in the promotion of cell apoptosis in
HCC [50]. Hedgehog (Hh) signaling is involved in various neurological disorders, and
the most studied Hh ligand is sonic hedgehog (Shh) [51,52]. Wu et al. found that the
oncogenic protein SMO-193aa generated from circ-SMO maintained CSC self-renewal
ability and tumorigenicity in GBM. As a central player, SMO-193aa was essential in Hh
signaling transduction. It could increase SMO cholesterol modification and derepress
SMO from the protein receptor Ptch1 upon Shh stimulation, resulting in the activation
of the signaling pathway. Moreover, SMO-193aa was positively modulated by FUS, a
transcriptional target of Gli1 in Hh signaling [53]. YAP1 acts as a transcriptional coac-
tivator in the Hippo signaling pathway, and Hippo-YAP signaling promotes malignant
processes for cell cycle progression, epithelial-mesenchymal transition (EMT), cell motility,
and metastasis [54]. CircPPP1R12A-73aa encoded by circPPP1R12A contributed to pro-
liferation and metastasis in colon cancer (CC). In contrast, in YAP1-silenced CC cells, the
promotive effect of circPPP1R12A-73aa was obviously alleviated [55]. Gu et al. identified
a novel circGprc5a peptide produced by circGprc5a via an autocrine pathway in bladder
cancer. Furthermore, they found that circGprc5a-peptide combined with Gprc5a membrane
protein to launch G-protein-coupled receptor (GPCR) signaling, thus driving bladder CSC
self-renewal and metastasis [56]. On the whole, multiple lines of evidence have shown
that peptides/proteins encoded by ncRNAs affected carcinogenesis via different signaling
pathways, and research on these signal transduction pathways allowed us to detect new
strategies in cancers.

3.2. Regulation of Cellular Metabolism
3.2.1. Glucose Metabolism

Cellular metabolism requires the consumption of particular nutrients, among which
glucose, fatty acids and amino acids are the principal components involved in biosyn-
thetic reactions. Unlike normal cells, tumor cells are “hungry”, and they are consid-
ered to seize nutrients to sustain rapid growth potential via metabolic reprogramming,
which is accompanied by alterations in gene levels, cell differentiation and the cancer
microenvironment [57–60]. In normal cells, pyruvate formed by glycolysis of glucose en-
ters mitochondria, where it is oxidized through the tricarboxylic acid cycle (TAC) and
generates ATP to satisfy the energy needs of the cell. However, in cancer cells, most pyru-
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vate is deoxygenated to lactic acid instead of entering the mitochondria. Lactic acid is
typically produced in the absence of oxygen, but even when oxygen is abundant, cancer
cells preferentially metabolize glucose into lactic acid. This process is known as “aerobic
glycolysis” or the Warburg effect. The Warburg effect exacerbates the formation of acidic
microenvironments, leading to aggressive malignant progression in human cancers [61].

Some peptides/proteins have been reported to be involved in glucose metabolism to
impact glycolysis. One example was circFNDC3B-218aa, encoded by circFNDC3B, which
participated in the carcinogenesis of CC. CircFNDC3B-218aa inhibited proliferation and
EMT progression by enhancing FBP1, which alleviated the Warburg effect by driving
metabolic reprogramming from glycolysis to oxidative phosphorylation [62]. The other
peptide was HOXB-AS3, which was translated from lncRNA HOXB-AS3 and exerted
a tumor-suppressive effect in colorectal cancer (CRC). PKM2 was an isoform of the PK
enzyme in the last step of glycolysis. The HOXB-AS3 peptide suppressed hnRNP A1-
mediated PKM splicing and PKM2 formation, therefore inhibiting the reprogramming of
glucose metabolism [63] (Figure 3a).
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218aa enhanced FBP1 and alleviated the Warburg effect, prohibiting proliferation and metastasis
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reprogramming of glucose metabolism, prohibiting proliferation and metastasis in CRC. (b) p113
combined with ZRF1/BRD4 to activate ALDH3A1, NDUFA1, and NDUFAF5 that were needed in
conversion of fatty aldehydes into FAO, promoting proliferation and metastasis in neuroblastoma.

3.2.2. Lipid Metabolism

Cancer cells also harness lipid metabolism to obtain the energy needed for their
proliferation and metastasis. The typical changes in lipid metabolism include lipid uptake,
synthesis and lipolysis, such as fatty acid β-oxidation (FAO). FAO is critical for ATP
production, mitochondrial function and cell survival. Different types of tumors, such
as glioma, TNBC and acute myeloid leukemia (AML), exhibit high FAO activity [64].
CUX1 circular RNA encoded a novel 113-amino acid protein p113 that combined with
ZRF1/BRD4 to form a transcriptional complex. The complex induced transcriptional
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activation of ALDH3A1, NDUFA1, and NDUFAF5, thereby promoting the conversion of
fatty aldehydes into FAO and enhancing mitochondrial activity in neuroblastoma cells [65]
(Figure 3b).

Conclusively, these discoveries favored the viewpoint that peptides/proteins encoded
by ncRNAs were critical events in tumor metabolic reprogramming and uncovered complex
regulatory networks in cellular metabolism.

3.3. Regulation of Protein Stability by ncRNAs Yields Proteins/Peptides

There are two main proteolytic systems responsible for protein degradation in eukary-
otic cells: the ubiquitin proteasome system (UPS) and the lysosomal system [66]. The UPS
is involved in many cellular processes, such as ER stress [67], cell proliferation [68], and
DNA damage recognition [69]. The UPS controls the degradation of substrates through
the action of specific enzymes (E1, E2, E3 enzymes). Tumorigenesis progresses due to the
deubiquitination of oncoproteins (such as Myc proteins, CycE, Notch1) [70,71]. Several
peptides/proteins encoded by ncRNAs have been shown to participate in the UPS during
cancer development. Yang et al. identified FBXW7-185aa in glioma cells. FBXW185aa
inhibited cell proliferation and promoted cell cycle arrest by suppressing c-Myc. FBXW7-
185aa interacted with the deubiquitinating enzyme USP28 and competitively released
FBXW7α from USP28, thereby antagonizing the USP28-induced deubiquitination of c-Myc
and sequentially destabilizing c-Myc [72]. Similarly, FBXW7-185aa upregulated FBXW7
expression and facilitated c-Myc degradation, thus reducing TNBC cell proliferation and
metastasis [73]. In addition, Zhang et al. reported that the novel protein SHPRH146aa
encoded by circ-SHPRH acted as an inhibitor in GBM. Microarray analysis revealed that
SHPRH146aa was involved in the protein ubiquitination pathway. Notably, stabilized
SHPRH acted as an E3 ligase that could degrade proliferation cell nuclear antigen (PCNA),
and the E3 ligase DTL, could target SHPRH. SHPRH-146aa served as a guardian protecting
full-length SHPRH from DTL-induced ubiquitination, which in turn promoted PCNA
degradation [74,75].

In addition, EIF6-224 aa encoded by circ-EIF6 promoted the progression of TNBC cells.
EIF6-224 aa could directly interact with the oncoprotein MYH9 and decreased the ubiquiti-
nation of MYH9 protein and prohibited MYH9 proteasomal degradation, therefore activat-
ing the Wnt/beta-catenin pathway and inducing TNBC proliferation and metastasis [76].
circMAPK14 inhibited CRC cell proliferation and metastasis by encoding the peptide
circMAPK14-175aa. circMAPK14-175aa competitively bound to MKK6 to repress MAPK14
phosphorylation. As a result, nuclear translocation of MAPK14 was reduced, and FOXC1
was degraded via the UPS, which altered the expression of downstream genes related
to the malignant phenotype in CRC [77]. Another similar functional protein in CRC
was circPLCE1-411, which was encoded by circPLCE1 and acted as a tumor suppressor.
circPLCE1-411 could bind to the HSP90α/RPS3 complex, inducing RPS3 dissociation. RPS3
was an NF-kB regulator that reduces the activation of NF-kB signaling in cell proliferation
and metastasis. RPS3 interacted with the E3 ligase complex HSP70-CHIP, leading to the
ubiquitin-dependent degradation of RPS3 [78] (Figure 4a).

As a membrane protein, EGFR can be activated by distinct ligands. Activated EGFR
is dynamically recycled to the membrane or transported to lysosomes for degradation
via endocytosis [79]. Abnormal activation of EGFR occurred in more than half of GBM
cases. Liu et al. identified circEGFR, which was highly expressed in GBM, and its protein
product was rtEGFR. rtEGFR was found to be localized in the cell membrane, on which
rtEGFR directly interacted with EGFR, reducing EGFR endocytosis and decreasing EGFR
ubiquitination in lysosomes. Therefore, EGFR signaling was aberrantly activated, and
tumor progression was promoted [25] (Figure 4b). Herein, these studies focused on the
regulation of protein stability by ncRNAs that yield proteins/peptides mainly through the
UPS or lysosomal system, providing promising therapeutic targets in cancer treatments.
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Figure 4. NcRNA-encoded peptides/proteins regulated protein stability. (a) FBXW7-185aa com-
petitively interacted with USP28 to release FBXW7α and facilitated c-Myc degradation, inhibiting
proliferation and metastasis in TNBC or inhibiting proliferation in GBM; EIF6-224 aa interacted
with MYH9 to prohibited MYH9 degradation, promoting proliferation and metastasis in TNBC;
SHPRH-146aa protected SHPRH from ubiquitination and induced PCNA degradation, promoting
proliferation in GBM; circMAPK14-175aa competitively bound to MKK6 to repress p-MAPK14 and
facilitated FOXC1 degradation, inhibiting proliferation and metastasis in CRC; circPLCE1-411 inter-
acted with HSP90α/RPS3 to induce RPS3 dissociation, RPS3 interacted with HSP70-CHIP to induce
RPS3 degradation, inhibiting proliferation and metastasis in CRC. (b) rtEGFR interacted with EGFR
to reduce EGFR endocytosis and decrease EGFR ubiquitination in lysosomes, promoting proliferation
in GBM.

3.4. Transcriptional Regulation

Dysregulation of transcription can cause a broad range of diseases, including cancers.
Several peptides/proteins derived from ncRNAs have been shown to be involved in eukary-
otic transcription, and there are some ways peptides/proteins can regulate transcription: by
acting as decoys and inhibiting the binding of a transcriptional regulatory factor or recruit-
ing a regulatory protein complex to a target gene [80]. Accordingly, we paid close attention
to biological mechanisms mediated by ncRNA-encoded peptides/proteins at the transcrip-
tional level. For instance, in HCC, circPINT was characterized as a translatable ncRNA that
could encode PINT87aa, which induced cell proliferation and inhibited cell senescence.
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PINT87aa functioned by binding to the DNA-binding domain of FOXM1 and blocked
FOXM1-mediated PHB2 transcription [81]. Coincidentally, PINT87aa served as a tumor
suppressor in GBM. PINT87aa functioned as an anchor and recruited the PAF1 complex to
the target gene CPEB1 promoter, subsequently limiting the transcriptional elongation of
CPEB1 [82] (Figure 5a). In addition, circARHGAP35 protein derived from circARHGAP35
exerted its role as an oncogenic protein in HCC. Mechanistically, circARHGAP35 pro-
tein formed a complex with transcriptional regulator TFII-I and upregulated the levels of
downstream gene FOS [18] (Figure 5b).
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Figure 5. Regulation of NcRNA-encoded peptides/proteins at transcription and posttranscription
level. (a) PINT87aa bound to FOXM1 to inhibit PHB2 transcription, promoting cell senescence
and prohibiting proliferation in HCC; PINT87aa recruited PAF1 to CPEB1 promoter, limiting the
transcriptional elongation of CPEB1 and prohibiting proliferation in GBM. (b) circARHGAP35 protein
interacted with TFII-I and upregulated the levels of downstream gene FOS, promoting proliferation
and metastasis in HCC. (c) RBRP enhanced the recruitment of IGF2BP1 to the m6A-modified mRNA
CRD of c-Myc and strengthened the binding of HuR, MATK3, PABPC1 to c-Myc, stabilizing c-Myc
and promoting proliferation and metastasis in CRC; Hsa_circ_0006401 peptide served as an RBP to
decrease col6a3 mRNA decay, promoting proliferation and metastasis in CRC. (d) SRSP strengthened
the recognition and interaction of SRSF3 to induced L-Sp4 formation, promoting proliferation and
metastasis in CRC. (e) APPLE facilitated PABPC1-eIF4G interaction to induce oncoprotein synthesis,
promoting proliferation and self-renewal in AML.
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3.5. Posttranscriptional Regulation
3.5.1. Regulation of RNA Stability

Mountain studies have emphasized RNA-binding proteins (RBPs) are critical in regu-
lating RNA stability. RBP-mediated m6A modification can cause diverse tumors. m6A can
guide molecular processes through m6A recognition of reader proteins. There are two kinds
of m6A recognition reader proteins: YTHDF2 is involved in the decay of m6A-containing
RNA, while insulin-like growth factor 2 mRNA-binding protein (IGF2BP) contributes to
the opposite effect [83–85].Two peptides have been revealed to play roles in RNA stability
regulation and have attracted much attention, including RNA-binding regulatory peptide
(RBRP) and Hsa_circ_0006401 peptide. RBRP was encoded by LINC00226-1 and was up-
regulated in highly metastatic cancer cells and primary CRC tissues. RBRP enhanced the
recruitment of IGF2BP1 to the m6A-modified mRNA CRD of c-Myc, thus promoting c-Myc
mRNA recognition by IGF2BP1. Moreover, RBRP strengthened the binding of other RNA
stabilizers, such as HuR, MATK3, PABPC1, to c-Myc in a m6A-dependent manner, further
stabilizing c-Myc expression and thereby promoting tumorigenesis [86]. In addition, the
Hsa_circ_0006401 peptide generated from circular RNA hsa_circ_0006401 promoted CRC
metastasis by acting as an RBP to decrease col6a3 mRNA decay [87] (Figure 5c).

3.5.2. Regulation of mRNA Splicing

Alternative splicing is one of the most prevalent posttranscriptional regulatory mech-
anisms contributing to proteomic diversity in eukaryotic cells. There are some typical
abnormal splicing modes in tumors, such as exon inclusion or skipping, constitutive splic-
ing, alternative 5′ or 3′ splice sites, intron retention and mutually exclusive exons [88].
Dysregulation of splicing factors leads to the occurrence of several human cancers. Re-
cently, Meng et al. unveiled a protein termed splicing regulatory small protein (SRSP)
derived from lncRNA LOC90024. In normal cells, SRSP was expressed at low levels so
that the splicing factor SRSF3 could not recognize exon 3 of Sp4 well, resulting in exon
3 skipping and the formation of the splicing variant S-Sp4, which was noncancerous. In
contrast, SRSP was highly expressed in CRC cells, and it strengthened the recognition
and interaction of SRSF3 on exon 3 of Sp4 to promote exon 3 inclusion, which induced
cancerous splicing variant L-Sp4 formation, eventually accelerating the pace of cancer
progression [89] (Figure 5d).

3.5.3. Regulation of Translation Initiation

Translation involves three steps: initiation, extension, and termination, while most
mRNA translation regulation occurs in the initiation step. Some translation-associated
proteins, including eIF and polyadenylate-binding proteins (PABPs), are required for the
circularization and activation of mRNAs. Inaccurate mediation of these processes results in
aberrant translation initiation, which satisfies the demands of oncogenes that need high
protein synthesis in cancer [90,91]. An oncomicropeptide, APPLE, encoded by ASH1L-AS1,
served as a translation initiation regulator in AML. It facilitated PABPC1-eIF4G interaction
to induce mRNA circularization and eIF4F complex assembly, and in turn, the PABPC1-
APPLE-eIF4G axis met the requirement of oncoprotein synthesis [92] (Figure 5e).

Overall, peptides/proteins encoded by ncRNAs acted as potential biomarkers and
therapeutic targets by regulating RNA stability, mRNA splicing and translation initiation
at the posttranscriptional level, these reports have expanded our knowledge about the
functions of peptides/proteins encoded by ncRNAs in cancers.

3.6. Others
3.6.1. Angiogenesis Inhibition

Angiogenesis is critical for tumor growth, which requires blood vessels for nutrients
and oxygen. Vascular endothelial growth factor (VEGF) is a 40-kDa heterodimeric gly-
coprotein that plays a major role in pathological angiogenesis, stimulating endothelial
cell proliferation, migration, and invasion [93,94]. Growing evidence has suggested that
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VEGF inhibition has particular antitumor effects [95]. Hsa-circ-0000437 encoded a func-
tional peptide termed CORO1C-47aa. CORO1C-47aa negatively regulated endometrial
tumor progression by competing with the transcription factor TACC3 for recruitment to
ARNT, thereby inhibiting VEGF expression and reducing angiogenesis [96]. In addition,
the polypeptide ASRPS translated from LINC00908 was found to be downregulated in
TNBC. It directly bound to the coiled coil domain (CCD) domain of STAT3 and suppressed
STAT3 activation, thus blocking STAT3/VEGF signaling and impeding angiogenesis [97].

3.6.2. DNA Repair

DNA repair contributes to genomic alterations in tumor initiation and progression.
A large amount of evidence suggests that poly(ADP-ribose) polymerase-1 (PARP-1) func-
tions as a DNA damage detector. Once single-strand breaks (SSBs) and double-strand
breaks (DSBs) occur, PARP-1 can quickly recognize and participate in the DNA damage
response [98,99]. A novel DIDO1-529 aa protein, the translation product of CircDIDO1,
could increase DNA damage in GC cells. Simultaneously, DIDO1-529aa interacted with
PARP1 to inhibit the binding of PARP1 to damaged DNA and the enzymatic activity of
PARP1. As a result, DIDO1-529aa exerted tumor suppressive roles by inducing GC cell
apoptosis [100].

3.6.3. Endoplasmic Reticulum (ER) Stress

The ER is responsible for correctly folding polypeptide chains and processing them
into functional proteins. Some exogenous or endogenous factors lead to the accumulation
of misfolded or unfolded proteins in the ER, which is called ER stress. In the presence
of high levels of ER stress, the unfolded protein response will induce cells to commit
self-destruction [101,102]. A small protein of 79 amino acids, FOXA1-regulated conserved
small protein (FORCP), generated from LINC00675, functioned as an inhibitor in well-
differentiated CRC cells. FORCP was primarily located in the ER and interacted with
BRI3BP in response to ER stress, thus promoting CRC cell apoptosis [103].

3.6.4. Immune Surveillance

Immune surveillance is one of the basic functions of the immune system. When
tumorous gene mutation occurs, new antigenic determinants appear on the cell surface,
and cytotoxic lymphocytes can recognize, kill and remove mutated cells in time to prevent
the occurrence of tumors [104]. Yasuhiro et al. found that a tumor antigen named the PVT1
peptide was encoded by the lncRNA PVT1 and overexpressed in CRC tissues. The PVT1
peptide was identified by CD8+ T cells and could be presented by HLA class I, which
implied the involvement of the PVT1 peptide in patient immune surveillance [105].

Therefore, peptides/proteins encoded by ncRNAs exert their effects by angiogenesis
inhibition, DNA repair modulation, ER stress response and immune surveillance. In
summary, current research has revealed that peptides/proteins translated from ncRNAs
possess vital regulatory potential in tumors. It is of great significance to clarify the functions
of ncRNA-encoded peptides/proteins in protein synthesis, and all these results have
inspired us to search for more fundamental molecular mechanisms.

4. Future Prospects

In recent years, the findings of translatable ncRNAs have gained great attention in the
life sciences. We have summarized the main translation mechanisms of peptides/proteins
encoded by ncRNAs and their roles in cancer regulation. These peptides/proteins have
exhibited powerful functions both in vivo and in vitro. At present, the discovery of pep-
tides/proteins from ncRNAs is still at the initial stage, and a large number of them are
still waiting to be found. Technologies based on translational mechanisms are constantly
emerging and being updated, and the specific clinical applications of peptides in tumors
remain to be explored.
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4.1. Outlook for Technology

Currently, there are many methods and tools to determine the protein coding poten-
tial of ncRNAs. Bioinformatics techniques can predict ORFs in noncoding regions, and
software commonly used to predict ORFs includes ORF Finder, CircRNADb, ORF score
PhyloCSF, etc. Websites like nucleotide- and protein-protein BLAST and UCSC can be
used for conservation analysis. Due to the different translation initial elements, there
are alternative prediction methods for IRES and m6A modification [106]. In addition,
ribosome-associated technologies have been extensively used in current research: ribosome
profiling can recognize small ORFs, but this approach has a high false-positive rate [107].
Given these limitations, polysome profiling was developed and allows the isolation of RNA
bound by multiple ribosomes that are actively translated, thus distinguishing untranslated
complexes [108]. Another reliable analysis is biological MS, which can directly detect
peptides encoded by ncRNAs [9]. The techniques listed above can help us identify the
peptides/proteins encoded by ncRNAs, but it is necessary to conduct experimental ap-
proaches to verify whether ncRNAs are truly coding. Techniques such as western blotting,
microscopy, immunohistochemistry, and CRISPR/Cas9-mediated gene editing are widely
used for this purpose [109,110].

Even if several advanced technologies and bioinformatics methods have been de-
veloped, there are still some difficulties needed to be resolved. 1. The abundance of
micropeptides is relatively low, and they are hard to be detected by MS in mammalian cells.
2. There are some low expressions of ncRNAs and their translated proteins/peptides in
cancers, while the underlying mechanisms by which regulating the expression and stability
of these peptides/proteins remains unclear. Though as it mentioned above, SHPRH-146aa
was encoded by the circular form of SHPRH and protected SHPRH from degradation
through UPS, which in turn increase or maintain the expression of SHPRH-146aa [74]; In
addition, Guo et al. verified that activation of TGF-b/Smad pathway leads to increased
expression of 4E-BP1, which reduced expression of CIP2A-BP through directly binding
to eIF4E [38]. We still need to mine for more specific mechanisms that facilitate the dis-
covery of new technologies. 3. Ivanov et al. reported the formation of circRNA relied
on the RNA-editing enzyme ADAR [111]. And ADARs-mediated circRNA regulation
exhibited in multiple cancer types, including HCC, GBM and CRC [112]. Besides, ADAR2
mediated-RNA editing reduced the stability of Alu elements and inhibited the formation
of circRNAs [113]. What’s more, A to I Alu RNA editing regulated the stability of lncRNA
NEAT1 in cardiovascular disease [114]. Therefore, RNA editing had a great influence on
the formation and expression of ncRNAs, which also could affect the expression of peptide
from the source. This suggested that RNA editing may be an initiating mechanism to
drive translation. 4. Western blotting and immunohistochemistry are less sensitive in the
detection of antibodies produced by putative peptides; Therefore, we are expecting more
advanced detection methods and experimental technologies to appear in the future.

4.2. Outlook for Clinical Applications

Early diagnosis and proper treatments of cancers have meaningful impacts on tumor
development and prognosis. As listed in Table 1, the levels of these peptides/proteins are
increased/decreased in diverse cancers and are associated with some important clinical
characteristics, such as clinical stage, lymphatic metastasis, overall survival (OS) and
disease-free survival (DFS). Hence, they may act as essential biomarkers in the early
diagnosis, prognostic determination and monitoring of recurrence in cancers. Conventional
serum tumor biomarkers, such as CEA, CA125, and CA199, are recommended for cancer
detection due to their specificity and sensitivity in the early stages of cancer [115]. Li et al.
found high-frequency detection of translatable circARHGAP35 in 35 blood extracellular
vesicle (EV) samples from HCC patients, which is useful for identifying peptides/proteins
as tumor markers in the future [18].
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Table 1. Levels and clinical significances of ncRNAs-encoded peptides/proteins in cancers. ↑ means
high expression; ↓ means low expression.

Cancers ncRNAs Peptides/Proteins Peptides/Proteins
Expression

Clinical Significance of
Peptides/Proteins

HCC circβ-catenin β-Catenin-370aa ↑ -

HCC LINC00998 SMIM30 ↑ advanced clinical stage; shorter OS
and DFS

HCC lncRNA HBVPTPAP HBVPTPAP ↓ -

HCC circPINT PINT87aa ↓ -

HCC Circ ARHGAP35 circ AHGAP3 protein ↑ -

GBM circular AKT3 AKT3-174aa ↓ longer OS

GBM circular SMO SMO-193aa ↑ -

GBM circ-FBXW7 FBXW7-185aa ↓ -

GBM circSHPRH SHPRH-146aa ↓ longer survival time

GBM circ-EGFR rtEGFR ↑ -

GBM circPINT PINT87aa ↓ earlier clinical stage

CRC lncRNA HOXB-AS3 HOXB-AS3 peptide ↓ less metastasis; earlier clinical stage;
lower risk of cancer death; longer OS

CRC circMAPK14 circMAPK14-175aa ↓ -

CRC circPLCE1 circPLCE1-411 ↓ -

CRC LINC00266-1 RBRP ↑
highly metastasis; advanced clinical

stage; higher risk of cancer death;
shorter OS

CRC circ_0006401 circ_0006401 peptide ↑ highly lymphatic metastasis

CRC lncRNA LOC90024 SRSP ↑
advanced clinical stage; higher risk of

cancer death; shorter OS; shorter median
survival time

CRC linc00675 FORCP ↓ well differentiated cancer

CRC lincPVT1 PVT1 peptide ↑ -

CC circPPP1R12A circPPP1R12A-73aa ↑ -

CC circFNDC3B circFNDC3B-218aa ↓ -

GC circAXIN1 AXIN1-295aa ↑ -

GC circMAPK1 MAPK1–109aa ↓ longer OS

GC CircDIDO1 DIDO1-529aa ↓ -

TNBC LINC00665 Micropeptide CIP2A-BP ↓ longer OS

TNBC circ-HER2 HER2–103 ↑ -

TNBC circFBXW7 FBXW7-185aa ↓ -

TNBC circ-EIF6 EIF6-224aa ↑ -

TNBC LINC00908 ASRPS ↓ longer OS

gefitinib resistance
in LAUD circASK1 ASK1-272aa ↓ shorter PFS

bladder cancer circGprc5a Gprc5a ↑ -

neuroblastoma circCUX1 p113 ↑ -

AML ASH1L-AS1 APPLE ↑ -

endometrial cancer circ-0000437 CORO1C-47aa ↓ -

cervical cancer circE7 E7 oncoprotein ↑ -

In recent decades, a large number of antitumor drugs have emerged, including small
molecule targeting drugs related to signaling pathways, antiangiogenic drugs, ubiquitin-
proteasome inhibitors, monoclonal antibodies, gene therapy, et al. As we have summarized
above, peptides/proteins play stimulative/suppressive roles through a variety of different
pathways, and they can be considered as therapeutic targets in cancer treatment. For
instance, TNBC is known as an invasive disease of estrogen receptor (ER)(-), progesterone
receptor (PR)(-), and HER(-), with a high risk of distant metastasis, and often occurs in
young women [116]. Pertuzumab is routinely used in HER2-positive patients by inhibiting
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HER2 heterodimerization [117]. Li et al. reported that HER2-103 translated from circHER2
shared the same antigen-recognition domain of HER2 that could be antagonized by per-
tuzumab, and in vivo studies showed that pertuzumab attenuated the tumorigenicity of
circHER2/HER2-103-positive TNBC cells [39]. This finding suggests that we can try to
screen TNBC patients expressing circHER2/HER2-103 in future clinical trials to verify the
effect of pertuzumab.

Moreover, cancer vaccines have received much attention in recent years. The advan-
tage of cancer vaccines is that they can produce long-term immune memory and have a
relatively lasting antitumor effect. Several cancer vaccines are available in clinical therapy,
including Melacine for melanoma and Cima Vax EGF for lung cancer [118,119]. Céline
M. Laumont et al. pointed out that tumor-specific antigens (TSAs) are desired targets for
immunotherapy and found that most TSAs detected in human primary tumors were gener-
ated from the translation of noncoding regions. Moreover, the evaluation of the efficacy
of TSA vaccination in mice suggested that immunization with individual TSAs provides
varying degrees of protection to EL4 cells, and this protection is long lasting. Accordingly,
TSAs from noncoding regions can be a promising approach in cancer immunotherapy [120].
With intensive research, an increasing number of ncRNA-encoded proteins/peptides have
been discovered, and we are expecting that these discoveries can ultimately be applied to
further clinical investigations.

5. Conclusions

So far, we’ve cracked the mystery of translatable ncRNAs, however, studies on func-
tions and mechanisms of ncRNA-encoded peptides/proteins are still in its infancy. Firstly,
thousands of ORFs have been found in different species, so are there more translation
mechanisms of ORFs? Secondly, though there are already many technologies that exca-
vate unknown peptides/proteins encoded by ncRNAs, these technologies have certain
limitations, and we need to overcome the detection obstacles and optimize the technolo-
gies. Thirdly, research of ncRNA-encoded peptides/proteins are concentrated on cell and
animal levels, more human samples should be considered to bring into the research, like
blood samples. Finally, ncRNA-encoded peptides/proteins have biological and regulatory
functions, and analysis of their network with other pathogenic genes in tumorigenesis is of
great significance for the development of anticancer drugs.
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