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Abstract: In this work, octahedral shaped PbTiO3-TiO2 nanocomposites have been synthesized by a
facile hydrothermal method, where perovskite ferroelectric PbTiO3 nanooctahedra were employed as
substrate. The microstructures of the composites were investigated systemically by using XRD, SEM,
TEM and UV-Vis spectroscopy. It was revealed that anantase TiO2 nanocrystals with a size of about
5 nm are dispersed on the surface of the {111} facets of the nanooctahedron crystals. Photocatalytic
hydrogen production of the nanocomposites has been evaluated in a methanol alcohol-water solution
under UV light enhanced irradiation. The H2 evolution rate of the nanocomposites increased with an
increased loading of TiO2 on the nanooctahedra. The highest H2 evolution rate was 630.51 µmol/h
with the highest concentration of TiO2 prepared with 2 mL tetrabutyl titanate, which was about
36 times higher than that of the octahedron substrate. The enhanced photocatalytic reactivity of the
nanocomposites is possibly ascribed to the UV light absorption of the nanooctahedral substrates,
efficient separation of photo-generated carriers via the interface and the reaction on the surface of the
TiO2 nanocrystals.

Keywords: hydrothermal; anatase TiO2; ferroelectric; octahedron; H2 production

1. Introduction

Photocatalytic splitting of water into H2 by using semiconductor materials is a promis-
ing and alternative method for clear energy generation [1–4]. Since 1972, TiO2 has been
extensively explored as a potential photocatalytic semiconductor in the splitting of water,
where great and consecutive efforts have been devoted into the improved reactivity for
water splitting by catalytic design [5–12]. Despite great efforts, the efficiency for water
splitting to generate H2 remains low at this stage due to the high recombination rate of
photo-generated charge carriers in catalysts and the presence of oxidized and reduced
intermediates in the reaction mixtures [13–16]. This low efficiency has been proved to
be significantly limiting the applications of TiO2 in energy harvesting. To improve the
H2 production efficiency by water splitting, various approaches have been developed
to modify TiO2, such as the deposition of noble metal (Pt, Au, Pd), element doping and
the surface sensitization by organic dyes. Particularly, compositing TiO2 with other semi-
conductors with a desirable band structure is highly attractive for improving the carrier
separation [17–25].

Perovskite ferroelectric materials, characterized by a switchable spontaneous polar-
ization, can provide a fascinating surface chemical environment to drive the growth of
semiconductor nanostructures [26,27]. More interestingly, a c internal electric field in single-
domain or polarized perovskites could be essential for enhancing separation of photo-
generated carriers of the semiconductor catalyst [7,14,28]. Integrating perovskite substrates
with the photocatalytic activity of the TiO2 makes it possible to increase the photocatalytic
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efficiency, including water splitting to generate H2. Accordingly, perovskite/titania com-
posites have been the focus of many investigations, for instance, epitaxial growth of TiO2
on single-domain PbTiO3 nanoplates for H2 production [2], heterostructured PbTiO3-TiO2
core-shell particles for enhanced H2 evolution [29] and TiO2/BaTiO3 in the splitting of
water [30]. In addition to these nanoparticles and nanoplates, perovskite PbTiO3 octa-
hedrons with a size of 50–100 nm have been reported in our previous work with {111}
exposed, leading to the unique visible light photocatalytic reactivity [31]. Motivated by the
above advances in photocatalysts, we expect that these faceted nanooctahedra would be
desirable substrates able to adjust the crystal growth of TiO2 and then fabricate composites
for photocatalytic explorations.

In this work, we report for the first time the facile hydrothermal synthesis of octahedral
shaped PbTiO3-TiO2 nanocomposites by employing perovskite PbTiO3 nanooctahedral
crystals as substrates. It was revealed that the surface of the perovskite substrate crys-
tals was covered by the as-grown TiO2 nanocrystals on {001} facets, adopting an anatase
structure. The resulting PbTiO3-TiO2 nanocomposites displayed an enhanced photocat-
alytic performance in splitting of water to generate H2, with the highest evolution rate
of 630.51 µmol/h. On the basis of these results, the PbTiO3 substrates are expected to be
crucial for the enhanced photocatalytic activity by an improved carrier separation and trans-
portation to the active TiO2 nanocrystals due to an interfacial band bending. This work may
provide the opportunity to the design of novel high efficient ferroelectric-based catalysts.

2. Materials and Methods
2.1. Synthesis

Firstly, octahedral shaped perovskite PbTiO3 crystals were synthesized by a modified
Li+-assisted hydrothermal reaction [31,32]. Then PbTiO3-TiO2 nanocomposites were pre-
pared by using the perovskite PbTiO3 nanooctahedral crystals as substrates and tetrabutyl
titanate (TBOT) as Ti4+ source via a hydrolysis-hydrothermal method. Briefly, precursors
were prepared by mixing different volumes of TBOT (0, 0.5, 1.5 and 2.0 mL) with 25 mL
absolute ethanol and strong stirring for 30 min. Then, 1.0 g hydrothermally synthesized per-
ovskite PbTiO3 nanooctahedral crystals were added into the obtained solutions for another
120 min stirring to obtain homogeneous suspensions. NH3·H2O was introduced as miner-
alizer and the whole volume of the suspension was adjusted to 35 mL by adding deionized
water. Thereafter, the suspensions were transferred to 50 mL Teflon-lined autoclaves and
maintained at 200 ◦C for 12 h. After natural cooling to room temperature, the resulting
samples were collected, washed with ethanol and deionized water respectively for several
times, and then dried at 60 ◦C for 12 h. The samples prepared with different TBOT were
denoted as S1(TBOT: 0.5 mL), S2(TBOT: 1.5 mL), S3(TBOT: 2.0 mL), respectively, ready
for characterization.

Pt-loaded samples for photocatalytic H2 generation were prepared by a chemical
reduction method. Typically, the as-prepared PbTiO3-TiO2 nanocomposites were dispersed
in deionized water under strong sonication to form a slurry mixture. Then, an aqueous
solution of H2PtCl6·6H2O (1 wt% of Pt) was added dropwise to the above PbTiO3-TiO2
slurry, and after a 15-min ultrasonic bath, an aqueous NaBH4 solution was slowly added.
The resulting solution was kept in the ultrasonic bath for another 15 min, washed and
filtered, and finally dried at 60 ◦C for 12 h.

2.2. Characterization

The as-synthesized samples were systematically investigated and characterized by
X-ray diffraction (XRD, ARLXTRA, Thermo, Olten, Switzerland, CuKα), field emission
scanning electron microscope (field emission SEM, S-4800, Hitachi, Tokyo, Japan) and TEM
(F20 using an accelerating voltage of 200 kV, FEI, Portland, OR, America). Thermogravime-
try (TG) and differential scanning calorimetry (DSC) analysis was carried out on a TA-SDT
(Q600 V8.2 Build 100) instrument (TA Instruments, New Castle, DE, USA). The UV-Vis
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diffuse reflectance spectra were recorded using a UV-3600 UV-VIS-NIR spectrophotometer
(Shimadzu, Kyoto, Japan).

2.3. Photocatalytic H2 Generation

The photocatalytic H2 evolution from a methanol aqueous solution was conducted in a
100 mL quartz tube. The photocatalyst powders (30 mg) were dispersed in a methanol/deionized
water solution (20 mL:80 mL) in a quartz tube under stirring. The solution was then purged
with N2 for at least 30 min to remove O2 and then sealed with a rubber septum. The light
source was a 500 W high-pressure mercury lamp (XPA-7) photochemical reactor (Nanjing
Xujiang Machine-electronic Plant, Nanjing, China), and the average UV light intensity was
ca. 45 mW/cm2. The temperature of the suspension during irradiation was maintained at
25 ◦C using a thermostatically controlled water bath. The amount of H2 was determined
using a Shimadzu GC-2014 gas chromatography system (N2 carrier gas, molecular sieve
5 Å, TCD detector).

3. Results and Discussion

Figure 1a,b present the SEM and HAADF-STEM images of hydrothermally synthe-
sized PbTiO3 nanooctahedral crystals, respectively. SEM image indicates that the sample
consists of large-scale nanocrystals with smooth surface, sharp edges and regular facets
exposed. HAADF-STEM image shows the magnified projections of three PbTiO3 nanocrys-
tals from different orientations. From these results, it can be found that the nanocrystals all
adopt an octahedral shape, with a size about 50–100 nm.
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Figure 1. (a) SEM and (b) HAADF-STEM images, (c) TG-DSC curves and (d) UV-Vis absorption
spectrum of the hydrothermally synthesized perovskite PbTiO3 nanooctahedron crystals.

Figure 1c presents the TG-DSC curves of the as-synthesized PbTiO3 nanooctahedral
crystals. Two peaks can be observed from the DSC curve. The first peak located at
181.6 ◦C can be assigned to physically absorbed water evaporation or the decomposition
of intermediate products [33]. The peak at about 485.56 ◦C was determined to be the
Curie temperature of the PbTiO3 nanooctahedra, where a phase transition process from a
ferroelectric tetragonal phase to paraelectric cubic one occurred. This Curie temperature
is very close to the reported value of the counterpart bulk PbTiO3 [34], suggesting the



Nanomaterials 2021, 11, 2295 4 of 9

ferroelectric property of the as-prepared PbTiO3 nanooctahedra. Figure 1d displays the UV-
Vis spectrum of the as-prepared PbTiO3 nanooctahedra, the energy band gap is calculated
to be 2.65 eV, matching well with the reported value [32].

X-ray diffraction patterns of the as-prepared nanocomposite samples were collected
and are shown in Figure 2a. All the diffraction peaks can be well indexed to the standard
patterns of PbTiO3 (JCPDS: 06-0452) and anatase TiO2 (JCPDS: 21-1272), respectively,
indicating a two-phase composite. The strong diffraction peaks argue a good crystallinity
of the samples, and no diffraction peaks of other impurities could be observed. One should
note that the diffraction peak intensity of anatase TiO2 (101) near 2θ = 25.28◦ in sample
S1, S2 and S3 gradually increases, indicating an increase content of anatase TiO2 in the
nanocomposite samples due to the increase of the starting reagent of TBOT.
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(b–d) SEM images of as-prepared samples: S1, S2 and S3. (S1: TBOT: 0.5 mL, S2: TBOT: 1.5 mL,
S3: TBOT: 2.0 mL).

Figure 2b–d present the corresponding SEM images of the as-prepared nanocompos-
ites S1, S2 and S3. It can be observed that all the samples exhibited faceted octahedral
configurations with particle sizes in the range of 50–100 nm. The surface of the octahedra
was covered by a layer of homogenously dispersed nanoparticles. The sharp edge of the
as-synthesized PbTiO3 octahedron crystals changes to be curved with the compositing of
TiO2 on the surface. At this stage, free-standing nanoparticles are difficult to be observed
from SEM image. This fact suggests that anatase TiO2 determined from XRD in Figure 2a
was already integrated with the perovskite PbTiO3 octahedrons to form a PbTiO3-TiO2
nanocomposite. From the combined results from XRD and SEM, it can be confirmed that
the as-prepared samples are octahedral shaped PbTiO3-TiO2 nanocomposites.

To further investigate the detailed microstructure of the PbTiO3-TiO2 nanocomposites,
TEM and HRTEM images were analyzed. Figure 3a,c show the low-magnification TEM
images of specific octahedral shaped PbTiO3-TiO2 nanocomposites (S3) by a bright field
mode and dark field mode, respectively. It can be observed that the octahedral substrate
presents a specific parallelogram projection, with a continuous and flurry layer grown on
the surface, surrounding the parallelogram projection. The anatase TiO2 (JCPDS: 21-1272)
nanocrystals with a size of about 5 nm are attached to the faceted surfaces of the substrates.
Figure 3b,d present HRTEM images of the nanocomposite. The lattice spacing of 0.240 nm
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and 0.349 nm, denoted in Figure 3b, can be indexed to the anatase planes of (103) and
(101), respectively. Hence, it can be convinced that the anatase TiO2 nanocrystals grew on
the surface of the perovskite octahedron crystals to form an octahedral shaped PbTiO3-
TiO2 nanocomposite.
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The photocatalytic activity of the as-prepared octahedrally-shaped PbTiO3-TiO2 nano-
composites was evaluated by the H2 evolution reaction of water splitting under UV light
(λ < 420 nm) in 2 h, where methanol alcohol was used as sacrificial reagent and 30 mg
photocatalyst powders were employed each time. As shown in Figure 4, the H2 evolution
rate for pristine PbTiO3 nanooctahedra at 2 h was only 17.49 µmol/h, indicating a relatively
low photocatalytic activity in water splitting. As a comparison, the PbTiO3-TiO2 nanocom-
posites (S1: TBOT 0.5 mL, S2: TBOT 1.5 mL, S3: TBOT 2.0 mL) exhibited a remarkable
photocatalytic reactivity in H2 evolution, where significant H2 bubbles have been observed
during the water splitting reaction process. The photocatalytic reactivity of H2 evolution
was greatly enhanced with the increasing use of TBOT. In particular, S3 exhibited the
highest H2 generation rate of 630.51 µmol/h (at 2 h), which is approximately 36 times
higher than that of the blank sample within 2 h.

The enhancement of H2 generation rate could be originated from the interfacial band
structure of the nanocomposites. Thus, the UV-Vis absorption spectra in Figure 5 were
analyzed to further investigate the optical property of the nanocomposites and pristine
TiO2. Figure 5a–c show the UV-Vis absorption spectra of the PbTiO3-TiO2 nanocomposite
samples. It can be observed that all the nanocomposite samples S1, S2 and S3 have similar
onset absorption which varied slightly, and they all exhibited little absorbance of light
with wavelength longer than 400 nm. However, the amount of light absorption in the
section of 300 nm–400 nm wavelength by S1, S2 and S3 gradually increased, which may
be assigned to the increased amount of perovskite substrate-anatase TiO2 interfaces in the
nanocomposite samples.
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synthesized with TBOT via hydrothermal method as a control experiment.

This increased absorption could also lead to a higher efficiency in photogeneration of
charge carriers. The absorption band gap of the sample S3 was estimated to be 3.16 eV.

As shown in Figure 5d, the UV-Vis spectrum of the TiO2 sample synthesized with
TBOT was also provided as a comparison. It could be observed that the hydrothermally
synthesized TiO2 exhibited very small absorbance in the range of 400 nm–800 nm and the
onset of the absorption is approximately near 393 nm, where the band gap was determined
to be about 3.15 eV, matching well with the reported value previously. Compared with the
pure anatase sample, the absorption of the nanocomposite samples increased in the order
of S1 < S2 < S3. Combined with the absorption band edge of pure PbTiO3 nanooctahedra
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(Figure 1d), it can be deduced that the PbTiO3 substrate could affect the light absorbancy
and charge carrier generation. Moreover, with the introduction of the substrate in the
PbTiO3-TiO2 nanocomposites, the intrinsic spontaneous polarization could possibly adjust
the PbTiO3-titania interfaces and the band bending, facilitating the carriers transferring
from the PbTiO3 substrate to anatase TiO2 [35].

On the basis of the above analysis, a possible photocatalytic mechanism of PbTiO3-
TiO2 nanocomposites was proposed and schematically presented in Figure 6. Under
UV light irradiation, the light absorption occurred spontaneously in both of the PbTiO3
nanooctahedra and TiO2 nanocrystals in the PbTiO3-TiO2 nanocomposites. Then the photo-
generated electrons and holes transferred to TiO2 and PbTiO3, respectively. Specifically,
the crystalline anatase TiO2 grown on the {111} facets of the octahedron was excited and
the photo-generated electrons and holes were separated by an interfacial band bending
due to the existence of spontaneous polarization of the perovskite support [35]. In addi-
tion, the PbTiO3 substrate can also be excited to generate photo-generated carriers which
could further be transferred to the surface of TiO2 via the interface and contributed to H2
generation. Thus, the increased content of the photogenerated carriers in the PbTiO3-TiO2
nanocomposites and the decreased recombination of electrons and holes could synergisti-
cally improve the photocatalytic activity of the nanocomposites.
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4. Conclusions

In conclusion, octahedrally shaped PbTiO3-TiO2 nanocomposites have been success-
fully synthesized and the photocatalytic hydrogen production in splitting of water was ex-
plored. The as-prepared nanocomposites exhibit a remarkable photocatalytic H2 generation
activity in splitting of water and the highest H2 evolution rate was about 630.51 µmol/h,
which is much higher that of pristine samples. A possible mechanism based on the band
structure of the composite interface was proposed. The enhanced photocatalytic reactivity
could be attributed to the absorption of the UV light (λ < 420 nm) by the perovskite PbTiO3
substrates, the separation of photo-generated carriers at the interface and reactions at the
surface of the anatase TiO2 nanocrystals.
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