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Abstract
To address biodiversity decline in the era of big data, replicable methods of data processing are needed. Automated methods 
of individual identification (ID) via computer vision are valuable in conservation research and wildlife management. Rapid 
and systematic methods of image processing and analysis are fundamental to an ever-growing need for effective conservation 
research and practice. Bears (ursids) are an interesting test system for examining computer vision techniques for wildlife, as 
they have variable facial morphology, variable presence of individual markings, and are challenging to research and moni-
tor. We leveraged existing imagery of bears living under human care to develop a multispecies bear face detector, a critical 
part of individual ID pipelines. We compared its performance across species and on a pre-existing wild brown bear Ursus 
arctos dataset (BearID), to examine the robustness of convolutional neural networks trained on animals under human care. 
Using the multispecies bear face detector and retrained sub-applications of BearID, we prototyped an end-to-end individual 
ID pipeline for the declining Andean bear Tremarctos ornatus. Our multispecies face detector had an average precision of 
0.91–1.00 across all eight bear species, was transferable to images of wild brown bears (AP = 0.93), and correctly identified 
individual Andean bears in 86% of test images. These preliminary results indicate that a multispecies-trained network can 
detect faces of a single species sufficiently to achieve high-performance individual classification, which could speed-up the 
transferability and application of automated individual ID to a wider range of taxa.
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Introduction

Conservation technologies can enhance the collection, anal-
ysis and sharing of wildlife-related data, and the implemen-
tation and evaluation of global conservation action (Lahoz-
Monfort et al. 2019). Computer vision within ecology and 

conservation increasingly facilitates the description of image 
features, counting within images, and identity classification 
(Weinstein 2018). This automated approach enables rapid 
processing and classification of large datasets in a standard-
ized way that will be vital for global data sharing (Steenweg 
et al. 2017; Ahumada et al. 2020). Machine learning, and 
more specifically deep learning techniques, are now a focus 
of image classification, with emphasis on species and indi-
vidual identification (ID) (Christin et al. 2019).

Computer vision enhances the integration of individual 
ID into ecological research, with the benefit of images being 
sourced from camera trap surveys and citizen science/eco-
tourists, allowing researchers to monitor species over 
broader scales (Berger-Wolf et al. 2017; Araujo et al. 2019; 
Schneider et al. 2019; Nipko et al. 2020). Individual photo 
ID has primarily focused on species with unique, stable body 
markings, such as the Grévy’s zebra Equus grevyi (Crall 
et al. 2013) and the Northern giraffe Giraffa cameloparda-
lis (Miele et al. 2020), other morphological traits and scars 
(Kelly and Holub 2008), or body parts such as fin shape 

Handling editors: Leszek Karczmarski and Daniel I. Rubenstein.

This article is a contribution to the special issue on “Individual 
Identification and Photographic Techniques in Mammalian 
Ecological and Behavioural Research: Methods, Applications and 
Concepts” – Editors: Leszek Karczmarski, Stephen C.Y. Chan, 
Daniel I. Rubenstein, Scott Y.S. Chui and Elissa Z. Cameron.

 * Melanie Clapham 
 melanie@bearid.org

1 Department of Geography, University of Victoria, 3800 
Finnerty Road, Victoria, BC V8P 5C2, Canada

2 BearID Project, Sooke, BC, Canada
3 San Diego Zoo Wildlife Alliance, San Diego, CA, USA

http://orcid.org/0000-0001-8924-7293
http://orcid.org/0000-0001-5257-6552
http://orcid.org/0000-0002-5789-8822
http://crossmark.crossref.org/dialog/?doi=10.1007/s42991-021-00168-5&domain=pdf


922 M. Clapham et al.

1 3

(Hughes and Burghardt 2017). Face recognition is an alter-
native method of visual individual ID, especially when spe-
cies lack distinguishing markings. Originally built for chim-
panzees Pan troglodytes based on human facial recognition 
approaches (Loos and Ernst 2013), it has now been applied 
to other primates and selected large mammals (Deb et al. 
2018; Körschens et al. 2018; Chen et al. 2020; Guo et al. 
2020; Clapham et al. 2020), taking advantage of advances 
in deep learning techniques (Ravoor and T.S.B. 2020). Deep 
learning networks require large, labelled datasets that are 
difficult to acquire for wild animals, resulting in networks 
being trained primarily using images of individuals under 
human care (e.g., Freytag et al. 2016; Chen et al. 2020). Cur-
rently, a tradeoff exists between the need for reliable train-
ing data of individuals and the need for robust training data 
that reflects the contexts in which deep learning networks 
will be used (see Beery et al. 2018); the former favouring 
images taken ex situ and the latter favouring images of wild 
animals in situ (Schofield et al. 2019; Clapham et al. 2020). 
A possible solution is to train networks that generalise across 
species, sourcing larger datasets with diverse facial charac-
teristics and background context, which may increase the 
robustness of ex situ-trained networks.

Bears (ursids) present an important focal taxonomic 
family for examining the application of computer vision 
to wildlife ecology, as they represent lineages that have 
diverged ecologically and morphologically over ~ 12.5 mil-
lion years (Kutschera et al. 2014), inhabit habitats ranging 
from ice floes and deserts to forests, they are elusive, gen-
erally solitary and do not defend strict territories (Penteri-
ani and Melletti 2020), which makes them challenging to 
research and monitor compared to other large carnivores. In 
addition, bear conservation and management would benefit 
from improved research tools. Six of the eight extant spe-
cies of bear are considered vulnerable to extinction, with 
decreasing population trends for four of these six species 
(Scotson et al. 2017; Velez-Liendo and García-Rangel 2017; 
Dharaiya et al. 2020; Garshelis and Steinmetz 2020). Knowl-
edge gaps exist across species, particularly for declining spe-
cies across Asia (Asiatic black bear Ursus thibetanus, sun 
bear Helarctos malayanus, sloth bear Melursus ursinus) and 
South America (Andean bear Tremarctos ornatus). Tools 
in machine learning, coupled with monitoring techniques 
such as camera trapping, could help researchers to generate 
knowledge on population size, demography, and behaviour 
(Christin et al. 2019).

Within the Ursidae, the presence of distinguishing marks 
varies by species; Andean bears, Asiatic black bears, sun 
bears, and to some extent giant pandas Ailuropoda mel-
anoleuca, generally possess varied markings on the face or 
chest that human observers have used for visual identifica-
tion of individuals (Higashide et al. 2012; Ngoprasert et al. 
2012; Zheng et al. 2016; Molina et al. 2017; Appleton et al. 

2018; Penteriani et al. 2020; Rodríguez et al. 2020; Morrell 
et al. 2021), whereas American black bears U. americanus, 
brown bears U. arctos, polar bears U. maritimus, and sloth 
bears generally do not (although see Shimozuru et al. 2017). 
However, there is concern regarding the standardization of 
manual individual ID approaches across different research-
ers, for wildlife with and without distinguishing markings 
(Choo et al. 2020; Johansson et al. 2020). In addition, mark-
ings may not be entirely stable over time for some species 
(Yoshizaki et al. 2009; Van Horn et al. 2015) or easily dis-
tinguished under different environmental conditions from 
photographs (Reyes et al. 2017), and visual individual ID 
is labor-intensive, especially as multiple trained observers 
may be required (Ramsey et al. 2019; Morrell et al. 2021). 
Automated individual ID was recently developed for brown 
bears (Clapham et al. 2020) and giant pandas (Chen et al. 
2020) using deep-learning approaches of facial recognition. 
Deep convolutional neural networks (CNN) could make use 
of distinguishing facial markings depending on their sta-
bility, but also benefit from other biometric features of an 
animal’s face. Automated facial recognition may provide a 
standardized and reproducible approach of individual ID 
across multiple taxa that could be more broadly accessible 
to researchers.

We used deep-learning techniques to develop a multispe-
cies facial detector across all eight members of the Ursidae 
family. We used this multispecies detector, trained on images 
of bears at zoos and rescue centers, to: (1) evaluate the vari-
ation in its performance for each ursid species, (2) compare 
its performance to a single-species trained detector on a pre-
existing test set of wild brown bears, and (3) develop an 
example end-to-end pipeline in combination with a retrained 
face encoder and SVM (classifier) for automated individual 
ID of a novel species, the Andean bear. We compared results 
to those presented in Clapham et al. (2020), where networks 
were trained and tested on wild brown bears. A multispecies 
facial detector could reduce development time and advance 
the application of automated individual ID across a broader 
range of species. In practice, face detectors could be linked 
to pre-existing animal object detectors and species classi-
fiers, to pull images of focal species for individual ID.

Methods

Data collection

Images were sourced from bears housed in zoos and sanctu-
aries across North America, Europe, and Asia. Images were 
initially collected for separate research (Van Horn et al. 
2014, 2015), and the dataset was supplemented for this study 
(Table 1). The only criteria for image inclusion was that both 
eyes of the bear needed to be visible for the object detector 
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to find the face (see below) of a bear of known identity. 
Identification of individual bears were provided by the image 
source, with bear birthdate and sex sometimes sourced from 
individual zoos or, most commonly, from studbooks. The 
habitat of bear enclosures varied across the dataset, creating 
variation in the background of images (Fig. 1). The dates 
on which images were taken were sourced from the image 
metadata if present. The exact cameras (brand and model) 
used to take the photographs were unknown due to the post 
hoc nature of image collection, however, image resolution 
ranged from 0.06 to 3.84 megapixels. Images were JPEG, 
PNG and TIFF format. TIFF images were converted to JPEG 
prior to use.

Andean bear subset

We used the Andean bear subset (Table 1) for inclusion in 
our end-to-end example application. To minimize the impact 
of ontogenetic changes in morphology on overall success, 
only images of Andean bears over 2 years of age were 
included in the dataset, and only individuals with seven or 
more images were included to allow sufficient number of 
images for testing and training. This allowed a minimum 
number of two images per individual available for testing, a 
requirement of the testing methodology for evaluating simi-
larity comparison networks (see “Testing methodology”). 
Images of Andean bears were taken from 2004 to 2021, with 
a mean span of 7.4 (± SD 4.1) years per individual. Eight 

percent of total images were missing information for the 
year the image was taken. Of the individual bears included 
in the dataset, 13 were female and 19 were male. We used a 
randomly selected 80/20% split of the 609 images for train-
ing (n = 488) and testing (n = 121), respectively.

Golden dataset

The golden dataset is the manually annotated ‘gold standard’ 
dataset (n = 2192) and is used for training networks (with 
the training dataset) and evaluating their performance (with 
the testing dataset). We ran all images through the applica-
tion bearface (Clapham et al. 2020) to speed-up creating a 
golden dataset, and manually adjusted erroneous or missing 
bounding boxes and facial landmarks using imglab from the 
Dlib toolkit (King 2009). The golden dataset also included 
labels of individual identification for the Andean bear subset.

Multispecies face detector development

We trained a multispecies face detector network (face_all-
bears.dat), using the sub-application (bearface) from 
BearID developed by Clapham et al. (2020), to evaluate its 
performance across species and on an existing wild brown 
bear dataset. We split the multispecies dataset (Table 1) into 
80% for training and 20% for testing within species, and then 
combined these together across species, resulting in 1754 
images for training and 438 for testing. The BearID pipeline 
is based on the FaceNet approach (Schroff et al. 2015) and 
consists of: (1) face detection (bearface sub-application), (2) 
face reorientation and cropping (bearchip sub-application), 
(3) face encoding (bearembed sub-application) and (4) face 
classification (bearsvm sub-application) (see Clapham et al. 
2020 for a full description of the BearID application pipeline 
and hardware used). For this study, we used Microsoft Azure 
NC6s_v3 cloud computing instances to train and evaluate 
the multispecies face detector.

Bearface with the new network face_allbears.dat, hereaf-
ter bearface, finds faces and facial landmarks (i.e., the outer 
corners of the eyes) of multiple bear species in images. As in 
Clapham et al. (2020), it consists of an object detector (slid-
ing window and CNN (Dalal and Triggs 2005; King 2015)) 
and a shape predictor [face alignment with an ensemble of 
regression trees (King 2009; Kazemi and Sullivan 2014)]. 
The object detector and shape predictor were trained using 
the bounding boxes and facial landmark labels from the 
golden dataset. See Clapham et al. (2020) for full equiva-
lent training procedures. Bearface accepts JPEG and PNG 
file types as input images (other formats would need pre-
conversion), and outputs an XML file that includes a list of 
the images with predicted face and landmark data for each.

Table 1  Summary of multispecies image dataset

Species Number of face 
images (face 
chips)

Number of 
individuals

Mean face chips 
per individual

American black 
bear

Ursus americanus

84 22 3.8

Andean bear
Tremarctos 

ornatus

609 32 19.0

Asiatic black bear
U. thibetanus

54 25 2.2

Brown bear
U. arctos

588 49 12.0

Giant panda
Ailuropoda mel-

anoleuca

185 73 2.5

Polar bear
U. maritimus

481 175 2.8

Sloth bear
Melursus ursinus

92 34 2.7

Sun bear
Helarctos malay-

anus

99 35 2.8

Total 2192 445 4.9
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Fig. 1  Example images showing variation of captive bears images 
across all eight species. Red boxes indicate faces detected using the 
multispecies face detector. Species from top left to bottom right: 

American black bear, Asiatic black bear, Andean bear, brown bear, 
giant panda, polar bear, sloth bear, and sun bear
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End‑to‑end Andean bear example pipeline

We used the Andean bear subset of the golden dataset with 
the multispecies face detector and the pre-existing bear 
recognition pipeline (BearID: Clapham et al. 2020), main-
taining the same 80/20% split of the data for training and 
testing, respectively. Andean BearID (BearID with new 
networks), consists of four sub-applications: (1) Bear-
face finds bear faces, (2) Bearchip creates face chips from 
found faces (Fig. 2), (3) Bearembed creates embeddings for 
the face chips, and (4) Bearsvm determines individual ID 
from embeddings (Fig. 3). Bearface uses face_allbears.dat 
network, which required no additional training from that 
described in the previous section. Both the face encoder 
(bearembed) and face classifier (bearsvm) required individ-
ual-specific retraining with Andean bear images. Bearchip 
required no retraining. Face chips produced by bearchip 
(Fig. 2) using the Andean bear subset of the golden data-
set were used to retrain the similarity comparison network 
bearembed, resulting in a new face embedding network, 
embed_andeanbear.dat (Fig. 3). The embeddings produced 
by that network were used to retrain bearsvm, resulting in a 
new face classifier network, svm_andeanbear.dat (see Code 
Availability for all code required for retraining networks). 
Hereafter, bearembed and bearsvm refer to their use col-
lectively with the Andean bear-trained networks.

Testing methodology

Multispecies face detector

We followed the testing methodology of Clapham et al. 
(2020) and tested the object detector and shape predictor 
separately. We focus on interpolated average precision (area 
under a precision-recall curve) as a focal performance metric 
for the face detector overall, but also present precision 
(

truepositive

truepositive+falsepositive

)

 and recall 
(

truepositive

truepositive+falsenegative

)

 . We 
tested performance of the facial detector across the trained 
species (Table 1), as well as on the test set of wild brown 
bears from Clapham et al. (2020) (n = 934), to examine the 
performance of a captive-trained detector on wild-tested 
images.

Andean bear end‑to‑end pipeline

We tested the full end-to-end Andean bear application from 
input file to ID classification, but also considered the per-
formance of sub-applications bearembed and bearsvm sepa-
rately, to assess performance without cumulative error by 
comparing results to labels from the golden dataset. The 
Andean bear face encoder (bearembed) was tested using 
pairs of images generated from the test split of the golden 

dataset (n = 121). The paired test set represented 230 match-
ing pairs of images (same individual) and 230 non-matching 
pairs (different individual). There were even numbers of 
matching and non-matching pairs, no face chip was com-
pared to itself, and each pair within the test set was unique. 
We further evaluated the predictive capability of the embed-
ding network for both known individuals and unknown (or 
new) individuals by applying fivefold validation across two 
test regimes:

1. Folds across all face chips, whereby different chips for 
the same individual appear in every fold. Paired tests 
represent 214 matching and 214 non-matching pairs.

2. Folds by ID label, whereby all chips from an individ-
ual appear in only one fold. Paired tests represent 400 
matching and 400 non-matching pairs.

We evaluated per formance using accuracy: 
(true positive rate × positive ratio) + (true negative rate×

negative ratio) , positive and negative ratio = 0.5, and F1 

score: 2 ×
(

precision×recall

precision+recall

)

 , which is the harmonic mean of 
precision and recall. Precision here refers to correctly identi-
fied matching pairs from all predicted matching pairs. Recall 
refers to correctly identified matching pairs out of all the 
actual matching pairs. F1 score may be a preferred metric of 
performance when classes are imbalanced. In all cases, we 
used a closed-set approach (Deb et al. 2018). Bearsvm was 
evaluated by comparing the test set accuracy (number of 
correct ID predictions/total number of ID predictions) of 
predicted ID labels to those in the golden dataset.

Results

Multispecies face detector

The average precision (intersection over union = 0.5) of the 
multispecies object detector varied among bear species, with 
an overall performance across species of 0.959 (Table 2). The 
overall mean normalised distance between the facial land-
marks of the golden dataset and those predicted by the shape 
predictor was 0.083 ± 0.115 (Table 2); in other words, ~ 8% 
of the distance between the outer corners of the eyes.

The average precision of the multispecies object detec-
tor (trained on captive bears) when tested on a wild brown 
bear dataset was 0.929, which is similar to the performance 
of a detector trained on a wild brown bear dataset (Table 3; 
Fig. 4). For the wild brown bear dataset tested with the mul-
tispecies detector, the mean normalised distance between the 
facial landmarks of the golden dataset and those predicted 
by the shape predictor was 0.161 ± 0.155 (Table 3); ~ 16% of 
the distance between the outer corners of the eyes. 
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Fig. 2  Example face chips produced by the multispecies detector (bearface) and the reorientation/cropping application (bearchip); a–d different 
individual Andean bears displaying variation in facial appearance within and among individuals, a and b are males, while c and d are females
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End‑to‑end Andean bear pipeline

Using the multispecies detector network with bearface 
(Table 3), the original bearchip and the newly trained net-
works for bearembed and bearsvm, the end-to-end Andean 
bear pipeline correctly predicted the ID for 104 out of 121 

images (closed-set accuracy = 86.0%). Bearface detected 
120 of 121 Andean bear faces, plus 2 erroneous faces were 
detected in one image for a total of 122 faces detected. We 
manually removed these erroneous detections from the 
pipeline at this stage to maintain an accurate evaluation of 

Fig. 3  Schematic of BearID 
pipeline including programming 
languages and file formats,  
adapted from Clapham et al. 
(2020). Blue boxes indicate the 
new networks trained in this 
study. The process begins with 
an input image, the face of the 
bear is detected using the mul-
tispecies network of bearface, 
the face is cropped and rotated 
using bearchip, an embedding 
is created using the Andean 
bear network of bearembed, 
the embedding is then matched 
using Andean bear bearsvm to 
produce a classification and out-
put individual ID, e.g., Andean 
bear ‘I843’)

Images IDs

faces (.xml) chips (.jpg) embeddings (.dat)

bearid (python)

<box top='1452' left='2555' 
         width='771' height='771'>
    <part name='lear' x='3165' y='1436'/>
    <part name='leye' x='3168' y='1807'/>
    <part name='nose' x='3034' y='2148'/>
    <part name='rear' x='2771' y='1408'/>
    <part name='reye' x='2809' y='1774'/>
    <part name='top' x='2982' y='1376'/>
</box>

<embed_val>
    -0.118691295 0.327617735 
    -0.022753451 -0.0209024642
    -0.181141496 -0.0153788049
    [ . . . ]
    0.249280408 -0.107632071
    0.210069597 -0.0412332453
    0.0291793514 0.0370238423 
</embed_val>

‘I843’

face_allbears.dat

embed_andeanbear.dat

svm_andeanbear.dat

bearface
(C++)

bearchip
(C++)

bearembed
(C++)

bearsvm
(C++)

Table 2  Testing performance of 
the multispecies-trained facial 
detector

OD object detector, SP shape predictor, IoU intersection over union

Test species Test n Precision (OD) Recall (OD) Average preci-
sion, IoU = 0.5 
(OD)

Mean (± SD) 
normalised distance 
(SP)

American black bear 17 1.000 1.000 1.000 0.144 ± 0.188
Andean bear 121 0.975 0.983 0.978 0.061 ± 0.057
Asiatic black bear 11 1.000 0.909 0.909 0.150 ± 0.148
Brown bear 118 0.983 0.966 0.966 0.085 ± 0.103
Giant panda 37 1.000 0.973 0.973 0.103 ± 0.229
Polar bear 96 0.989 0.979 0.969 0.072 ± 0.090
Sloth bear 18 0.947 1.000 1.000 0.127 ± 0.122
Sun bear 20 0.905 0.950 0.920 0.091 ± 0.080
All species 438 0.975 0.970 0.959 0.083 ± 0.115

Table 3  Comparing the testing performance of the multispecies detector (trained on images of captive bears) on images of wild brown bears and 
to results from a species-specific detector

OD object detector, SP shape predictor, IoU intersection over union
a Represents a wild bear dataset (from Clapham et al. 2020) tested on a captive bear-trained detector
b Baseline comparative results from Clapham et al. (2020)

Trained detector Test set Test n Precision (OD) Recall (OD) Average precision, 
IoU = 0.5 (OD)

Mean (± SD) nor-
malised distance 
(SP)

Multispecies (captive-trained) Wild brown  beara 934 0.980 0.939 0.929 0.161 ± 0.155
Brown bear (wild-trained)b Wild brown bear 934 0.986 0.983 0.977 0.111 ± 0.122
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bearembed and bearsvm. Of the 120 correctly detected faces, 
104 were correctly identified.

For sub-application analysis using the test split of the 
Andean bear subset of the golden dataset (n = 121), the face 
encoder (bearembed) is effective at predicting matching and 
non-matching pairs with an accuracy of 90.9% (Table 4). 
A receiver operating characteristic curve (ROC) displays 
the performance of bearembed at different thresholds of 
true positive rate [TPR (recall/sensitivity)] and false posi-
tive rate [FPR (specificity); Fig. 5]. Further evaluation of 
bearembed using the two fivefold test regimes previously 
described, folds across all face chips and folds by ID label, 

shows mean accuracies of 90.3 ± 3.0% and 78.9 ± 5.5%, 
respectively (Table 4).

The cumulative error of the face detection and embedding 
resulted in a drop in classification (bearsvm) accuracy from 
89.3% (108 out of 121 correct IDs: golden dataset test) to 
86.7% (104 out of 120 correct IDs).

Discussion

Our multispecies facial detector network, trained on images 
of bears under human care, performed well, resulting in an 
average precision of 0.9–1.0 for every bear species used 

Fig. 4  Automated face detection (red boxes) using the multispecies face detector on images of wild brown bears

Table 4  Comparing the performance of the similarity comparison network across three test methods: golden test set, folds by face chips, and 
folds by ID label

Pairs n = number of equal matching and non-matching pairs of face chips per test regime, TPR true positive rate, TNR true negative rate

Test method Test n ± SD Pairs n Accuracy (%) ± SD TPR (%) ± SD TNR (%) ± SD F1-score (%) ± SD

Golden test split 121 230 90.9 85.2 96.5 90.3
Folds by chip 121.8 ± 3.2 214 90.3 ± 3.0 83.4 ± 5.7 97.2 ± 0.9 89.5 ± 3.6
Folds by ID 121.8 ± 31 400 78.9 ± 6.3 75.2 ± 5.5 82.5 ± 9.5 78.1 ± 6.2
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to train the network. Despite the relatively low number of 
training images (n = 1754 total) compared to large datasets 
typical of deep learning approaches, our results are com-
parable to single-species trained facial detection networks 
[African forest elephant Loxodonta cyclotis: 0.98, n = 1573 
training images, Körschens et al. (2018); Western gorilla 
Gorilla gorilla: 0.91, n = 2000 training images, Brust et al. 
(2017); Giant panda: 1.0, n = 5854 training images, Chen 
et al. (2020)], and other detectors that focus on whole-body 
shape or focal body areas [Northern giraffe: 0.89 accuracy, 
Buehler et al. (2019); luderick Girella tricuspidata: 0.93, 
Ditria et al. (2020)]. Multispecies-trained detectors have 
more commonly been used in whole-body detection for 
species recognition, with performance in the range of 0.55 
 (APn) to 0.97 (accuracy) (Loos et al. 2018; Norouzzadeh 
et al. 2018). MegaDetector (Beery et al. 2019b) is a multi-
species (generalised) whole-body detector that can be used 
to remove empty frames and train project-specific classifiers 
from camera trap images. Our multispecies facial detector is 
intended to perform a similar function for the detection of 
faces for use in individual ID of bears, which could be rep-
licated for other taxonomic families using our open source 
code (see Code Availability). Guo et al. (2020) recently 
developed a multispecies facial detector trained on 41 pri-
mate species and 4 carnivores resulting in detection accura-
cies of 0.91, 0.98, and 0.98 for golden snub-nosed monkeys 
Rhinopithecus roxellana, Tibetan macaques Macaca thi-
betana, and tigers Panthera tigris, respectively. In addition, 

Khan et al. (2020) present AnimalWeb, an annotated data-
set of animal faces for 334 species across 21 orders, which 
achieves a class-wise face detection mean average precision 
of 0.64.

We only used images of bears where an individual iden-
tification was known, to avoid unintentionally training and 
testing a detector on images of a very low number of indi-
viduals, which could influence performance. This resulted 
in sample sizes being skewed by species, which could have 
biased the facial detector network in favour of those species 
with a larger dataset. However, two of the three species with 
the lowest sample sizes (American black bear, sloth bear), 
had the highest possible average precision (1.000), whereas 
the third species (Asiatic black bear) had the lowest average 
precision of all species (0.909), indicating the influence of 
additional variance beyond sample size. Further testing, on 
a larger sample size per species, should provide more infor-
mation on the network's performance. In addition, due to the 
post hoc nature of image collection, we could not account 
for the date the images were taken across the whole dataset, 
leading to potential data leakage if images recorded on the 
same day were mixed between the training and testing data-
sets. Future research in this area should attempt to maintain 
a 24-h window (image independence) between image inclu-
sion across the training or test datasets.

We have demonstrated how a detector trained across 
all eight bear species under human care, can be effective 
at detecting the faces of wild bears. This finding suggests 

Fig. 5  A receiver operating 
characteristic (ROC) curve 
showing the probability of 
the face encoder (bearembed) 
predicting matching (same indi-
vidual) or non-matching pairs 
(different individual) of face 
chips under different thresholds. 
The steep curve towards the top 
left of the graph indicates high 
predictive utility at separating 
matching/non-matching pairs
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that images of wildlife under human care may be useful in 
training deep-learning networks for use with images in field 
settings, whose collection can be challenging, and whose 
manual processing can be labor-intensive. We postulate that 
the relatively high average precision of our detector on wild 
brown bears could be due to variation in housing environ-
ments of the different species included in the dataset, as 
well as variation in facial biometrics from the inclusion of 
multiple species for training. Using a wild brown bear test 
dataset, when comparing the performance of a wild brown 
bear-trained detector to the performance of our new multi-
species detector, precision was consistent between detectors 
(0.99 and 0.98, respectively), but recall was reduced (0.98 
and 0.94, respectively). This suggests that the multispecies 
detector missed some faces of bears taken in situ, which 
may be due to additional background complexity (see Beery 
et al. 2018), pose variation, or size of the face within the 
image. The shape predictor improved at detecting the facial 
landmarks of bears under human care (all species combined: 
0.083 ± 0.115; brown bears: 0.085 ± 0.103), compared to 
the shape predictor trained and tested on wild brown bears 
(0.111 ± 0.122: Clapham et al. 2020). However, when the 
multispecies shape predictor was tested on wild brown bears, 
its performance declined (0.161 ± 0.155), which could indi-
cate a slight dissimilarity between the dataset of bears under 
human care compared to wild bears. Further analyses of 
performance should test images of wild bears for the other 
seven members of the Ursidae, to better evaluate its multi-
species application in situ. Combining images of wildlife 
taken under human care with those taken in situ, or aug-
menting backgrounds of ex situ images (Beery et al. 2019a), 
could enhance the robustness of these datasets.

Using the multispecies face detector, we developed a 
pipeline for its use in automated individual identification 
of an example species, the Andean bear. The retrained face 
encoder (bearembed) obtained an accuracy of 90.9% for 
predicting matching and non-matching pairs of images of 
Andean bears in the golden test set. Five-fold analysis by 
chip and by label obtained accuracies of 90.3% and 78.9%, 
respectively, which outperforms the face encoder developed 
for wild brown bears for both methods (84.2% and 71.3%: 
Clapham et al. 2020). Other studies evaluating the perfor-
mance of wildlife-focused deep learning networks for vari-
ants of face verification found similar or slightly reduced 
accuracies [lemurs Lemuroidea spp.: 83.1% (Deb et  al. 
2018); golden monkeys Cercopithecus mitis kandti: 78.7% 
(Deb et al. 2018); chimpanzees: 59.9% (Deb et al. 2018), 
0.811 (mAP@1) (Schneider et  al. 2020)], although our 
dataset has fewer images in comparison to these examples 
[this study: 609 images; Deb et al. (2018): 3000, 1450, and 
5599 images, respectively; Schneider et al. (2020): 5599]. 
We suspect the facial markings of Andean bears may have 
contributed to the relatively high performance of our face 

encoder, but more test images are required to fully inter-
pret its performance. Although our dataset is modest and 
we present this software as proof of concept rather than 
immediately applicable, the images used to train bearem-
bed represent a long-term dataset of Andean bears under 
human care taken over at least 17 years. This undoubtedly 
added variation to the dataset beyond images taken on the 
same day, for example; especially as the facial appearance of 
Andean bears, and other bear species, can change over time 
(Yoshizaki et al. 2009; Van Horn et al. 2015; Clapham et al. 
2020). The habitat of bear enclosures varied across the data-
set, creating variation in the background of images, however, 
enclosure similarity within images of the same individu-
als may be a confounding variable positively influencing 
performance. While accuracy of bearembed was reduced 
when testing folds by ID label, it still shows good predic-
tive utility (78.9%) for use in matching of new individu-
als. Face encoders that use similarity comparison networks, 
such as bearembed, are a promising tool for individual ID 
of wildlife due to their ability to generalise, allowing for 
the identification of new individuals that are not contained 
in the training dataset (Schneider et al. 2020). This is vital 
for wildlife studies looking to use automated approaches of 
individual ID for population assessments, such as spatial 
capture–recapture (SCR).

We developed a multispecies bear face detector using 
images of bears under human care that achieved a high 
level of performance across all eight bear species. This 
performance was transferable to a wild brown bear data-
set, although further analysis using images of wild counter-
parts across all bear species is required to fully determine 
its application. Our automated end-to-end Andean bear 
example application correctly identified the individual in 
85.9% of images inputted. These initial results indicate that 
a multispecies-trained face detection network can detect 
faces of a single species sufficiently to achieve high perfor-
mance for individual classification. This could be impor-
tant as within the bounds of human capacity, funding avail-
ability for wildlife research, and timeliness of conservation 
action required, it may not be possible to develop separate 
detectors and classifiers for every species at risk that could 
benefit from automated methods of individual identifica-
tion. Automated methods are increasingly needed due to an 
ever-growing need for effective conservation (Dirzo et al. 
2014) and expanding awareness that objective and replicable 
methods to identify individuals are needed to avoid unde-
sired conservation outcomes (Choo et al. 2020; Johansson 
et al. 2020). Developing robust pipelines of automated indi-
vidual ID will enable rapid and systematic data collection 
and processing on taxa of conservation concern, boosting 
the existing power of research to better inform conservation 
planning and management.
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