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To overcome the limitations of conventional breast screening methods based on digital mammography, a quasi-3D imaging
technique, digital breast tomosynthesis (DBT) has been developed in the field of breast cancer screening in recent years. In this
work, a computer-aided architecture for mass regions segmentation in DBT images using a dilated deep convolutional neural
network (DCNN) is developed. First, to improve the low contrast of breast tumour candidate regions and depress the background
tissue noise in the DBT image effectively, the constraint matrix is established after top-hat transformation and multiplied with the
DBT image. Second, input image patches are generated, and the data augmentation technique is performed to create the training
data set for training a dilated DCNN architecture. Then the mass regions in DBT images are preliminarily segmented; each pixel is
divided into two different kinds of labels. Finally, the postprocessing procedure removes all false-positives regions with less than
50 voxels. The final segmentation results are obtained by smoothing the boundaries of the mass regions with a median filter. The
testing accuracy (ACC), sensitivity (SEN), and the area under the receiver operating curve (AUC) are adopted as the evaluation
metrics, and the ACC, SEN, as well as AUC are 86.3%, 85.6%, and 0.852 for segmenting the mass regions in DBT images on the
entire data set, respectively. The experimental results indicate that our proposed approach achieves promising results compared
with other classical CAD-based frameworks.

1. Introduction

Breast cancer is one of the leading causes of diseases in
women worldwide, and it is also the most common cause of
cancer deaths in women. Since the late 70s of the last
century, the incidence of breast cancer worldwide has been
increasing. According to the report “The Status and Trends
of Cancer in China 2017” released by the National Cancer
Center, the incidence of breast cancer ranks first among
female malignant tumours [1]. Early diagnosis and treat-
ment can effectively reduce the mortality of breast cancer
patients and improve their quality of life [2]. In developed
countries, organized and opportunistic screening programs
have significantly reduced breast cancer mortality. Although

two-dimensional mammography uses a new detector, it is
well known that it still has its limitations because the normal
structures and pathological structures may overlap each
other when obtaining the transmission X-ray image [3].
Digital breast tomosynthesis (DBT) is a quasi three-
dimensional imaging technology. An X-ray tube rotates in a
limited arc, and a digital detector obtains a series of low-dose
projection images to reconstruct the tomographic images
[4]. DBT can evaluate the dense breast tissues in detail by
describing the breast tissues in three dimensions to over-
come the limitation that standard mammography only
displays a two-dimensional image. In addition, the recon-
structed DBT slice images can partially reduce the often
called “anatomical” or “structure” noise caused by tissue
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superimposition in conventional mammography [5]. It is
crucial to segment the breast mass regions in DBT slice
images to provide accurate radiologists’ qualification. Al-
though DBT has higher sensitivity and specificity in breast
mass regions detection, it has dramatically increased the
amount of data in the image, resulting in manually anno-
tating breast mass regions in DBT images. It is not only
tedious but also time consuming for radiologists [6]. Hence,
it is significant to develop a computer-aided segmentation
framework for DBT mass regions to aid radiology clinicians
to reduce the workload of manual annotation for the
radiologists.

Automatic segmentation of breast mass regions is
challenging because the breast mass regions have low
contrast differences among their neighboring tissues [7].
Although it is difficult to achieve accurately segment breast
mass regions, many studies focus on designing various
automatic or semi-automatic learning-based approaches for
breast mass regions segmentation in recent years [8-10].
Whereas automatic segmentation of breast masses from
two-dimensional (2D) mammography has been widely in-
vestigated, little has been reported on segmenting breast
mass regions automatically for DBT slice images. For each
mass region, eight shape parameters and ten enhancement
texture features were extracted and then an artificial neural
network was used to build the diagnostic model; the average
area under the receiver operating curve (AUC) reported by
the system was 0.76 [11]. Breast tissues detection results were
obtained using the multivariate statistical analysis of mass
spectrometer data with a sensitivity of 90.9% and specificity
of 98.8% [12]. If two-dimensional projected slice images and
three-dimensional reconstructed volume can be combined
for analysis, a computer-aided diagnosis (CAD) system of
DBT can produce a lower false-positive rate [13]. In addition
to research on breast segmentation by maximizing the radial
gradient index in three dimensions of Reiser et al. [14], some
publications only used a single representative two-dimen-
sional slice [15, 16] to quantitatively evaluate the accuracy of
mass regions segmentation in DBT images. Chan et al. [17]
presented an approach on automatic detecting for breast
mass regions. van Schie et al. [18] proposed an automated
segmentation approach of breast mass regions, which used
the mammography image data set to train the models. Kim
etal. [19] concentrated on the influence of the saliency of the
reconstructed slices on DBT mass regions’ detection per-
formance and then presented an automated detection sys-
tem of breast mass regions based on the saliency of DBT
reconstructed slices. Palma et al. [20] built a CAD frame-
work based on the antagonistic reasoning and fuzzy theory,
which can detect breast mass regions in reconstructed DBT
images.

In recent years, deep learning has been successfully
utilized in various medical image recognition tasks, such as
tumour boundary detection, region segmentation, and
pattern classification, because it does not adopt various
handcrafted features in supervised manners [21-23]. The
ResNet-50 model pretrained with transfer learning and class
activation map technique were employed in breast cancer
classification and localization, resulting in an AUC of 0.96

Computational Intelligence and Neuroscience

[24]. Sampaio et al. [25] proposed a computational meth-
odology, where the quality of mammography image was
improved initially by preprocessing, and the external region
of breast was removed to reduce noise and highlight the
internal structure of breast; next, the region was segmented
and shape descriptors (such as eccentricity, circular dis-
proportion and density) were extracted by using cellular
neural networks, followed by an SVM classifier; they re-
ported a sensitivity of 80% and AUC of 0.87. Wichakam and
Vateekul [26] used support vector machines (SVMs) with
ConvNets to detect mass on mammograms, where the re-
ported accuracy was 98.44%, which was superior to the
baseline (ConvNets) by 8%.

In this study, we combine DBT, a breast cancer screening
method, with the latest machine learning and deep learning
technologies. We focus on the accurate segmentation of the
mass regions in DBT images using a deep convolutional
neural network (DCNN) architecture, which is a fully
convolutional network with dilated filters (dilated DCNN)
instead of pooling filters. Besides, instead of training the
model with the whole image, we implement a patch-based
training approach. To produce an end-to-end segmentation
output, we apply a fully convolutional network approach.
Our system is used to every slice in a volume separately.

The structure of the paper is as follows: In Section 2, the
data sets used and dilated DCNN architecture are intro-
duced in detail, and then the training and testing methods of
the dilated DCNN model for the mass regions segmentation
in DBT images are introduced; Section 3 provides the details
and results of the experiments performed in this study;
Section 4 introduces the discussion, and the paper ends with
Section 5, in which the conclusions and future work are
presented.

2. Methodology

In this section, we will describe the data set used, the
sampling procedure for generating input image patches, the
architecture of the dilated DCNN, and the strategy for
training the dilated DCNN, followed by the approach ap-
plied to segment the mass regions in DBT images and the
evaluation metrics used.

A fully automatic framework for mass regions seg-
mentation in DBT images is developed, an overview of the
proposed architecture is shown in Figure 1. We apply a fully
convolutional network approach to produce an end-to-end
segmentation output. Our system is used to every slice in a
volume separately.

2.1. DBT Image Data sets. The benchmarking clinical DBT
image data used in this study are obtained from the Zhejiang
Chinese Medical University Affiliated Guangxing Hospital
(DBT_gx) and Zhejiang Provincial Hospital of Traditional
Chinese Medicine (DBT_tcm) with Institutional Review
Board (IRB) approval. Each DBT volume is produced by
low-dose exposure, and the total shot dose should be within
the range of a regular mammogram dose. Each patient’s
DBT data is acquired in medio-lateral oblique and cranio-
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FIGUREe 1: Overview of the proposed dilated DCNN approach.

caudal views (Siemens Mammomat Inspiration DBT sys-
tem), using a total tomographic angular range of 60° with a 5°
rotation increment and 12 projection views. Both sets of
DBTs are reconstructed to 1 mm spacing slice with a res-
olution of 1200 x 901 pixels using the simultaneous algebraic
reconstruction technique. We convert the images into TIFF
stack/slices and used data in TIFF format to keep more
details.

A total of 66 cases of breast cancer patients is included
with a mean age of 53.65 years and an age range of 28-70
years. The entire DBT data set includes 146 views from 73
breasts with 97 masses, with size ranged from 4.7 to 37.8 mm
(mean =16.3 mm, median = 17.6 mm). Among them, 42 are
benign lesions (absolutely healthy) and 55 were malignant
lesions as determined by biopsy with subsequent histo-
pathologic analysis. For each view (medio-lateral oblique or
cranio-caudal), the number of slices ranged from 50 to 80
(mean =69, median=61). Two experienced radiologists
manually annotate 97 masses and compared their annota-
tions to reduce possible subjective errors. If there are any
inconsistencies, the correct annotation of the mass regions in
the image is determined by doctor consultation.

2.2. Slice Image Preprocessing. For a typical DBT screening
system, radiation exposure is a vital factor to avoid the risk of
radiation-induced cancer. Hence, the low radiation dose is
usually used to generate the DBT images. However, the total
radiation dose of DBT is slightly higher than that of standard
mammography. Generally, DBT image generally contains
Poisson distribution noise. Considering the top-hat trans-
formation can not only preserve more local details and
highlight the hidden information but also suppress noise
amplification. DBT images are preprocessed before the input
patch extraction step, including using the top-hat trans-
formation to enhance the contrast between the candidate
breast mass location regions and background tissues. Fur-
thermore, to improve the low contrast of breast tumour
candidate regions and depress the background tissue noise
in the DBT image effectively, a constraint matrix generated
by an isotropic radial basis function centered on the can-
didate breast mass location region with a variance §* (8 is
5mm) is established and multiplied with the DBT image.

Figure 2 shows the DBT image preprocessing results before
and after preprocessing procedure, where Figures 2(a), 2(b)
are the DBT image before and after preprocessed,
respectively.

2.3. Input Patch Extraction. In our research work, compared
with other DCNN-based detection problems, the DBT data
sets available have a small number of image samples, so
using the whole image directly is likely to result in over-
fitting. We split the entire DBT images into patches to
address this issue, which increases data set dimension and
complexity. As shown in Figure 3, we apply the sliding
window method to scan the entire DBT image data and
extract all possible input patches. All the patches are then
classified according to the ground truth provided in the data
sets. If the central pixel of an input patch is in the breast mass
region, the input image patch is marked as positive (breast
mass region candidate); Otherwise, it is designated as a
negative (no mass region) label. Because the no mass regions
can also provide valuable information for breast mass re-
gions segmentation in DBT images, we extract image patches
from breast mass regions and no breast mass region to
augment the training image data. In other words, we use the
image patches extracted from the no breast mass regions as
the additional negative sample of dilated DCNN architecture
training to help the proposed model distinguish the con-
founding regions and breast mass regions in the DBT
images.

2.4. Dilated DCNN Architecture. This part will briefly in-
troduce the architecture of the proposed dilated DCNN
model and its application to our DBT mass regions seg-
mentation framework. One of the problems of traditional
typical CNN architectures using the max-pooling technique
is that they will down-sample the image, resulting in seg-
mented output with a resolution smaller than the input size.
As shown in Figure 4 and Table 1, we use a new convolution
network architecture, using dilated convolutions specially
designed to get dense segmented output. The purpose of this
model is to combine the multiscale context information
systematically without losing the resolution, which is based
on the dilated convolution to support the exponential
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FIGURe 2: DBT image preprocessing results before and after preprocessing procedure. (a) DBT image before preprocessed. (b) DBT image

after preprocessed.
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FIGURE 4: The proposed DCNN architecture.

expansion of the received field without losing the resolution
or coverage.

Let f: Z? be a discrete function. Let Q, = [k, k]*Z?, and
let r: Q) — R be a discrete filter of size (2k + 1)%. The
discrete convolution operator can be defined as

(f*n)(p)= ) f)r (). 1

s+t=p

We now generalize this operator. Let d be a dilation
factor and let *; be defined as

(fxar)(p)= ) f()r (). B

s+dt=p

We will refer #, as a dilated convolution or d-dilated
convolution.

2.5. Patch-Based Training. The DBT image data sets used in
our work exhibit serious class imbalance, i.e. the number of
pixels in no breast mass regions is far more than that in
breast mass regions. This brings a problem to the model’s
training because the pixels in the no breast mass regions
influence the total loss function more than those in the
breast mass regions. To settle this problem, we adopt an
image patch-based training approach. In the training pro-
cess, we balance the training image data by randomly
resampling the same number of image patches of every class
from all possible patches in each epoch. However, breast
mass regions segmentation still has a similar problem of class
imbalance. The number of positive samples is far less than
the number of negative samples. Therefore, we adopt
f o-measure as cost function, which is also known as the Dice
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TaBLE 1: The proposed dilated DCNN configuration and parameters.

Layer Type

Configuration

Dilation Number of parameters

Convolutional
1 Batch normalization
ReLU

3x3x1x32 1 2256

Convolutional
2 Batch normalization
ReLU

3x3%x32%x32 1

18464

Convolutional
3 Batch normalization
ReLU

3x3x%x32x%x32 2

36928

Convolutional
4 Batch normalization
ReLU

3x3x32x32 4

73856

Convolutional
5 Batch normalization
ReLU

3x3x32x32 8

147712

Convolutional
6 Batch normalization
ReLU

3x3%x32%x32 16

295424

Convolutional
7 Batch normalization
ReLU

3x3x32x32 1

295424

8 Convolutional

1x1x32%x2 1

16384

coefficient. Compared with conventional loss (e.g., mean
square error), the f, -measure enforces a better balance
between performance on positive and negative regions, and
thus is suitable for the task of mass regions in DBT images
(having unbalanced samples in mass regions and nonmass
regions).

Denote T and S as the ground truth heatmap and the
predicted heatmap, respectively. Let M represent the number
of elements (pixels) in T'and S, and the f,-measure-based
loss function is defined in formula (3)

F(ST) = (1 + “2) Yo sit;
o TS+ Yt

where ¢; is the ith element of the ground truth heatmap and
s; is the i-th element of the predicted heatmap. In this paper,
we set a = 1 based on the number of pixels in mass regions to
the number of pixels in nonmass regions. If « is set to a
higher value, the model loss mostly comes from the error of
the mass regions, thus ignoring the error of the nonmass
regions; otherwise, if setting to a smaller value, the model
does not pay enough attention to the mass region because of
the class imbalance, which reduces the segmentation
accuracy.

, (3)

2.6. DBT Image Data Augmentation. Extend the image data
and generate more training data from the original image
data to improve the performance of the proposed dilated
DCNN model. Typical applications of the DCNN model for
medical image analysis and computer vision tasks, rotations,
and translations are often used to augment the data. In our
work, the DBT image data consist entirely of 2D image

patches. Hence, translation operation cannot augment the
image data because it will cause a different image patch to
have a possibly different class label. However, using rotation
operations of the image patches might give some perfor-
mance improvements. Therefore, we perform the rotation
operation by using angles multiple of 90°.

2.7. Segmentation Postprocessing. In DBT images, some
small clusters may be mistakenly classified as the breast mass
regions. To deal with the problem, we impose a constraint by
removing clusters in the segmentation output obtained by
the proposed dilated DCNN-based system with less than 50
voxels in volumes.

2.8. Performance Analysis. To compare and analyze the
performance with other classical CAD-based frameworks,
the evaluation metrics used in this paper are (a) accuracy
(ACCQ), sensitivity (SEN), and specificity (SPE) of the model;
ACC refers to the ratio of the number of pixels correctly
segmented to the number of total pixels in the image, SEN
refers to the likelihood of a positive test among the subjects
with the condition, and SPE refers to the probability of a
negative test among the subjects without the condition.
These three evaluation metrics are defined as follows:

ACC = TP+ TN (4)
" TP + TN + FP + FN’
TP
SEN=—— 5
TP + FN (5



TN

o 6
TN + FP ©

SPE =
TP, FP, TN, and FN denote true positive, false positive,
true negative, and false negative, respectively, (b) free-re-
sponse receiver operating characteristic curve (FROC), and
(c) the area under the receiver operating curve (AUC). The
FROC is used to evaluate the performance of the segmen-
tation system on the DBT_gx and DBT_zcm data sets and is
plotted between the fraction of correctly identified lesions as
true-positive rate and the number of false-positive per
volume (FPV) for all decision thresholds.

3. Results

3.1. Experimental Details. In this section, experiments with
different training data sets are performed to evaluate the
performance of the proposed dilated DCNN model. Note
that in all cases, the original resolution of the processed DBT
image is used. Patch-level data sets containing image patches
of size 256 x 256 pixels are generated and used as the pro-
posed dilated DCNN model inputs. In all experiments, a
stride of 28 x 28 pixels is used to create the input image
patches for training the dilated DCNN. The selection of the
stride value is balanced according to the computational
requirements and the number of training samples.

We apply the machine learning library Keras to im-
plement the training and testing of the dilated DCNN model
in Python 3.6. The training and testing experiments are
performed on an NVIDIA Geforce Titan RTX 24G GPU
with Intel Xeon Silver 4210 2.2 G GPU. The presented figures
are generated using the plotting library matplotlib. To train
the dilated DCNN, we used a batch size of 150 input image
patches, 1000 batches per epoch, and 1000 epochs. We used
an Adagrad optimizer [27] with a learning rate of 0.01.

3.2. Evaluation on Test Data sets. Given the limited data sets
available in our study, mass regions segmentation in DBT
images is performed using a ten-fold cross-validation
strategy. Figure 5 presents FROC curves measuring the
proposed dilated DCNN model trained on the DBT_gx and
DBT_zcm data sets, respectively. Our dilated DCNN-based
model’s performance is substantially higher when the
framework is tested on the DBT_gx data set with TPR =
0.971 + 0.029 at 3.3 FPV, compared with that obtained on
the DBT_zcm data set with TPR = 0.937 + 0.008 at 4.0 FPV.

To further assess the mass regions segmentation per-
formance in DBT images of our proposed method based on
dilated DCNN, we evaluated the overlap between the pro-
posed DBT mass labels and the ground truth maps. Figure 6
illustrates mass regions segmentation in DBT images on a
few testing images using our proposed model. The Ist
column shows individual segmentation results with our
proposed dilated DCNN model for case #5, case #16, case
#20, the 2nd column shows the corresponding ground truth
maps, and a red arrow is used to indicate the lesion without
obscuring the lesion in the 3rd column, respectively. The
examples shown in Figure 5 indicate that the mass regions
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segmentation outputs predicted by our proposed dilated
DCNN model are in high agreement with the manual
annotations.

4. Discussion

In this study, a dilated DCNN architecture is specifically
designed for the dense prediction of mass regions in DBT
images, which systematically aggregates multiscale contex-
tual information without losing resolution. Our proposed
model adopts the f,-measure as the cost function to sup-
press the influence of class imbalance. To generalize the
applicability of the proposed dilated DCNN-based frame-
work, we combine the two DBT image data sets into a larger
data set, which is called the entire data set. In the experi-
ments, we compare the performance of various typical
automatic detection methods of breast mass regions in DBT
images in terms of classifier used, DBT image data set size,
SEN, ACC, and AUC. As can be seen in Table 2, our model
based on dilated DCNN has achieved competitive results
than some of them. Among these classic models, we will
discuss the research work of Kim et al. [28], Fotin et al. [29],
and Samara et al. [30] in detail. They applied deep learning to
the detection and segmentation of breast mass regions in
DBT images. Their research works evaluated the automated
segmentation CAD frameworks for breast masses in DBT
images using the hand-crafted feature- and DCNN-based
models. The DCNN model proposed by Kim et al. [28]
extracted low-level features from the regions of interest
(ROIs) and corresponding ROIs, respectively, through the
convolutional layers separately, which can recognize the
latent bilateral feature representations of breast masses in the
reconstructed DBT volumes. To represent the high-level
bilateral features of breast masses in DBT images, they
combined the low-level features into the fully connected
layer. It was reported that the AUC of the latent bilateral
feature representation model was 0.847. Fotin et al. [29]
developed a DBT mass detection CAD framework using
DCNN model. They trained the DCNN with the generated
candidate ROIs, which included 1864 mammography breast
lesions and 339 breast lesions from DBT images data.
According to the report, 86.40% of ACC and 89% of SEN
were obtained in their model. Samala et al. [30] proposed a
DCNN framework composed of four convolutional layers
and three fully connected layers. First, the DCNN model was
trained on a large-scale two-dimensional mammography
data set. The weights of the first three convolutional layers
were frozen, and the rest weights continued to be trained and
updated. Through the calculation results of the DCNN
model, it can be seen that the AUC value was more than 0.8,
and the SEN value was over 80%. As for the method pro-
posed in our work, 87.1% ACC, 86.9% SEN, 88.2% SPE, and
0.859 AUC for the testing data set with 89 DBT volumes are
obtained.

In other models not based on DCNN network, we select
the studies of Chan et al. [17], van Schie et al. [16], Palma
et al. [20], and Reiser et al. [31] for comparative analysis.
Chan et al. [17] introduced three methods based on two-
dimensional and three-dimensional, as well as the
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FiGure 6: Illustration of mass segmentation examples in DBT images using proposed model compared with manual labeled. (a) Seg-

mentation result. (b) Ground truth map. (c) Lesion location.

combination of two-dimensional and three-dimensional
methods. For the data set contained 100 DBT images from 69
patients with malignant patient cases, they obtained 80%
SEN and 1.23 FPs/volume using the hybrid method. van
Schie et al. [16] proposed a two-stage method, the first step
was to locate ROIs in 2D slice images, and the second step
was to locate 3D ROIs on DBT volumes combined with the
extracted regions in 2D slice images. The results obtained
from the DBT image data of 49 patients with one or more
malignant tumours in 192 cases showed that 80% of the Sen
was 3 FPs/volume. Palma et al. [20] developed a dual-
channel DBT masses detection CAD framework in which
each channel classified a type of DBT lesions. They combined
discoveries and disjunction fusion methods from the
channels. Their results showed that 90% SEN of the 101 DBT
volumes contained 53 lesions. Reiser et al. [31] introduced a

method of detecting DBT breast mass in two-dimensional
projection views, and then reported 90% SEN for 36 DBT
volumes using the visual angle range found in combination
with detections.

Figure 7 shows examples of automatic segmentation of
breast mass regions in DBT images by our dilated DCNN
architecture and other typical CAD architectures, which is
obtained by overlaying the breast mass regions in DBT
images segmented by our proposed architecture and other
typical CAD architectures to the original image, respectively.
We carefully studied these methods presented by Kim et al.
[28], Fontin et al. [29], Samala et al. [30], and Reiser et al.
[31], then we configurated the frameworks and developed
these models in Python 3.6 with the machine learning library
Keras and applied the models to our own data set in our
study. Otherwise, it is unfair to make a comparison of the
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TaBLE 2: Comparisons of typical studies in mass regions detection of the DBT images.

Method Classifier DBT image data set size Sensitivity Accuracy AUC
Chan et al. [17] LDA 100 80% / /
van Schie et al. [18] NN 752 80% / /
Palma et al. [20] SVM 101 90% / /
Kim et al. [28] SVM 160 / / 0.847
Fotin et al. [29] DCNN 344 89% 86.4% /
Samala et al. [30] DCNN 324 80% / 0.80
Reiser et al. [31] LDA 36 90% / /
Proposed Dilated DCNN 97 85.6% 86.3% 0.852

FIGURe 7: Examples of mass regions in DBT images segmented by our dilated DCNN framework and other typical CAD systems.

performance between our dilated DCNN model with other
CAD models in automatic segmentation of breast masses in
DBT images because other CAD models are trained and
tested on different private data sets that are not available in
public. Although the automatic segmentation model pro-
posed in this paper cannot achieve the best overall DBT mass
regions segmentation performance, our dilated DCNN
framework achieves 86.3% ACC and 85.6% SEN with AUC
of 0.852. The experimental results of this paper also indicate
that our framework can get sound segmentation outputs on
DBT image data set, and the dilated DCNN model is trained
on the two-dimensional slice images of DBT volumes, not on
the two-dimensional mammography data set. Although the
proposed DCNN-based CAD framework has achieved
promising results in automated segmentation of breast mass
regions in DBT images, it can be further improved when
there are more DBT image data. The main limitation of this
study is the lack of sufficient DBT image data. To achieve
satisfactory overall segmentation performance, our pro-
posed automated segmentation framework for breast mass
regions in DBT images needs more diverse data and
structural distortion samples. Our proposed dilated DCNN-
based approach can be applied to detect all early signs of
breast tumour in DBT images, which is vital to decrease the
review time for radiologists while maintaining or decreasing
false positives.

5. Conclusions

This article presented a novel dilated DCNN-based architec-
ture for mass regions segmentation in DBT images, performed
experiments on an in-house collected DBT image data set, and
obtained promising results. The constraint matrix is generated
by using isotropic radial basis function and multiply with the
DBT image to effectively improve the low contrast of candidate
breast tumor regions and suppress the noise of background
tissue regions. Our dilated DCNN architecture is specifically
designed for dense prediction, systematically aggregating
multiscale contextual information without losing resolution.
Moreover, the proposed model adopts the f  -measure as the
cost function, further effectively suppresses the influence of
class imbalance, and can improve the generalization ability of
the segmentation. The average ACC, SEN, AUC obtained on
the entire data set are promising and they are 86.3%, 85.6%,
and 0.852, respectively. This study demonstrates that the
presented dilated DCNN network has the potential to segment
the mass regions in DBT Images accurately.
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