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ABSTRACT oPOSSUM-3 is a web-accessible software system for identification of over-represented
transcription factor binding sites (TFBS) and TFBS families in either DNA sequences of co-expressed
genes or sequences generated from high-throughput methods, such as ChIP-Seq. Validation of the
system with known sets of co-regulated genes and published ChIP-Seq data demonstrates the capacity
for oPOSSUM-3 to identify mediating transcription factors (TF) for co-regulated genes or co-recovered
sequences. oPOSSUM-3 is available at http://opossum.cisreg.ca.
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The properties of cells within an organism are defined by a complex
interplay between proteins, RNA, and the genome, which can be con-
ceptualized as the gene regulatory network. Two important components
of the gene regulatory network are the DNA-binding trans-acting
transcription factors (TF) and their corresponding transcription fac-
tor binding sites (TFBS) in the DNA. Sets of proximal TFBSs that
are sufficient to cooperatively mediate TF-regulated patterns of ex-
pression constitute cis-regulatory modules (CRM). CRMs are the
scaffold for combinatorial TF interactions, enabling a limited number
of sequence-specific DNA binding TFs to participate in an exponential
number of combinations, each potentially conferring specific patterns
of gene activity (Arnone and Davidson 1997).

In studying gene regulation within a cell or tissue, researchers are
commonly confronted with the need to analyze sets of genes sharing
a characteristic, such as co-expression, as they seek to infer properties
of the gene regulatory network. A significant insight into the regulatory
network structure is obtained when the mediating TFs for the observed
expression patterns are identified. A key strategy in genome biology
for determining such TFs is to determine the sequence motifs that
are over-represented in the cis-regulatory regions relative to some
control. The successful predecessors to oPOSSUM-3, oPOSSUM
(Ho Sui et al. 2005) and oPOSSUM-2 (Ho Sui et al. 2007), were
developed to identify statistically over-represented, predicted TFBS
in co-regulated gene sets. Two complementary scoring methods mea-
sured the over-representation: (1) Z-scores based on normal approxi-
mation to the binomial distribution that measures the change in the
relative number of TFBS motifs in the foreground gene set compared
with the background set, and (2) Fisher scores based on a one-tailed
Fisher exact probability assessing the number of genes with the TFBS
motifs in the foreground set vs. the background set. Using the
JASPAR database as the source of DNA binding profiles (Portales-
Casamar et al. 2010), the original oPOSSUM was designed to iden-
tify over-represented TFBSs, later referred to as Single Site Analysis
(SSA). The original system also incorporated a conservation filter
using phylogenetic footprinting based on pairwise alignments of
orthologous sequences from human and mouse. In oPOSSUM-2, an
additional analysis method called Combination Site Analysis (CSA)
was introduced to identify over-represented proximal pairs of
TFBSs. Separate oPOSSUM-2 implementations were released for
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two additional model organisms (C. elegans and S. cerevisiae). The
nematode oPOSSUM-2 database was based on alignments be-
tween C. elegans and C. briggsae. The oPOSSUM-2 yeast system
did not incorporate conservation filters, as the compact nature of
the yeast genome results in dramatically reduced search space and
noise compared with larger genomes. The oPOSSUM software is
a highly cited tool for TFBS motif over-representation analysis (as
assessed by Google Scholar citation counts), perhaps due to the
ease of use and power of the approach. On average, excluding
automated internet search software, 340 unique users work with
oPOSSUM-2 each month.

Since the release of the original oPOSSUM system, a plethora
of TFBS over-representation analysis tools have been introduced.
TOUCAN2, a workbench system for regulatory sequence analysis
implemented by Aerts et al. (2005), contains features for identifying
over-represented TFBS in proximal promoters of co-regulated genes.
Defrance and Touzet (2006) developed the TFM-Explorer, which
assesses conservation of spatial arrangements of regulatory elements.
Promoter Analysis Pipeline by Chang et al. (2007) includes TFBS
identification in gene sets as a component of the workbench, using
non-redundant profiles from public databases. Piechota et al. (2010)
developed the cREMaG database, which attempts to correct for the
confounding influence of variable information content of TFBS pro-
files, distinguishes between constitutive and inducible transcriptional
forms of genes and reports the presence of CpG islands. Many of the
methods provide web-based user interfaces, some of which are main-
tained. oPOSSUM-2 was found to perform well in an independent
assessment of motif over-representation analysis tools (Meng et al.
2010).

Since the implementation of these approaches, technology changes
have greatly affected regulatory sequence studies. First, comprehensive
multi-species sequence comparison measures are conveniently avail-
able in the form of phastCons and phyloP scores from the UCSC
genome databases (Hubisz et al. 2011). Phylogenetic footprinting,
used by many TFBS enrichment programs, when performed with
pairwise sequence alignments places emphasis on the quality of the
choice of organism with which to compare and can sharply limit the
number of genes that can be analyzed. Compared with pairwise align-
ments, multi-species analysis improves the quality of sequence align-
ments (Kumar and Filipski 2007) and greatly increases the number of
genes available for analysis. The proliferation of large-scale regulatory
sequence profiling methods such as ChIP-Seq has demonstrated that
TF-DNA interactions frequently occur outside of conserved regions
(Schmidt et al. 2010). Genomic regions bound by TFs in ChIP experi-
ments are a snapshot of a single cell-type and set of conditions, and
not all regions are necessarily functional cis-regulatory sequences.
In the absence of or in complement with experimental data, conser-
vation is a useful filter for enabling computational motif enrichment
analysis. Second, there has been a major update to the JASPAR data-
base, an open-source, non-redundant, curated repository of TFBS
profiles (Portales-Casamar et al. 2010). The update provides a signif-
icant increase in non-vertebrate profiles, permitting the extension of
regulatory analysis software to many non-vertebrate species, such as
insects. Third, widespread application of ChIP-Seq profiling has
resulted in an explosion of the number of potential regulatory sequen-
ces to be analyzed (Johnson et al. 2007; Malhotra et al. 2010; Schmidt
et al. 2010). These experiments produce sets of TF bound and control
sequences, in which the foreground target (TF-bound) sets purport-
edly contain regulatory signatures of interest, whereas the background
(control) sets lack those features. Such data are optimal for TFBS over-
representation analysis, creating strong demand for a new generation

of software that allows analysis from both a sequence-based perspec-
tive and a gene-based perspective.

Here we describe oPOSSUM-3, a system that capitalizes upon
the aforementioned research developments. The new system fea-
tures a panel of upgraded and novel approaches to regulatory
sequence analysis, including Single-Site Analysis (SSA) and anchored
Combination-Site Analysis (aCSA) (Figure 1). A novel extension of
the system addresses the challenge imposed by homologous TFs
with highly similar (or identical) binding specificity. Such profile
similarity will be of increasing impact on motif enrichment anal-
ysis as the number of TF profiles depicting similar binding grows.
The TFBS Cluster Analysis (TCA) and anchored Combination
TFBS Cluster Analysis (aCTCA) present results focused on TFBS
sequence patterns rather than individual profile names. This new
approach to regulatory sequence motif over-representation anal-
ysis has been assessed against reference sets of co-regulated genes
and large-scale ChIP-Seq sequence collections. Assessments against
reference cases exemplify the utility of oPOSSUM-3 for the iden-
tification of mediating TFs. The new system should maintain the
oPOSSUM service as a popular resource for motif over-representation
analysis.

MATERIALS AND METHODS

Nomenclature
Throughout this article, we refer to TFs and genes using a capitalized
first letter followed by lowercase letters; all suffix characters are
capitalized (e.g., Mef2A).

Figure 1 Overview of the main analysis types available in oPOSSUM-3.
The input for oPOSSUM can be either gene-based, which makes use
of pre-computed results based on annotated genomic information, or
sequenced-based, in which the user supplies the input sequences
(e.g. ChIP-Seq results) for analysis. There are four methods available:
(1) Single Site Analysis (SSA), (2) TFBS Cluster Analysis (TCA), (3) an-
chored Combination Site Analysis (aCSA), and (4) anchored TFBS Clus-
ter Analysis (aCTCA). The first two methods apply enrichment analyses
to individual TFs or TFBS clusters, whereas the latter two methods apply
enrichment analyses to pairs of individual TFs or pairs of TFBS clusters.
SSA and aCSA are depicted in this figure.
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Data sources
Gene and transcript annotation and genomic sequences were retrieved
from Ensembl v64 except for C. elegans, which uses v54 for compat-
ibility with conservation scores provided by the UCSC Genome
Browser (Flicek et al. 2010). For C. elegans, operon annotations were
retrieved from Wormbase WS200 (Harris et al. 2010). The phastCons
scores were retrieved from the UCSC Genome Browser, based on the
following score sets: (1) for human (hg19), phastCons46wayPlacental;
(2) for mouse (mm9), phastCons30wayPlacental; (3) for fruit fly
(dm3), phastCons15way; and (4) for nematode (ce6), phastCons6way.
As UCSC ce6 database for C. elegans is based on WS190, genomic
regions that had insertions or deletions between WS190 and WS200
were excluded. All “known” genes in the Ensembl databases were
included in the database. For TFBS profiles, the 2010 release of the
JASPAR database was used; all profiles from the CORE and PBM
collections were included. A custom profile collection (referred to
as PENDING), which is not included in JASPAR, was implemented
to include profiles of interest for our analysis (Figure S1).

Calculation of TFBS motif over-representation
Two statistical measures are used to determine the TFBS motifs that
are over-represented in the foreground set vs. the background set,
representing two different models for the occurrences of TFBSs. For
sequence-based analysis, a third statistical measure of motif central-
ity is calculated.

Z-scores: The Z-score is used to assess whether the rate of occurrence
of a given TFBS in the foreground sequence set differs significantly
from the expected rate calculated from the background set based on
a simple binomial distribution model. For a given TFBS, let X denote
the number of predicted binding site nucleotides in the foreground
sequence set, and B the number of predicted binding site nucleotides
in the background set. If n is the total number of nucleotides in the
foreground set, and N the total number for the background set, the
expected value of X is given by m = BC, where C = n/N. The prob-
ability of success is given by P = B/N, and the standard deviation
is s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nPð12PÞp
. Then, if x is the observed number of binding

site nucleotides in the foreground set, using the normal approxi-
mation to the binomial distribution with a continuity correction
of 0.5, the Z-score can be calculated as Z = (x2m20.5)/s. The
continuity correction is applied to correct for the normal distri-
bution being continuous while the binomial distribution is dis-
crete. The continuity correction (0.5) is subtracted from x because
we are interested in the probability that x is strictly less than a
given value. The calculation was implemented in the R statistics
package, as were the subsequent enrichment scores (R Development
Core Team 2008).

Fisher scores: The Fisher probability test is used to determine the
probability of a non-random association between the foreground
sequence set and a given TFBS by comparing the proportion of
foreground sequences containing a given TFBS with the proportion
of background sequences with that site. The Fisher probability is
calculated using a hypergeometric probability distribution, which
describes sampling without replacement from a finite popula-
tion consisting of two types of elements. The Fisher scores are
obtained by taking the negative logarithm of the probabilities (natural
logarithm is used). In contrast to the Z-score, only the presence
or absence of a TFBS in a given sequence is considered; the num-
ber of occurrences of a TFBS is not included in the probability
calculation.

Centrality KS scores: For sequence-based analysis methods, the
Kolmogorov-Smirnoff (KS) test is used to compare the empirical
distributions of the TFBS locations between target and background
sets. In ChIP-Seq experiments, the highest number of sequence tags
under a peak region is expected to occur where there is specific
binding by the target TF to the DNA, such that functional TFBSs are
located at or in close proximity to this maximum confidence position
(MCP). Thus, in target sequences, the distances of the target TFBSs
to the MCP (which we refer to as the DistMCP) are expected to be
clustered around zero, whereas in background sequences, the binding
sites would be distributed randomly. An example is given in Figure S2,
which shows the binding site distributions in the Nfe2L2 ChIP-Seq
dataset by Malhotra et al. (2010). Van Helden et al. (2000) employed
such position analysis for detecting 39 signals in yeast genes within
the RSAT package. Building on this concept, Bailey and Machanick
(2012) implemented the CentriMo tool as part of the MEME suite.
By comparing the distributions of DistMCPs for a given TF in the
target and background sequences, we can identify those TFBSs that
are positionally enriched relative to the MCP in the target set. As for
Fisher analysis, KS scores are obtained by taking negative logarithms
of the p-values obtained from KS tests.

False Discovery Rate calculation: The False Discovery Rate (FDR)
procedure was used to calculate adjusted p-values for both Z-scores
and Fisher scores in Tables 2–5 (Benjamini and Hochberg 1995).
Z-scores were first converted to p-values using the standard normal
table, whereas for Fisher scores, the p-values obtained during Fisher
exact probability calculation were used. All calculations were per-
formed in the R statistics package (p.adjust for FDR and pnorm for
the standard normal table). As mentioned in the original oPOSSUM
article (Ho Sui et al. 2005), we do not perceive that TFBS over-
representation measures are appropriate significance tests, as the
procedures do not fully account for the non-random properties of
genome sequences. The FDR values in Tables 2–5 were provided for
completeness, but they do not affect the relative rankings.

Single Site Analysis
Single Site Analysis (SSA) is the original over-representation analysis
procedure developed for oPOSSUM. Individual TFBS hits within the
user-specified search regions are counted for both the foreground
gene/sequence set and the background set. For gene-based analysis,
the search regions are determined by selecting the conserved regions
located within a given distance from the gene transcription start
sites. Both the Z-scores and Fisher scores are calculated for each
TFBS based on the counts, which are then ranked accordingly. For
a detailed explanation of the oPOSSUM SSA, please refer to Ho Sui
et al. (2005). The major difference in the SSA implementation be-
tween the previous versions of oPOSSUM and version 3 is the re-
placement of the pairwise sequence alignment-based phylogenetic
footprinting procedure with phastCons scores. Conserved regions
are defined as those genomic regions of at least 20 nucleotides in
length with average phastCons scores over a given threshold (two
sets of conserved regions are determined using thresholds of 0.4
and 0.6), and TFBS searches are restricted to motifs within or
overlapping (by at least 1 bp) these regions (Figure S3).

Anchored Combination Site Analysis (aCSA)
In many cases, given a gene set of interest, the user has beforehand
knowledge of a TF that is central to the observed co-regulation. To
focus the intensive computational analysis of motif combinations, the
aCSA method restricts the over-representation assessment to sequence
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regions proximal to predicted TFBS for a user-specified TF. Given
an anchoring TF and an inter-binding site distance parameter value,
pairings of the anchoring TFBS and all available secondary TFBSs within
the inter-binding site distance are counted and over-representation
scores are calculated. It is possible to observe self-interactions, when
TFBSs for the anchor TF frequently occur in clusters.

Gene-based vs. sequence-based
Increasingly researchers focus on sets of sequences likely to be bound
by a TF, rather than a list of genes. To facilitate the analysis of
sequence-based data, such as those from ChIP-Seq studies, new
functions within oPOSSUM-3 were implemented. The sequence-
based oPOSSUM systems take as input a foreground sequence set
and a background sequence set. The supplied sequences are searched
for TFBS motifs, and over-representation scores are calculated.
There is no conservation filtering applied to the input sequences;
the entire set of submitted sequences is screened for TFBS motifs.

TFBS clustering
Transcription factors can be classified according to structural
characteristics of DNA binding domains (Figure 2). It is often the
case that TFs belonging to the same structural classes share similar
DNA binding profiles, such that distinct TFs of the same class may
bind to similar sequence patterns. If a given class contains numerous
TFs with almost identical consensus sequences, oPOSSUM-3 analysis
results can be dominated by subsets of profiles that are nearly iden-
tical. In such cases, it is useful to condense the redundant results to
allow the user to identify independent enriched profiles. It is not suit-
able to combine the results simply based on the TF class, as the extent
of the binding sequence similarity is variable among the different clas-
ses. Although some classes are defined by a characteristic consensus
sequence, other classes, such as zinc fingers, have low profile similarities
among the member TFs. Thus, it is necessary to divide each structural
class into clusters based on profile similarity. Figure 2 illustrates the
idea behind TFBS clustering and its application to oPOSSUM-3.

Profiles in JASPAR 2010 have been annotated for TF structural
class and family. Based on these classifications, the profiles in the given
family are subject to a refined clustering process in oPOSSUM-3.
First, using the MatrixAligner similarity scoring program (Sandelin
et al. 2003), a pairwise similarity score table is calculated for the
entire set of profiles in JASPAR. Two thresholds are set: (1) cluster
score threshold T, which is the MatrixAligner score above which
the two matrices being compared are deemed to be similar, and
(2) radius margin R, which is a secondary score threshold used to

determine whether those TFs at the boundary of the cluster join the
cluster (Figure 3A). The process is based on tree traversal, with
nodes being the profiles and the edges being the similarity scores.
One profile within a given family is randomly chosen to act as the
seed node for the cluster, and a tree is constructed between this seed
profile and all other profiles in the family. The nodes are traversed in
sequence, and the traversed nodes are added to the cluster if (1) the
similarity scores between the parent node and the child node are
lower than the cluster score threshold T, and (2) the average score S
between the cluster member nodes (the parent nodes that have
already been included in the cluster) and the child node is below T.
If the child node in question qualifies for condition 1 but not con-
dition 2, it can still be included in the cluster if S exceeds T by less
than R. A pseudocode of the clustering process is given in Figure S4.
From the JASPAR 2010 database, 250 profiles from the CORE col-
lection and 184 from the PBM collection were analyzed, along with
the 4 profiles from the custom PENDING collection. A cluster score
threshold of 1.8 and a radius margin of 0.1 were used. These values
were selected empirically, based on the distribution of pairwise
similarity scores among all available JASPAR profiles.

When a TFBS cluster-based analysis is performed, any overlapping
TFBS hits that belong to the same TFBS cluster are merged to form
a single cluster hit. Only the merged cluster hits are counted for TFBS
over-representation calculations (Figure 3B).

Species-specific implementation details
The amount of sequence analyzed for the pre-computation of putative
TFBS locations for the gene-based over-representation variants was
adjusted to reflect the intergenic distances (unpublished observations)
of the target organism. For human and mouse, 10,000 bp upstream
and 10,000 bp downstream from the Ensembl-annotated TSS were
searched for TFBS hits. For fruit fly, 3000 bp upstream and 3000 bp
downstream were searched, and for nematode, 1500 bp in each
direction. For yeast, 1000 bp upstream of TSSs and downstream to
the 39 end of each gene were searched. In gene-based pre-calculations
for invertebrates, exons were excluded, as in general they are highly
conserved and thus the conservation filter employed to reduce false
positive TFBSs is rendered ineffective. As opposed to vertebrates and
insects, nematodes exhibit some operon structures of gene organi-
zation (Blumenthal and Gleason 2003). An operon consists of mul-
tiple adjacent genes that are transcribed as a single unit, which is
then spliced into separate mRNAs for translation. When analyzing
genes that are part of an annotated operon, oPOSSUM-3 accounts
for the operon structures by restricting the search space to the

Figure 2 TF structural families and TFBS clusters. As
many TFs cannot be distinguished in their binding
specificity, clustering TF binding profiles promotes user
consideration of all members of a functionally equiva-
lent group. As TFs within a group bind to essentially
identical sequences, users should focus on those TFs
within a group likely to be active in a cell or condition
relevant to their research. In the figure, the outer shapes
and color represent the structural class, and the inner
shapes symbolize the binding specificity of a cluster.
The different shading within the shapes denotes in-
dividual TFs.
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regions flanking the annotated start position of the first gene in the
operon. TFBS predictions in the search region of the first gene are
deemed to apply to all other genes in the operon (Figure S5).

Although JASPAR now includes distinct divisions for nematode
and insect TFBS profiles, coverage is not optimal. For insects, the
homeodomain family heavily dominates the set of profiles (90 of
125). For worms, there are currently only 4 profiles in the database.
Thus, whereas human and mouse oPOSSUM-3 databases are built
with vertebrate profiles only, fruit fly and nematode versions are
built with all available metazoan profiles in JASPAR 2010.

The yeast gene-based oPOSSUM-3 database differs from the
metazoan versions of oPOSSUM-3 in that it does not use conserva-
tion filtering, reflecting the compact promoter regions analyzed.

Build process for oPOSSUM-3
Figure 4 outlines the build process for gene-based versions of
oPOSSUM-3. The system imports the gene and transcript annotation

data from the Ensembl database and the phastCons conservation
scores from the UCSC database. These data are combined to define
the conserved segments in each gene. TFBS profiles from the JASPAR
database are used to search for putative TFBSs within or overlapping
the conserved regions. These TFBSs are stored in the oPOSSUM-3
database as well as the resulting counts (both single site and cluster
sites) for pre-determined conservation thresholds, search region
lengths, and profile matrix scoring thresholds. This pre-computation
facilitates faster analysis for the user if these pre-determined search
regions and thresholds are used for analysis. If the user chooses
custom values of these search region lengths and thresholds, TFBS
counts are computed at the time of the analysis. The sequence-based
oPOSSUM-3 foregoes this pre-computation pipeline, and all calcu-
lations are done at the time of analysis.

Data sources for ChIP-Seq–based analyses
ChIP-Seq datasets for Nfe2L2 (mouse embryonic fibroblast) and
FoxA2 (mouse liver) were obtained in their final processed form
from their respective authors (Malhotra et al. 2010; Robertson et al.
2008). The cMyc and Sox2 ChIP-Seq datasets [mouse embryonic
stem cells (mES)] (Chen et al. 2008) were obtained as BED files from
Gene Expression Omnibus (GEO accession GSE11431) (Edgar et al.
2002) and processed into peaks (putative TF bound regions) using the
FindPeaks algorithm (Fejes et al. 2008) with the following settings:
-control -dist_type 1 200 -subpeaks 0.6 -trim 0.2 -duplicatefilter. All
NCBI36/mm8 datasets were converted to build NCBI37/mm9 using
the UCSC Utility: Batch Coordinate Conversion (liftOver).

ChIP-Seq–related analysis
Data analyses and plots were derived using the R statistical package
(R Development Core Team 2008).

Selection of foreground datasets: The FoxA2-, cMyc-, and Sox2-
bound regions for our analyses were identified using a ratio of peak
height to width, and the top 1200 ranked regions were selected.
Nfe2L2 had undergone stringent filtering by the authors and had
a strong signal in the data; thus the full dataset of 1256 sequences
was used. For consistency, we chose similarly sized datasets for our
analyses because the over-representation scores are dependent upon
the data size (Figure S6).

Selection of background datasets: Background datasets were ex-
tracted from the control data of the related ChIP-Seq experiments. All
backgrounds were selected to match the mononucleotide GC com-
position of the foreground, except where we tested the impact of using
different background GC compositions. The default background size
for our analyses was 2-fold greater than the matching foreground,
except for Nfe2L2 where the fibroblast background was limited to the
same size as the foreground to obtain sequences with GC composition
distribution similar to the foreground. Data analyses and plots were
derived using the R statistical package (R Development Core Team
2008).

Thresholding by score: The ranges of the Z-score and Fisher score
enrichment values are dependent on foreground dataset size (see Fig-
ure S6). A threshold was derived using the mean plus N times the
standard deviation of the score of interest (where N = 2 for Z-score
thresholds, and N = 1 for Fisher score thresholds) (see Figure S7).
KS scores can be undefined (infinite) for TFs of interest; for de-
piction, a score of 100 is assigned. Calculation of candidate thresh-
olds excludes these values (Figure S8). Hereafter, the threshold is

Figure 3 TFBS cluster analysis. (A) TFBS clustering process. Binding
site profiles (represented by solid blue circles) are compared, and those
exhibiting similarity (all pairwise similarity scores within a threshold T) are
classified as a group (placed within the blue ring). In a second step,
a consensus of the initial set is generated, and all additional profiles
within the radius margin threshold (represented by the green ring) are
added to the group. (B) Individual TFBS hits within a DNA sequence
are grouped together according to the clustered groups, and over-
representation analysis is performed from the group perspective.
Each labeled red rectangle (e.g., CR1) represents a cluster of TFBSs
(individually displayed as small rectangles below).
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referred to as the applied threshold. In cases where we assess
the correlation between reported results, we used lists of length
5 through M, where M was calculated to be four times the number
of TFs with scores greater than the applied threshold. We chose
to make M lenient in terms of the number of TFs that are enriched
to be thorough.

GC composition calculation: Sequence composition of ChIP-Seq
sequences was determined at the mononucleotide level, using counts
of A, G, C, and T. TF profile composition was determined similarly
by counting the frequency of the nucleotides in all the sequences
contributing to the profile. All backgrounds used in testing were
selected to reflect the sequence GC composition distribution of the
foreground dataset.

Analysis parameters
All analyses were performed with the default parameters, unless
otherwise stated. Default settings restrict oPOSSUM-3 results to those
profiles with information content of at least 8 bits, and to putative
TFBSs whose score is at least 85% of the optimal score. For gene-
based analyses, species-specific default search region distances were
used (corresponding to Level 3 in Table 1).

SYSTEM WALK-THROUGH
oPOSSUM-3 is available as a web service at http://opossum.cisreg.ca.
The main page of oPOSSUM-3 lists each of the analysis methods
offered as well as the species supported, allowing the user to select
the appropriate combination. Figure 5 depicts the oPOSSUM-3

analysis pipeline for both the gene-based and sequence-based var-
iants, and Figure 6 depicts the user interface.

Input for gene-based analysis
For a gene-based analysis, the system takes as input the list of
identifiers (ID) of the genes to be analyzed. Although the default
input ID type is an Ensembl gene ID, the system accepts nine
alternatives, including official gene symbols and Uniprot IDs. For
the background gene set, the user can (1) choose the entire gene
set from the oPOSSUM-3 database, (2) specify a number of genes
to be randomly chosen, or (3) supply a list of gene IDs.

The gene-based analysis can be performed in either default or
custom modes. In default mode, the user is restricted to pre-defined
search regions, sequence conservation levels, and TFBS score thresh-
olds. While in custom mode, the user can specify the parameter values
within ranges allowed by the system. The default mode is faster as it
makes use of pre-computed TFBS counts from the database, whereas
the custom mode requires the system to compile binding site fre-
quencies. For SSA, the user may select profiles from species-dependent
subsets of JASPAR CORE, JASPAR PBM, or oPOSSUM-3-specific
PENDING collections. The PENDING collection contains profiles
that are not available from the 2010 release of JASPAR. The user
specifies whether to use the entire set or a selected subset of the
profiles. For aCSA, the user must select an anchor profile. For the
TFBS cluster-based versions (both TCA and aCTCA), instead of
selecting individual TFBS profiles, the user selects the TF of interest.
The system will then include all TFBS clusters that belong to the
selected TF families.

Figure 4 The build process for
oPOSSUM 3 gene-based analysis.
The system incorporates data from
the gene annotation data from
Ensembl, TFBS profiles from JASPAR,
and multi-species conservation infor-
mation based on phastCons scores
from UCSC Genome Browser. The
oPOSSUM database incorporates
the data from these sources to pre-
compute TFBS profile hits for gene-
based analysis.

n Table 1 Search region level distances for human/mouse, fly and nematode in oPOSSUM-3. oPOSSUM-3 searches for the presence of
motifs in non-coding regions meeting a specified conservation threshold and situated within a selected search region.

Human, Mouse Fruit Fly Nematode

Search Region Level Upstream (bp) Downstream (bp) Upstream (bp) Downstream (bp) Upstream (bp) Downstream (bp)

1 10,000 10,000 3000 3000 1500 1500
2 10,000 5000 3000 2000 1000 1000
3 5000 5000 2000 2000 1000 500
4 5000 2000 2000 1000 500 500
5 2000 2000 1000 1000 250 250
6 2000 0 1000 0 250 0

992 | A. T. Kwon et al.

http://opossum.cisreg.ca


Input for sequence-based analysis
The input parameter selection for the sequence-based methods is
simpler than it is for the gene-based methods, as there are no search
region or conservation level settings to specify. The user must supply
fasta formatted sequences for both foreground and background
datasets to be scanned for TFBS hits. oPOSSUM-3 provides a link
to the Galaxy service for users needing to generate fasta files from
sequence coordinates (Goecks et al. 2010). oPOSSUM-3 provides
background sets for users lacking a matched background for their
data. Lastly, the user must select TFBS profiles to be included in the
analysis or provide a set of custom profiles.

Parameter considerations
For all analyses, we suggest using default parameters, as we have done
in this article, to get an analysis started when a user is uncertain of
what to expect from their data. After the default analysis, users may
elect to alter parameters for further investigation. It can be informative
to compare how results change as parameters are altered. For instance,
a score of 85% is the default threshold for reporting TFBSs; we have
found this setting to work well with our datasets. Users may start with
this threshold and decide that the results returned are missing a
known TFBS, and so on the next analyses, they might reduce the
TFBS stringency from 85 to 80%. Another example would be the
region to analyze for gene-based analyses. The default distances are
5000 bp both up- and downstream; however, users may be interested
to determine whether there are TFBSs enriched predominantly in
upstream regions that differ from TFBSs enriched in downstream
regions. In this case, two separate analyses would be run with
different restrictions on the search regions.

Results output
The results are generated and returned in a table format, along with
a summary of the user-specified parameters and the nucleotide com-
positions of the foreground and background sequences used in the

analysis. In gene-based SSA, the results table is generated and returned
to the user immediately, whereas for gene-based aCSA, TCA, and
aCTCA, as well as for all sequence-based methods, a link to the results
is emailed to the user after computations are complete. If needed, the
user can download the results as a tab-delimited text file for further
analysis or record keeping. By default, the results in the table are
ranked by descending Z-score, and the user can specify the number
of motifs to report based on one score (default is all results). The table
can be re-sorted by any column by clicking on the column header.
The TF names are linked to the corresponding entries from the
JASPAR web site. As a profile’s information content (IC) can affect
its rate of occurrence, those profiles with IC lower than 9 or greater
than 19 are highlighted to inform the user of extreme cases. The TFBS
counts are linked to a separate TFBS details page that specifies the
sequences and locations. For sequence-based analysis, the report
specifies the overall GC mononucleotide content for both the back-
ground and foreground sequence sets. For both gene-based and
sequence-based SSA and aCSA, the results table reports the GC
content of each TF binding profile and highlights the extreme
values (i.e., those that are below 0.33 or above 0.66). For TFBS
cluster-based versions, the results table entries are based on TFBS
cluster names instead of individual profiles. The TFBS cluster hit
coordinates and the corresponding sequences represent the merged
TFBS hits. Each TFBS cluster name is linked to a separate page with
the summary information on the cluster, such as TF class, family,
and the member profiles that constitute the cluster.

Regarding interpretation of the results, we strongly recommend
that users consider results plotted as we have done in this article [i.e.,
in Figure 7 and Figure S8, the score of interest (Z-score, Fisher score,
or KS score) vs. the GC composition of the TF profile (only for SSA
and aCSA), and in Figure S7, the Fisher score vs. Z-score]. This
visualization of the data will alert the user if a skew in TF ranking
has occurred due to imbalanced composition of the background
relative to the foreground. If the user wants an alternative comput-
able metric, we recommend as a first pass setting a score threshold

Figure 5 oPOSSUM analysis pipeline. Dashed lines
indicate optional stages.
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Figure 6 Web interface. (A) oPOSSUM
home page listing the various analyses
and organisms available. (B) Four steps
for initiating a Single Site Analysis (SSA)
with user-chosen parameters.
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using the median plus N times the standard deviation (see Materials
and Methods). For SSA and TCA, start with N = 2 for Z-score, and
N = 1 for Fisher score; for aCSA or aTCA, start with N = 2 or 3 for
either score. It is useful to consider these thresholds in conjunction
with the aforementioned plots as a means for deciding whether the
threshold is too stringent for the user’s purposes.

RESULTS

Application to reference collections
To validate the performance of the oPOSSUM-3 system, each of the
analysis methods was tested using either sets of co-expressed genes or
sequences identified in ChIP-Seq studies. The gene sets were restricted
to cases in which there was prior knowledge of TF(s) responsible for
co-expression. The ChIP-Seq sequences, by the nature of the ChIP
method, are already self-restricted to a primary TF (the target of the
antibody used in the experiments).

Skeletal muscle reference gene set
Skeletal muscle-specific genes are known to be regulated by a core
set of TFs including (but not limited to) Mef2A, Myf, Srf, Tead1, and
Sp1, with the first three performing prominent roles (Braun et al.
1994; Naya and Olson 1999; Rudnicki and Jaenisch 1995; Wasserman
and Fickett 1998). From the literature, a collection of 25 human genes
regulated by muscle-specific enhancers was prepared (Table S1). This
set was analyzed with the full panel of oPOSSUM-3 gene-based meth-
ods for human, and the results are shown in Table 2. Although rank-
ings differ depending on the type of analysis performed and the
scoring method used, one or more of the core muscle-specific TFs
of Mef2A, Myf, and Srf are included in the top five enriched TF
profiles by either the Z- or Fisher scores. SSA (Table 2A) is able to
identify the muscle factors Mef2A, Myf, Srf, and Sp1 as candidate TFs
for regulating the muscle gene set, along with Nkx2-5, which is also
a known muscle-specific TF (Durocher et al. 1997). Likewise, TCA
(Table 2B) yields the clusters C113 (Nkx2-5), C130 (Mef2A), C143

(Myf), and C129 (Srf). When run with Mef2A as the anchoring TF,
aCSA (Table 2C) reports known muscle regulatory TF candidate
pairings with Mef2A, including Sp1, Nkx2-5, and Klf4 (Yoshida
et al. 2010). Similarly for aCTCA (Table 2D), Mef2A pairs with ETS
domain TFs (a known muscle regulatory TF family) in addition to
clusters containing Sp1 and Klf4.

Cilia gene set for nematodes
Inglis et al. (2006) curated a collection of genes known to be involved
in cilia function and structure, making the set available within Ciliome
DB. In vertebrates, RFX TFs are the key regulators of cilia gene ex-
pression. The RFX TFs bind to a regulatory motif termed the X-box.
The regulation is conserved between mammals and nematodes; X-box
sequences are associated with orthologous cilia genes (Efimenko et al.
2005). Although a nematode-specific RFX motif has been computed
from these sequences, these sequences were not experimentally vali-
dated in a rigorous manner. There are two RFX profiles in the re-
search literature, differing in the distance between two half sites
(Emery et al. 1996). These RFX profiles were added to the oPOS-
SUM-3 custom collection of TFBS profiles and were used to analyze
531 nematode cilia genes. The gene set was obtained from Ciliome DB
by combining the nematode genes from Avidor-Reiss, Blacque SAGE,
and Efimenko datasets and selecting for those genes that were in-
cluded in at least two of the studies. The results are listed in Table 3.
RFX profiles received the highest scores in both SSA and TCA. The
high scores obtained using the vertebrate RFX profiles in nematode
genomic sequences support the conservation of the TFBS sequences
across large evolutionary distances.

Results for ChIP-Seq reference datasets
We used oPOSSUM-3 to analyze ChIP-Seq datasets, of which we
describe two results here. The Nfe2L2 data fromMalhotra et al. (2010)
contains relatively few ChIP-Seq regions (1256 sequences) derived
from studies of mouse embryonic fibroblasts. Nfe2L2, previously
known as Nrf2, is a stress-activated TF linked to the regulation

Figure 7 Relationship between TF profile GC content and enrichment statistics. The percentage of G and C nucleotides in the TF profile models
are plotted against the motif enrichment Z-scores. The three panels represent analysis results for the same 1256 Nfe2L2 ChIP-Seq regions (GC
composition avg. 43%) compared with three background sets of different GC composition: (A) elevated background GC (avg. 51% GC); (B) low
background GC (avg. 37% GC); and (C) background with GC composition matched to the distribution of the ChIP-Seq regions (avg. 43% GC). The
GC composition of the background used in B is that of the control associated with the Nfe2L2 ChIP-Seq data. The plotted Z-scores represent the
enrichment of TFs in 1256 ChIP-Seq Nfe2L2-bound regions. The Nfe2L2 profile can be distinguished in all three cases (A, B, and C). However,
detection of the Ap1 profile, representing a TF with a known Nfe2L2-related biological function, is sensitive to background selection. Most TFs
that would be ranked highly by Z-score when the background is not corrected for GC composition (seen in A and B) are not ranked highly when
the background is matched to the foreground distribution of GC composition (C).
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of detoxification enzymes. We analyzed the Nfe2L2 data with
oPOSSUM-3 (Table 4). The Nfe2L2 profile is consistently found
to be a top-scoring motif in all analyses. The Ap1 motif, known to
overlap and coordinate with the Nfe2L2 binding sequence (Friling
et al. 1992), was also enriched in the SSA results, and it was clustered
with the Nfe2L2 profile (cluster 11C) in the TCA and aCTCA analyses.

For contrast, the FoxA2 data from Robertson et al. (2008) shows
a large number of TF bound regions (.10,000 sequences) using
mouse liver as the source. We took a subset of 1200 sequences for
analysis (see Materials and Methods). FoxA2 (also known as Hnf3a),
a TF linked to differentiation, is a member of the forkhead-box

family of TF proteins for which the JASPAR 2010 database has
eight profiles. Using the sequence-based SSA, we recovered FoxA2
as the top ranking TF, while additional forkhead-box family profiles
were ranked in the top five enriched TFBSs (Table 5). The other
prominently enriched profile represents the Hnf4 hepatocyte nu-
clear factor, which is predominantly expressed in the liver. The TCA
analysis complements the SSA results, with the clusters C57 represent-
ing forkhead-box binding profiles ranking first in all three scores. C19
(Hnf4A) ranks second by Z and Fisher scores, whereas C41 (Sox2,
SRY) ranks second by KS score. aCSA and aCTCA analyses also
support the importance of forkhead-box binding and Hnf4 profiles.

n Table 2 oPOSSUM-3 results for the muscle reference gene set (human).

A. Single Site Analysis using JASPAR CORE vertebrate profiles. Nkx2-5 is a known muscle regulatory TF involved in cardiac muscle
development. The bHLH TFs Nhlh1 and Myf have similar binding profiles.

Z-score Name Class:Family Score FDR
Nkx2-5 HTH:Homeo 31.4 2.85E-215
Arid3A HTH:Arid 29.3 6.26E-187
Mef2A Other Alpha-Helix:MADS 28.0 1.79E-171
HoxA5 HTH:Homeo 27.1 4.97E-160
Pdx1 HTH:Homeo 26.5 1.28E-153

Fisher score Mef2A Other Alpha-Helix:MADS 23.6 6.53E-09
Myf Zipper-type:HLH 15.5 1.08E-05
Sp1 Zinc-coord:ZnF 13.6 3.60E-05
Pparg::Rxra Zinc-coord:NucReceptor 12.9 3.60E-05
Srf Other Alpha-Helix:MADS 12.0 5.80E-05

B. TFBS Cluster Analysis. TFs of interest are shown in parentheses under the cluster name.
Z-score Name Class:Family Score FDR

C113 (Nkx2-5) HTH:Homeo 49.4 0.00E+00
C1 (TATA) Beta-sheet:TATA-binding 35.6 2.25E-275
C14 (Arid3A) Winged HTH:Arid 31.9 8.47E-222
C57 (FoxA1) Winged HTH:Forkhead 31.9 1.55E-221
C130 (Mef2A) Other Alpha-helix:MADS 29.1 1.46E-185

Fisher score C130 (Mef2A) Other Alpha-helix:MADS 23.7 8.66E-09
C19 (Pparg:Rxra) Zinc-coord:NucReceptor 16.3 7.09E-06
C143 (Myf) Zipper-type:HLH 15.2 1.42E-05
C129 (Srf) Other Alpha-helix:MADS 12.7 1.30E-04
C108 (Myb) HTH:Myb 11.7 2.60E-04

C. Anchored Combination Site Analysis. (Anchor: Mef2A, Maximum Inter-Binding Distance: 100 bp)
Z-score Name Class:Family Score FDR

Sp1 Zinc-coord:ZnF 37.4 1.05E-303
Nkx2-5 HTH:Homeo 34.2 5.70E-255
Gata1 Zinc-coord:Gata 32.9 2.05E-236
Pparg::Rxra Zinc-coord:NucReceptor 29.8 1.86E-193
YY1 Zinc-coord:ZnF 29.2 7.63E-186

Fisher score Sp1 Zinc-coord:ZnF 36.9 1.09E-14
Znf354C Zinc-coord:ZnF 22.1 1.32E-08
Klf4 Zinc-coord:ZnF 21.7 1.32E-08
Mzf1_1-4 Zinc-coord:ZnF 21.5 1.33E-08
Zeb1 Zinc-coord:ZnF 16.0 2.61E-06

D. Anchored Combination TFBS Cluster Analysis. (Anchor: Mef2A, Maximum Inter-Binding Distance: 100 bp)
Z-score Name Class:Family Score FDR

C113 (Nkx2-5) HTH:Homeo 47.0 0.00E+00
C75 (Sp1) Zinc-coord:ZnF 41.9 0.00E+00
C55 (Ets1, Elk1/4) Winged HTH:Ets 34.2 7.55E-255
C19 (Pparg::Rxra) Zinc-coord:NucReceptor 32.0.3 1.20E-227
C2 (Gata1) Zinc-coord:GATA 31.3 5.14E-214

Fisher score C104 (Klf4) Zinc-coord:ZnF 22.9 1.93E-08
C66 (Znf354C) Zinc-coord:ZnF 22.2 1.94E-08
C75 (Sp1) Zinc-coord:ZnF 21.7 2.13E-08
C19 (Pparg::Rxra) Zinc-coord:ZnF 19.1 2.15E-07
C72 (Zeb1) Zinc-coord:ZnF 17.8 6.32E-07

Known muscle TFs are bolded. FDR (false discovery rate) column lists the adjusted p-values calculated using the Benjamini & Hochberg algorithm. (Background: 5000
random, Conservation: 0.4, Matrix Score Threshold: 85%, Search region: 6 5000 bp.)
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Accounting for GC composition in
over-representation analyses
The genomes are composed of regions that are distinct by the nature
of their nucleotide composition. Promoters for housekeeping genes in
particular are often found to be rich in G and C nucleotides or in CpG
islands (Yamashita et al. 2005), whereas tissue-specific promoters are
often found to be relatively more AT-rich (Roider et al. 2009). These
broad composition differences are reflected among the sequences de-
rived from ChIP experiments, such as ChIP-Seq. The %GC content
of the published ChIP-Seq experiments we examined ranged from
�30–57% GC (unpublished observations). The mean and variance
of the %GC composition distribution differed between experiments
for different TFs. The binding profiles of the TFs themselves also
varied in GC content. Given a set of GC-rich sequences to analyze,
TFs with GC-rich profiles will have a greater probability of having
a motif present than AT-rich profiles. As over-representation anal-
ysis is designed to report TFBS predictions that exist to a greater
extent in a set of chosen sequences than in a background set of
sequences, we examined the effect of GC composition on motif
enrichment scoring using backgrounds with varying GC content
(i.e., high, low, and neutral GC composition) against several ChIP-
Seq datasets.

We used mouse-derived ChIP-Seq data for several TFs with
varying GC composition in their profiles: Sox2 (ES cells), 36%
GC; Nfe2L2 (fibroblast), 43% GC; FoxA2 (liver), 46% GC; and
cMyc (ES cells), 61% GC. For each ChIP-Seq dataset, we analyzed
a subset of the TF bound regions (foreground data) against back-
ground sequence sets with a variety of %GC distributions. The over-
representation Z-score for each TF was then plotted against the
%GC composition of the TF’s profile. As illustrated with Nfe2L2 in
Figure 7, composition differences between the foreground and back-
ground sequences will affect the over-representation scores of TFs.

When the background %GC composition is lower than that of the
foreground sequences, the TFs with low GC profiles are reported as
under-represented (low Z-score) in the foreground sequences relative
to the background sequences, while the TFs with high GC profiles
are over-represented (high Z-score) in the foreground sequences vs.
the background sequences. The opposite trend occurs when the back-
ground %GC composition is higher than the foreground sequences;
in this case the TFs with low GC profiles are reported as over-
represented. A background with the same GC composition distribu-
tion (mean and variance) as the foreground dataset removes bias
arising from GC composition differences and controls against TFBSs
being unduly assigned high or low over-representation scores.

Scoring measures for ChIP-Seq–based analyses
In combination, the Z-score and Fisher score inform the user whether
enrichment is (1) due to a high frequency of TFBSs in some of the
sequences and absence in others (Z-score high rank, Fisher score low
rank; Figure S7A, TF: Ap1); (2) due to a majority of regions carrying
a TFBS but at low frequency per sequence (Fisher score high rank,
Z-score low rank; or (3) due to both types of representation being
elevated (Z-score and Fisher score both rank high). For sequence-
based analyses on ChIP-Seq data, we find that ordering by either score
presents similar ranks. To measure the agreement between the Z- and
Fisher scores, we took the top 10 motifs ranked by each of the two
types of scores and counted the fraction of TF motifs that were com-
mon to both lists. We based our choice of 10 top motifs on our lenient
applied threshold (seeMaterials and Methods). Using the results from
SSA, there was 100% agreement within the top 10 motifs for cMyc,
and 82% agreement within both Sox2 and Foxa2. The Chip-Seq target
TF ranked in the top two enriched motifs for both measures. For
the most stringent results, users may use both Z- and Fisher over-
representation scores in combination when selecting motifs for

n Table 3 oPOSSUM-3 results for the cilia gene set in nematodes.

A. Single Site Analysis using JASPAR CORE collection and the custom PENDING collection. Two variants of Rfx1 profiles are from
TRANSFAC (Rfx1_1 and Rfx1_2), which were placed into the custom PENDING collection for analysis.

Z-score Name Class:Family Score FDR
Rfx1_2 HTH:RFX 55.8 0.00E+00
Rfx1_1 HTH:RFX 35.7 1.90E-277
Spib Winged HTH:Ets 8.8 2.75E-17
Esr2 Zinc-coord:NucReceptor 8.7 5.61E-17
Arnt::Ahr Zipper-type:HLH 7.4 1.88E-12

Fisher score Rfx1_2 HTH:RFX 36.6 8.15E-24
Sox5 Other Alpha-helix:HMG 30.1 8.02E-15
HoxA5 HTH:Homeo 29.5 3.56E-12
Spib Winged HTH:Ets 29.2 4.86E-12
Sox17 Other Alpha-helix:HMG 28.6 5.25E-12

B. TFBS Cluster Analysis. C154 contains RFX profiles from TRANSFAC, and C155 consists of RFX profiles from the JASPAR PBM collection.
Z-score Name Class:Family Score FDR

C154 (Rfx1) HTH:RFX 30.9 2.37E-208
C155 (Rfx3,4) HTH:RFX 25.0 1.02E-136
C62 Winged HTH:E2F 12.5 2.66E-34
C39 Zinc-coord:ZnF 10.7 1.41E-25
C127 Winged HTH:Ets 8.5 2.49E-16

Fisher score C154 (Rfx1) HTH:RFX 38.4 3.58E-15
C41 (Sox2) Other Alpha-helix:HMG 34.8 6.55E-14
C113 (Nkx2-5) HTH:Homeo 34.0 9.71E-14
C155 (Rfx3,4) Winged HTH:RFX 33.2 1.62E-13
C55 (Ets1, Elk1/4) Winged HTH:Ets 32.6 2.36E-13

TFs known to be involved in cilia gene regulation are bolded. The scores for daf-19 profile are not shown, as the profile was built based on gene sets included in these
analyses, making the results circular. FDR (false discovery rate) column lists the adjusted p-values calculated using the Benjamini & Hochberg algorithm. (Matrix Score
Threshold: 85%, JASPAR CORE vertebrate profiles and JASPAR PENDING profiles, minimum information content = 8 bits.)
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n Table 4 oPOSSUM-3 results for Nfe2L2 ChIP-Seq dataset, using JASPAR CORE vertebrate profiles.

A. Single Site Analysis. Nfe2L2 ranks first and Ap1 sec by all three scores.

Z-score Name Class:Family Score FDR
Nfe2L2 Zipper-Type:LeuZip 238.0 0.00E+00
Ap1 Zipper-Type:LeuZip 55.5 0.00E+00
Klf4 Zinc-coord:ZnF 21.6 2.60E-102
Irf1 Winged HTH:Irf 21,2 2.01E-98
Sp1 Zinc-coord:ZnF 18.2 1.17E-72

Fisher score Nfe2L2 Zipper-Type:LeuZip 457.8 1.73E-197
Ap1 Zipper-Type:LeuZip 28.9 1.68E-11
Irf1 Winged HTH:Irf 9.6 2.50E-03
Klf4 Zinc-coord:ZnF 6.3 5.56E-02
Sp1 Zinc-coord:ZnF 5.3 1.20E-01

KS score Nfe2L2 Zipper-Type:LeuZip Inf 0.00
Ap1 Zipper-Type:LeuZip Inf 0.00
Nkx2-5 HTH:Homeo 28.8 1.20E-11
HoxA5 HTH:Homeo 28.2 1.66E-11
Arid3A HTH:Arid 26.7 5.95E-11

B. TFBS Cluster Analysis. Nfe2L2 and Ap1 are both in cluster 11C.
Z-score Name Class:Family Score FDR

11C (Nfe2L2, Ap1) Zipper-type:LeuZip 118.8 0.00E+00
C4 Winged HTH:IRF 23.3 1.55E-118
C104 Zinc-coord:ZnF 21.7 8.83E-104
C108 HTH:Myb 13.7 2.85E-42
C107 Other:Cp2 13.1 2.96E-38

Fisher score 11C (Nfe2L2, Ap1) Zipper-type:LeuZip 35.3 8.17E-14
C4 Winged HTH:IRF 10.3 2.95E-03
C104 Zinc-coord:ZnF 6.3 1.09E-01
C107 Other:Cp2 4.9 2.62E-01
C108 HTH:Myb 4.9 2.62E-01

KS score 11C (Nfe2L2, Ap1) Zipper-type:LeuZip Inf 0.00
C55 Winged HTH::Ets Inf 0.00
C113 HTH:Homeo Inf 0.00
C41 Other Alpha-helix:HMG Inf 0.00
C57 Winged HTH::Forkhead Inf 0.00

C. Anchored Combination Site Analysis. Nfe2L2 associates most frequently with itself and Ap1. (Anchor: Nfe2L2, Maximum
inter-binding distance = 100 bp)

Z-score Name Class:Family Score FDR
Nfe2L2 Zipper-Type:LeuZip 607.1 0.00
Ap1 Zipper-Type:LeuZip 432.9 0.00
Klf4 Zinc-coord:ZnF 265.5 0.00
Tcfcp2l1 Other:Cp2 260.0 0.00
Znf354c Zinc-coord:ZnF 251.8 0.00

Fisher score Ap1 Zipper-Type:LeuZip 391.0 1.17E-168
Znf354C Zinc-coord:Znf 380.0 5.03E-164
Sp1b Winged HTH:Ets 340.0 7.40E-147
Hoxa5 HTH:Homeo 336.0 3.93E-145
Mzf1_1-4 Zinc-coord:ZnF 299.0 4.15E-129

D. Anchored Combination TFBS Cluster Analysis. (Anchor: Nfe2L2, Maximum inter-binding distance = 100 bp)
Z-score Name Class:Family Score FDR

11C (Nfe2L2, Ap1) Zipper-Type:LeuZip 193.8 0.00
C55 (Ets, Elk1) Winged HTH:Ets 130.6 0.00
C113 HTH:Homeo 109.8 0.00
C104 inc-coord:ZnF 93.1 0.00
C75 Zinc-coord:ZnF 92.2 0.00

Fisher score 11C (Nfe2L2, Ap1) Zipper-Type:LeuZip 88.1 9.31E-37
C55 (Ets, Elk1) Winged HTH:Ets 40.9 1.47E-16
C113 HTH:Homeo 34.8 4.36E-14
C66 Zinc-coord:ZnF 32.8 2.42E-13
C104 Zinc-coord:ZnF 28.9 9.55E-12

Nfe2L2 and Ap1, a TF with known Nfe2L2-related biological functions, are bolded. FDR (false discovery rate) column lists the adjusted p-values calculated using the
Benjamini & Hochberg algorithm. (Matrix Score Threshold: 85%, JASPAR CORE vertebrate profiles, minimum information content = 8 bits.)
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n Table 5 oPOSSUM-3 results for FoxA2 ChIP-Seq dataset, using JASPAR CORE vertebrate profiles.

A. Single Site Analysis Results. Forkhead-box binding profiles rank the highest by both Z-score and Fisher score.

Z-score Name Class:Family Score FDR
FoxA2 Winged HTH:Forkhead 203.4 0.00
FoxA1 Winged HTH:Forkhead 155.6 0.00
FoxF2 Winged HTH:Forkhead 113.8 0.00
FoxD1 Winged HTH:Forkhead 107.1 0.00
FoxO3 Winged HTH:Forkhead 90.1 0.00

Fisher score FoxA2 Winged HTH:Forkhead 388.7 1.86E-167
FoxA1 Winged HTH:Forkhead 219.0 4.62E-94
FoxD1 Winged HTH:Forkhead 131.4 3.20E-56
FoxF2 Winged HTH:Forkhead 82.4 4.97E-35
FoxO3 Winged HTH:Forkhead 77.2 6.71E-33

KS score FoxA2 Winged HTH:Forkhead Inf 0.00
FoxA1 Winged HTH:Forkhead Inf 0.00
FoxD1 Winged HTH:Forkhead Inf 0.00
FoxF2 Winged HTH:Forkhead Inf 0.00
FoxO3 Winged HTH:Forkhead Inf 0.00

B. TFBS Cluster Analysis. Cluster C57, containing forkhead-box binding profiles, ranks highest by all three scores. Cluster C19,
containing the Hnf4A hepatocyte-related TF profile, ranks second by Z and Fisher scores, while cluster C41 containing the Sox profiles

ranks the same as C57 by KS score.
Z-score Name Class:Family Score FDR

C57 (FoxA2) Winged HTH:Forkhead 214.0 0.00E+00
C19 (Hnf4A) Zinc-coord:NucReceptor 67.2 0.00E+00
C9 Zipper-type:LeuZip 54.3 0.00E+00
C41 (Sox2, Sry) Other Alpha-helix:HMG 31.6 5.29E-218
C17 Zinc-coord:NucReceptor 29.3 1.92E-187

Fisher score C57 (FoxA2) Winged HTH:Forkhead 69.2 1.44E-28
C19 (Hnf4A) Zinc-coord:NucReceptor 9.2 8.88E-03
C9 Zipper-type:LeuZip 1.3 1.00E+00
C41 (Sox2, Sry) Other Alpha-helix:HMG 0.012 1.00E+00
C17 Zinc-coord:NucReceptor 0.005 1.00E+00

KS score C57 (FoxA2) Winged HTH:Forkhead Inf 0.00
C41 (Sox2,Sry) Other Alpha-helix:HMG 35.6 9.66E-15
C113 HTH:Homeo 20.7 1.98E-08
C19 Zinc-coord:NucReceptor 18.6 1.22E-07
C17 Zinc-coord:NucReceptor 17.7 2.48E-07

C. Anchored Combination Site Analysis. FoxA2 associates closely with other forkhead-box binding profiles, and the profile of Hnf4A,
a hepatocyte-related TF. (Anchor: FoxA2, Maximum inter-binding distance = 100 bp)

Z-score Name Class:Family Score FDR
FoxA1 Winged HTH:Forkhead 334.8 0.00
FoxA2 Winged HTH:Forkhead 265.3 0.00
Hnf4A Zinc-coord:NucReceptor 247.1 0.00
FoxD1 Winged HTH:Forkhead 238.7 0.00
FoxO3 Winged HTH:Forkhead 213.4 0.00

Fisher score FoxA2 Winged HTH:Forkhead 245.7 2.23E-105
FoxA1 Winged HTH:Forkhead 238.0 2.56E-102
Zeb1 Zinc-coord:ZnF 236.5 7.57E-102
Znf354C Zinc-coord:ZnF 223.0 4.14E-96
FoxD1 Winged HTH:Forkhead 208.0 1.07E-89

D. Anchored Combination TFBS Cluster Analysis. Cluster C19 containing the Hnf4A hepatocyte-related TF profile is ranked high by
both scores. (Anchor: FoxA2, Maximum inter-binding distance = 100 bp)

Z-score Name Class:Family Score FDR
C57 (FoxA2) Winged HTH:Forkhead 189.3 0.00
C19 (Hnf4A) Zinc-coord:NucReceptor 180.1 0.00
C17 Zinc-coord:NucReceptor 151.1 0.00
C41 Other Alpha-helix:HMG 135.0 0.00
C9 Zipper-type:LeuZip 133.5 0.00

Fisher score C57 (FoxA2) Winged HTH:Forkhead 72.6 5.02E-30
C19 (Hnf4A) Zinc-coord:NucReceptor 42.2 4.00E-17
C55 WingedHTH:Homeo 31.5 1.18E-12
C113 HTH:Homeo 26.5 1.32E-10
C9 Zipper-type:LeuZipper 25.0 4.72E-10

FoxA2 is bolded. FDR (false discovery rate) column lists the adjusted p-values calculated using the Benjamini & Hochberg algorithm. (Matrix Score Threshold: 85%,
JASPAR CORE vertebrate profiles, minimum information content = 8 bits.)
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further analysis (i.e., motifs scoring above both scores’ applied
thresholds, Figure S7).

Unique to sequence-based SSA and TCA, KS scores are available,
complementing Z- and Fisher scores. For the Nfe2L2 and FoxA2
ChIP-Seq datasets analyzed in this study, the target TF binding
profiles receive high KS scores, as well as high Z- and Fisher scores
(Tables 4 and 5 and Figure S8). The KS scores obtained for these
datasets were extreme; “infinity” values were returned for the target
profiles. The accompanying false discovery rates support the utility
of these scores.

Assessing impact of background dataset size on
ChIP-Seq–based analyses
For some foreground sets, extreme composition properties can make
it difficult to obtain composition-matched background sets of com-
parable size from the associated control dataset, let alone a background
with 2-fold or more sequences. To determine the impact of back-
ground set size on results, we assessed the impact of background-
to-foreground ratios on results. Datasets from ChIP-Seq analysis of
the Sox2 and FoxA2 TFs were used for the assessment. We first
assessed the variability between two different background sets of the
same size, selected from the pool of control sequences to match the
composition of the same associated foreground dataset. SSA analysis
was performed for each. The Spearman correlation between the top
TFs, for lists of length 5 through M (where M is derived from the
lenient threshold; see Materials and Methods), was $0.97 for both
Sox2 and FoxA2 Z-scores, $0.93 for FoxA2 Fisher scores, and $0.86
for Sox2 Fisher scores. Thus the selection of background sequences,
which are matched to the foreground composition, has a subtle in-
fluence on the rankings of enriched TFs. We then ran SSA analyses
using 0.5-, 1-, 2-, 3-, and 4-fold background-to-foreground ratios. For
this comparison of different sized backgrounds, we again used lists
of length 5 through M. The Spearman correlation between any two
backgrounds, regardless of size, was $0.89 for both the Z- and Fisher
scores of FoxA2, whereas the correlation value for Sox2 was$0.90 for
either score. Thus we conclude that using background datasets larger
than the foreground is not critical as it does not strongly influence the
rankings of enriched motifs.

DISCUSSION
The oPOSSUM-3 system enables researchers interested in the study
of gene regulatory networks to identify TFs that may be acting in
a biological context. Several key advances in the implementation of
oPOSSUM-3 make the system suitable for analysis of emerging high-
throughput data. Using phastCons multi-species conservation scores
obviates the restrictive pairwise sequence alignment phylogenetic
footprinting procedures of past releases, which greatly increases the
number of genes represented within the system. This conversion to
phastCons-based phylogenetic footprinting enables the construction
of oPOSSUM services for any species represented in the Ensembl
genome annotation database and the UCSC Genome Browser.
The new anchored approach to combination site analysis (aCSA)
allows for computationally tractable identification of interacting
TFs. Motivated by the highly similar profiles for structurally related
TFs emerging from large-scale studies, the clustering of highly
similar binding site profiles allows a more focused report to users.
Most importantly, the new sequence-based methods enable the
oPOSSUM system to function as an analysis tool for large-scale
ChIP-Seq sequence sets. Taken as a whole, oPOSSUM-3 is a powerful
tool for biologists seeking insight into gene regulatory networks.

One of the key considerations in motif enrichment analysis of
mammalian regulatory sequences is how to filter the sequences to
enrich for regulatory regions. The presented methods have two
approaches to this problem. First, it is now widely recognized that
using experimental data arising from chromatin immunoprecipitation
(ChIP) studies can enrich for regulatory regions. The new oPOSSUM
system features the capacity to process user-supplied DNA sequences.
Although the cases presented in this report focus on TF-specific
ChIP-Seq data, users may analyze any set of sequences they gen-
erate. Research that combines subsets of gene expression, epigenetic
marks, and TF binding data could yield interesting sequence sets
for analysis with oPOSSUM-3. For gene-based analysis, principally
used by researchers working with gene expression data, the use of
phylogenetic footprinting to restrict analysis remains the most common
approach. The transition from pairwise alignment analysis to mul-
tiple sequence alignment analysis presents key benefits and raises
challenges. Multiple sequence alignment approaches to phylogenetic
footprinting can be performed for a dramatically higher portion of
genes (a 66% increase observed in this study) and lead to improved
alignment quality (Kumar and Filipski 2007). There remains a need
to refine the multiple species footprinting approach using more
advanced methods that incorporate motif conservation as well as
sequence conservation. The recently published MotEvo method may
address this challenge (Arnold et al. 2012). In the near future, a
broad and systematic benchmarking study of multiple species phy-
logenetic footprinting procedures for motif enrichment and de novo
motif discovery would advance the field.

Although running analyses on oPOSSUM-3 is relatively straight-
forward, interpretation of results requires some consideration, as
expected for any over-representation analysis. First, as shown in the
analysis of the effects of background GC-content, one should be
aware of nucleotide composition differences between the foreground
target set and the background set, as such differences can bias the
TFBS profile enrichment scores. oPOSSUM-3 reports the GC-content
of the foreground and background sets used in each analysis to
empower users to make such assessments. A second consideration
is the selection of the enrichment scoring method. While in some
cases the profile of a mediating TF scores high on both Z-score
and Fisher score rankings, empirical observations indicate that the
two metrics can differ substantially. The differences reflect proper-
ties of the frequency of predicted TFBS. Fisher scores indicate the
number of sequences or genes containing a predicted TFBS, whereas
Z-scores reflect the frequency of the predicted TFBSs. The KS scores,
which are new to oPOSSUM, measure the tendency for the predicted
TF binding sites to cluster near a position of maximum confidence
in the peak, or near the peak center if the user does not provide a
position of confidence.

There are opportunities to enhance oPOSSUM-3 in the future.
The oPOSSUM system should be linked to a curated database
of TFs, such as DBD or TFCat (Fulton et al. 2009; Wilson et al.
2008). By linking the systems, we can indicate which genes in the
foreground target set are encoding TFs and therefore which genes
may be candidates for participation in regulatory feedback loops.
Based on similar considerations, the regulatory ncRNA genes should
be reported. Finally, the system can be modified to incorporate
automated methods to correct for biases in the gene or sequence
foreground sets that are not represented in the default back-
ground set.

Ultimately, we expect the oPOSSUM-3 system to be a convenient
and useful tool for transcriptional regulation analysis, providing
researchers with insight into the transcription factors acting on
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their sets of genes or sequences. The user-friendly interface provides
researchers with access to a powerful bioinformatics tool.
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