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Abstract

Each year more than 450,000 Germans are expected to be diagnosed with cancer subse-

quently receiving standard multimodal therapies including surgery, chemotherapy and

radiotherapy. On top, molecular-targeted agents are increasingly administered. Owing to

intrinsic and acquired resistance to these therapeutic approaches, both the better molecular

understanding of tumor biology and the consideration of alternative and complementary

therapeutic support are warranted and open up broader and novel possibilities for therapy

personalization. Particularly the latter is underpinned by the increasing utilization of non-

invasive complementary and alternative medicine by the population. One investigated

approach is the application of low-dose electromagnetic fields (EMF) to modulate cellular

processes. A particular system is the BEMER therapy as a Physical Vascular Therapy for

which a normalization of the microcirculation has been demonstrated by a low-frequency,

pulsed EMF pattern. Open remains whether this EMF pattern impacts on cancer cell sur-

vival upon treatment with radiotherapy, chemotherapy and the molecular-targeted agent

Cetuximab inhibiting the epidermal growth factor receptor. Using more physiological, three-

dimensional, matrix-based cell culture models and cancer cell lines originating from lung,

head and neck, colorectal and pancreas, we show significant changes in distinct intermedi-

ates of the glycolysis and tricarboxylic acid cycle pathways and enhanced cancer cell radio-

sensitization associated with increased DNA double strand break numbers and higher

levels of reactive oxygen species upon BEMER treatment relative to controls. Intriguingly,

exposure of cells to the BEMER EMF pattern failed to result in sensitization to chemother-

apy and Cetuximab. Further studies are necessary to better understand the mechanisms
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underlying the cellular alterations induced by the BEMER EMF pattern and to clarify the

application areas for human disease.

Introduction

Modern multimodal anticancer strategies consist of surgery, chemotherapy and radiotherapy.

The combination of intrinsic and acquired therapy resistances, normal tissue toxicities and

lack of biological personalization remain obstacles to overcome for a significant improvement

in cancer patient survival rates [1–4]. While our increasing understanding of tumor biology by

means of various “omics” technologies and molecular biology provides a wealth of possibilities

for the development of molecular-targeted agents, therapeutic strategies falling in the field of

complementary and alternative medicine gradually enter the conventional cancer therapy field

without clear mechanistic insight. Based on the increasing demand by the population and the

unexploited potential of such approaches, we investigated the potential of a particular electro-

magnetic field (EMF) therapy for cancer cell therapy sensitization shown to effectively normal-

ize tissue microcirculation.

Reviewing the literature indicated an impact of cellular functions and response to cancer

therapies upon application of EMF [5]. EMF therapies reduced proliferation [6–9] and

induced apoptosis [8,10–13] in different cancer cells such as osteosarcoma, breast cancer, gas-

tric cancer, colon cancer, and melanoma. Marchesi and colleagues also showed that autophagy

is induced upon EMF exposure in neuroblastoma cells [14]. Interestingly, tumor vasculariza-

tion was diminished in vitro and in vivo in breast cancer treated with EMF therapy [15,16]. In

line, EMF therapy decreased tumor growth in mouse models of malignant melanoma, colon

carcinoma and adenocarcinoma [9,17]. Baharara and colleagues showed that extremely low

EMF therapy restored the sensitivity of cisplatin resistant human ovarian carcinoma cells by

increased apoptosis rates [18]. In combination with radiotherapy, EMF improved survival of

mice bearing hepatoma as compared with EMF or radiotherapy alone [19]. Similarly, Cam-

eron and colleagues showed this for breast cancer xenografts including decreased lung metas-

tasis [20]. These studies clearly illustrate the potential of EMF therapy in combination with

conventional cancer therapies as new approach for sensitizing tumors. Importantly, the

applied EMF patterns show great differences in intensity, direction and frequency as well as

wave forms, ranging from sinusoidal to square-wave to pulsed-wave forms across studies

[5,21]. Mainly pulsed EMFs with low frequency were used.

In this study, we applied the Bio-Electro-Magnetic-Energy-Regulation (BEMER) system,

which uses a low-frequency, pulsed magnetic field (max. 35 μT) with a series of half-wave-

shaped sinusoidal intensity variations and was shown to increase vasomotion and microcircu-

lation for improved organ blood flow, supply of nutrients and removal of metabolites [22,23].

In multiple sclerosis (MS) patients, BEMER therapy decreased the levels of fatigue in a ran-

domized, double-blinded pilot study [24]. A follow-up long-term study demonstrated benefi-

cial effect of long-term BEMER therapy on MS fatigue [25]. In the field of cell biology, Walther

and colleagues showed altered gene expression of a limited number of gene products associ-

ated with e.g. energy metabolism, cytoskeleton stabilization and vesicle transport in human

mesenchymal stem cells and human chondrocytes upon BEMER therapy [26]. A second study

revealed BEMER therapy to delay EL4 mouse T-cell lymphoma growth and prolong survival

of mice [27]. Interestingly, simultaneous BEMER therapy and synthetic HPMA copolymer-

based doxorubicin showed a synergizing antitumor effect [27].
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By focusing on cells from solid tumors, we explored how the BEMER EMF pattern affects

the metabolome in terms of glycolysis and tricarboxylic acid (TCA) cycles and the sensitivity

to radiotherapy, chemotherapy and Cetuximab. To better address this question, we utilized a

more physiological 3D laminin-rich extracellular matrix (lrECM)-based cell culture model.

We found a significant radiosensitization of cancer cells by the BEMER therapy mechanisti-

cally derived from higher levels of reactive oxygen species and increased numbers of DNA

double strand breaks (DSBs).

Materials and Methods

Cell culture and irradiation

Human head and neck squamous carcinoma (HNSCC) cell line UTSCC15 was kindly pro-

vided by R. Grenman (Turku University Central Hospital, Finland), human lung carcinoma

cell line A549, human colorectal carcinoma cell line DLD1 and human pancreatic ductal ade-

nocarcinoma cell line MiaPaca2 were purchased from American Tissue Culture Collection.

Cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM; PAA, Cölbe, Germany)

containing glutamax-I supplemented with 10% fetal calf serum (FCS; PAA) and 1% non-essen-

tial amino acids (PAA) at 37˚C in a humidified atmosphere containing 8.5% CO2. In all experi-

ments, asynchronously growing cells were used. Three (3D)-dimensional cell cultures were

accomplished by imbedding cells in 0.5 mg/ml lrECM (Matrigel™; BD, Heidelberg, Germany)

[28–30]. Irradiation was performed at room temperature using single doses of 200 kV X-rays

(Yxlon Y.TU 320; Yxlon; dose rate ~1.3 Gy/min at 20 mA) filtered with 0.5 mm Cu. The

absorbed dose was measured using a Duplex dosimeter (PTW).

BEMER therapy

BEMER (Bio-Electro-Magnetic-Energy-Regulation) therapy uses a low-frequency pulsed mag-

netic field [22,23] which was applied for 8 min, 1 h or 24 h. The detailed physical properties of

this device are reviewed in the following patents: EP 0995463 A1, WO 2008025731 A1; WO

2011023634 A1 [31–33]. The electromagnetic field (EMF) with a pulse-duration of 30 ms and

a pulse-frequency of 30 Hz was generated by a commercially available control unit B.

Box Classic (BEMER AG Int.; Fig 1A) with 10 different levels of magnetic field intensity (from

0 μT to 35 μT) and a mattress applicator (Fig 1B) with a flat coil system (Bio-Electromagnetic-

Energy-Regulation, BEMER International AG, Triesen, Liechtenstein). The pulse generator is

fed with a mains voltage of 230 V AC / 50 Hz. Based on the commercially available construc-

tion, this mattress applicator was specifically designed for cell culture use with a maximum

operating voltage of 12 V DC. Additionally, different signal intensities were used at level 1

(~2.7 μT), level 4 (~13 μT), level 7 (~23 μT) and level 10 (~35 μT). The signal is a sequence of

individual pulses with a pulse width of approximately 33 milliseconds in the altitude of 3 to

35 μT within a predetermined time period of 18 to 22 seconds. The preferred exponential func-

tion described in detail in EP 0995463 A1 is y = (x 3 • esin(x3)):c (with y as amplitude) [31]. The

amplitudes of the single pulses correspond to an e-function and are then summarized as a

group of pulses. As shown in fig 1C, BEMER-treated cells were placed within the labeled area

above the flat coil on the mattress, and then stimulated with indicated intensities for 8 min, 1 h

or 24 h. BEMER therapy was conducted at 37˚C in a humidified atmosphere containing 8.5%

CO2 for pH 7.4. Control cells were sham-treated by placing them on the BEMER applicator for

the respective time without applying the BEMER signal. BEMER signal intensity was measured

using a 3D teslameter (PCE-G28, PCE, Germany) and cells were placed in the same area of the

BEMER applicator for each treatment.
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Samples collection for non-targeted metabolomic analysis

For metabolome analysis, A549 cells were cultured for 24 h in 3D lrECM followed by BEMER

therapy (~13 μT, 8 min; sham-treated cells served as control). After 1 h, cells were harvested

with 200 μl pre-cooled 80% MeOH containing 4 recovery standards to monitor extraction effi-

ciency. The extraction solvent and cellular material were transferred into a 2 ml microtube

(Sarstedt, Nümbrecht, Germany). Then, the wells were washed with 200 μl extraction solvent,

Fig 1. BEMER device and application. (A) The electromagnetic field (EMF) with a pulse-duration of 30 ms and a

pulse-frequency of 30 Hz was generated by a commercially available control unit B.Box Classic (BEMER AG Int.)

with 10 different levels of magnetic field intensity (from 0 μT to 35 μT). (B) The mattress applicator with a flat coil

system specifically designed for cell culture. (C) Mattress applicator measurements and scheme of how cell culture

plates were placed for BEMER therapy (red rectangles).

doi:10.1371/journal.pone.0167931.g001
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which was collected in the same microtube. The samples were immediately stored in -80˚C

until analysis.

Non-targeted metabolomics analysis

Non-targeted metabolomics analysis was conducted at the Genome Analysis Center, Helm-

holtz Zentrum München. Prior to analysis, all samples were stored at -80˚C. Prior to homoge-

nization, 160 mg of 0.5 mm glass beads (Precellys, Berlin, Germany) were placed into the tubes

with the cell lysates, which were collected in 80% v/v methanolic extraction solvent spiked

with 4 recovery standards. The lysates were then homogenized for 2 times 25 s at 5500 rpm,

with a 5 s break. The homogenization was done using a Precellys 24 homogenizer (PEQLAB

Biotechnology GmbH, Erlangen, Germany) equipped with an integrated cooling unit to main-

tain a temperature of 4˚C. After homogenization, the cell lysates were centrifuged for 5 min at

11,000 x g at 4˚C and the clear extract supernatants were used thereafter. Each sample was

loaded onto a 96-well 350-μl PCR plates by splitting it into 2 aliquots, 105 μl each aliquot. The

first aliquot was used for LC-MS/MS analysis in positive electrospray ionization mode and the

second aliquot was used for that in negative mode.

In addition to the study samples, a pool of all cell homogenates was prepared and aliquoted

into the 96-well PCR plate, 105 μl per well, 3 wells for each ionization mode. Furthermore,

100 μl of a pooled human reference plasma sample (Seralab, West Sussex, United Kingdom)

was extracted independently and the extract was loaded into the 96-well PCR plate, a well for

each ionization mode, 105 μl in each well. A similar procedure was performed for pure lrECM

as additional control for measurement and normalization to background. These samples

served as control replicates throughout the study to assess process variability. Besides the refer-

ence plasma sample, 100 μl water was extracted independently and the extract was aliquoted

into a 96-well plate, 3 wells per ionization mode, 105 μl in each well. These samples served as

blanks. The samples were then dried in a TurboVap 96 (Zymark, Sotax, Lörrach, Germany).

Before LC-MS/MS in positive ion mode, the samples were reconstituted with 50 μl 0.1%

formic acid. Those samples analyzed in negative ion mode were reconstituted with 50 μl 6.5

mM ammonium bicarbonate (pH 8.0). Reconstitution solvents for both ionization modes

contained internal standards that allowed monitoring of instrument performance and also

served as retention markers. LC-MS/MS analysis was performed on a linear ion trap LTQ

XL mass spectrometer (Thermo Fisher Scientific GmbH, Dreieich, Germany) coupled with a

Waters Acquity UPLC system (Waters GmbH, Eschborn, Germany). Two separate columns

(2.1 x 100 mm Waters BEH C18, 1.7 mm particle-size) were used for acidic (solvent A: 0.1%

formic acid in water, solvent B: 0.1% formic acid in methanol) and for basic (solvent A: 6.5

mM ammonium bicarbonate (pH 8.0), solvent B: 6.5 mM ammonium bicarbonate in 95%

methanol) mobile phase conditions, optimized for positive and negative electrospray ioniza-

tion, respectively. After injection of the sample extracts, the columns were developed with a

gradient of 99.5% A to 98% B over an 11 min run time at a flow rate of 0.35 ml/min. The elu-

ent flow was directly routed through the electrospray ionization source of the LTQ XL mass

spectrometer. The full MS scan was performed from 80 to 1000 m/z and alternated between

MS and MS/MS scans using a dynamic exclusion technique, which enables a wide range of

metabolite coverage.

Metabolites were annotated by curation of the LC-MS/MS data against proprietary Metabo-

lon’s chemical database library (Metabolon, Inc., Durham, NC, USA) based on retention

index, precursor mass and MS/MS spectra. In this study, 315 metabolites, 240 compounds of

known identity (named biochemicals) and 75 compounds of unknown structural identity

(unnamed biochemicals) were identified. The unknown chemicals are indicated by a letter X
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followed by a number as the compound identifier. The metabolites were assigned to cellular

pathways based on PubChem, KEGG, and the Human Metabolome Database.

3D colony formation assay

3D colony formation assays (CFA) were applied for measurement of clonogenic cell survival

as published [28,34]. For 3D CFA cells were imbedded in 0.5 mg/ml 3D lrECM in 96-well

plates (BD). After 23 h, cells were treated with BEMER therapy applying different levels and

durations. Irradiation occurred at different time points after BEMER therapy. In most experi-

ments, radiotherapy was carried out 1 h after BEMER therapy. After 8–10 days, cell colonies

(>50 cells) were counted microscopically. Images of representative colonies were acquired

using an Axiovert 40 CFL (Zeiss, Jena, Germany). Each point on the survival curve represents

the mean surviving fraction from at least three independent experiments.

3D microtumor assay

3D microtumors originated from single cells embedded in 0.5 mg/ml 3D lrECM in 96-well

plates (BD) over a time period of 3 days. After 3 days, cells were treated with BEMER therapy

applying different levels and durations. Irradiation occurred at different time points after

BEMER therapy. After 8–10 days, cell colonies (>50 cells) were counted microscopically. Each

point on the survival curve represents the mean surviving fraction from at least three indepen-

dent experiments.

Cetuximab, Cisplatin and Gemcitabine treatment

At 24 h after seeding cells were treated with Cetuximab (ErbituxL, Merck, Darmstadt, Ger-

many; 5 μg/ml; IgG as control), Cisplatin (Teva, Ulm, Germany; 0.1 μM) or Gemcitabine

(Medac, Wedel, Germany; 10 nM). After 23 h of incubation, cells were treated with BEMER

therapy (~13 μT, 8 min) and irradiated 1 h later as described above. Cetuximab remained in

the cell culture medium for the entire growth period, Cisplatin and Gemcitabine treated cells

were washed with cell culture medium 48 h after treatment.

Foci assay

4 x 105 cells per well were grown in 3D lrECM for 23 h, then treated with different levels of

BEMER therapy (~13 μT and ~35 μT; 8 min) and irradiated 1 h later with 6 Gy or left unirradi-

ated. After 24 h, cells were isolated using PBS and trypsin (PAA), fixed with 3% formaldehyde/

PBS (Merck, Darmstadt, Germany), permeabilized with 0.25% Triton-X-100/PBS (Roth,

Karlsruhe, Germany) and stained with specific antibodies for γH2AX and 53BP1. Samples

were spread on a slide and covered with Vectashield/DAPI mounting medium. γH2AX/

53BP1-positive foci were counted microscopically with an Axioscope 2 plus fluorescence

microscope (Zeiss) and defined as residual DSB [34]. Immunofluorescence images were sus-

tained using LSM 510 meta (Zeiss).

ROS scavenger analysis

Three different scavengers (Thermo Fisher Scientific (Darmstadt, Germany)), i.e. sodium

pyruvate (hydrogen radicals, 10 μM), MnTBAP (superoxide anion) and Carboxy-PTIO (nitric

oxid) and (both 50 μM), were applied (complete culture medium served as control) and clono-

genicity and DSB measurement were performed in 3D cell cultures. Cells were treated with

scavengers for 10 min. prior to BEMER therapy (~35 μT, 8 min). One hour later, cells were
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irradiated with 6 Gy. For foci assays, cells were isolated and fixed 24 h after irradiation, for

CFA, cells were grown several days, cell line dependently.

Data analysis

Means ± standard deviation (SD) of at least three independent experiments were calculated

with reference to non-treated (n.t.) samples defined in total numbers or 1.0. For statistical sig-

nificance, Student t-test was performed using Microsoft1Excel 2003. P-value of less than 0.05

was considered statistically significant.

Results

BEMER treatment modulates cancer cell metabolism

Based on previous data, EMF application is likely to influence cell metabolism [7,35]. Evalua-

tion of A549 cancer cell metabolism by the BEMER system showed metabolites of different

pathways (Fig 2A) and, particularly and of the glycolysis and TCA cycle pathways to be signifi-

cantly altered relative to non-treated cells (Fig 2B–2D). The levels of pyruvate, succinate, aspar-

tate and adenosindiphosphate (ADP) were significantly downregulated after BEMER therapy

whereas serine showed significant upregulation (Fig 2B–2D). These data demonstrate that the

specific low-frequency pulsed BEMER EMF pattern leads to changes in certain part of the cel-

lular metabolism.

BEMER treatment fails to alter basal tumor cell survival but

radiosensitizes tumor cells in a time-dependent manner

Next, we analyzed basal tumor cell survival of a panel of four cell lines (A549, UTSCC15, Mia-

PaCa, DLD1) after BEMER treatment. Interestingly, BEMER therapy did not alter basal cell

survival of all tested cell lines (Fig 3A and 3B). In combination with X-ray irradiation, 3D

lrECM grown cancer cell cultures, however, responded with radiosensitization when BEMER-

pretreated for 8 min (Fig 3C and 3D). Upon longer BEMER exposure times, the radiosensitiza-

tion was lost (Fig 3D).

Interestingly, the radiosensitizing potential of a pretreatment with the BEMER signal was

confirmed in 3D grown microtumors A549, UTSCC15, MiaPaCa and DLD1 in a time-depen-

dent manner relative to sham-treated microtumors (Fig 4A and 4B). An 8 minute pretreat-

ment with BEMER therapy radiosensitized all tested cell lines, while longer treatment time of

BEMER therapy were less or not effective (Fig 4C). These observations evidently demonstrate

that the cellular radiosensitivity of human cancer cells grown in a physiological environment

can be increased by the specific BEMER EMF pattern in a time-dependent manner.

BEMER therapy/radiotherapy time interval and BEMER EMF frequency

determine BEMER therapy-induced radiosensitizing potential

To further characterize the radiosensitizing effect elicited by a pretreatment with BEMER ther-

apy, we modulated the time interval between BEMER and radiotherapy (Fig 5A) and found

that the surviving fraction of 6 Gy-irradiated cells is clearly different between the tested time

intervals (Fig 5B). With increasing time between BEMER treatment and radiotherapy, the

radiosensitizing effect was diminished and completely abolished at the 24 h interval (Fig 5B).

Next, we analyzed if the frequency of BEMER treatments influences cancer cell radioresis-

tance (Fig 5C and 5D). In general, BEMER application is recommended twice a day every 12 h

[22,24]. Consequently, 3D grown cells were treated either once with the BEMER signal

(~13 μT, 8 min) at 1 h prior to irradiation or twice where a 12-h time interval was between the
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two BEMER treatments followed by irradiation after 1 h (Fig 5C). Only A549 cells were signifi-

cantly radiosensitized after one-time and two-time BEMER therapy (Fig 5D). In UTSCC15

and MiaPaCa2 cells, only the one-time BEMER therapy led to radiosensitization (Fig 5D).

DLD1 cells remained resistant to BEMER treatment as shown in fig 3D (Fig 5D). These data

indicate that a one-time BEMER therapy followed by radiotherapy within a short time interval

is most effective for radiosensitization of tumor cells with respect to the different treatment

schedule tested in this study.

Fig 2. The specific BEMER EMF pattern impacts on cancer cell metabolism. (A) Pie chart showing the number of detected metabolites categorized

by pathways (Σ 225). (B) Heatmap comparing levels of metabolites in BEMER signal treated (~13 μT, 8 min) and BEMER sham-treated (sham) A549

cells. Red and blue indicate up- and downregulation, respectively. Cells were cultured in 3D lrECM for 24 h prior to BEMER treatment. (C) Amount of

indicated metabolites in A549 cells without (sham) and with BEMER EMF exposure. (D) Scheme of glycolysis and TCA cycle. Metabolites in blue were

downregulated, in red upregulated and in black unaffected upon BEMER therapy compared with sham-treated controls. Metabolites depicted in green

were not measured in the metabolome analysis. All results represent mean ± SD. Student’s t-test. n = 5. * P < 0.05; ** P < 0.01.

doi:10.1371/journal.pone.0167931.g002

BEMER Therapy Reduces Cancer Cell Radioresistance

PLOS ONE | DOI:10.1371/journal.pone.0167931 December 13, 2016 8 / 19



BEMER treatment has no additional effect on radiochemosensitivity

Due to radiochemotherapy being standard of care for the tumor types investigated in this

study, we sought to determine clonogenic survival after respective radiochemotherapy (Figs 6

and 7). According to the treatment schedules (Figs 6A and 7A), the chemotherapeutics Cis-

platin and Gemcitabine or the anti-epidermal growth factor receptor (EGFR) antibody Cetuxi-

mab were tested. Cisplatin and Gemcitabine either alone or in combination with BEMER

therapy resulted in significantly decreased clonogenic cell survival in all tested cell lines (Fig

6B and 6C). Cetuximab treatment with or without BEMER therapy led to reduced basal sur-

vival in UTSCC15 but not A549, MiaPaCa2 or DLD1 cells (Fig 6D).

The combination of Cisplatin, radiotherapy and BEMER therapy remained equitoxic to

Cisplatin/radiotherapy for clonogenic survival of A549 and UTSCC15 cells (Fig 7B). In Mia-

PaCa2 cells, the combination of Gemcitabine and radiotherapy showed no effect on cell sur-

vival whereas the Gemcitabine/radiotherapy/BEMER combination elicited a significantly

decreased survival relative to BEMER sham-treated, irradiated controls (Fig 7C). Cetuximab

plus radiotherapy led to significantly reduced clonogenic survival of A549 and MiaPaCa2 cells

with no further enhancement of the effect upon application of BEMER therapy (Fig 7D). In

UTSCC15 and DLD1 cells, neither Cetuximab plus radiotherapy alone nor in combination

with BEMER therapy impacted on clonogenic cell survival (Fig 7D). Thus, the combination of

BEMER therapy and radiochemotherapy failed to generally enhance cancer cell sensitization.

Fig 3. BEMER therapy mediates radiosensitization of cancer cells. (A) Phase contrast images and (B) basal surviving fraction of 3D grown colonies of

BEMER treated (~13 μT, 8 min, 1 h, 24 h) and BEMER sham-treated (sham) cancer cell lines. (C) Flow chart of colony formation assay. (D) Clonogenic

cell survival after BEMER therapy (~13 μT, 8 min, 1 h, 24 h) combined with radiotherapy (2 and 6 Gy). All results represent mean ± SD. Student’s t-test.

n = 3. * P < 0.05; ** P < 0.01.

doi:10.1371/journal.pone.0167931.g003
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BEMER therapy decreases radioresistance and increases DSB

numbers dependent on BEMER signal intensity

To elucidate whether the radiosensitizing effect of BEMER therapy is related with increased

signal intensity and increased number of radiation-induced DNA double strand breaks

(DSBs), we applied the BEMER signal with varying intensities between 2.7 and 35 μT 1 h after

6-Gy X-ray irradiation (Fig 8A). In A549, UTSCC15 and MiaPaCa2 but not DLD1 cells,

BEMER therapy accomplished radiosensitization in a signal intensity-dependent manner

compared with BEMER sham-treated, irradiated controls (Fig 8B). Accordingly, DSB numbers

of A549 and UTSCC15 cells were significantly elevated by BEMER EMF exposure intensity-

dependently compared to controls (Fig 8C and 8D). These results suggest a connection

between BEMER therapy-mediated radiosensitization and DSB induction.

Fig 4. BEMER therapy radiosensitizes microtumors. (A) Flow chart of colony formation assay. (B) Basal surviving

fraction of BEMER (~13 μT, 8 min, 1 h, 24 h) treated and BEMER sham-treated (sham) microtumors. (C) Clonogenic

survival after BEMER therapy (~13 μT, 8 min, 1 h, 24 h) combined with radiotherapy (2 and 6 Gy). All results represent

mean ± SD. Student’s t-test compares BEMER therapy versus sham samples. n = 3. * P < 0.05; ** P < 0.01.

doi:10.1371/journal.pone.0167931.g004
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BEMER therapy increases ROS levels leading to radiosensitization via

increased induction of DSBs

Connecting ROS as essential regulator of metabolomic processes and DNA damaging factor,

we tested for different ROS scavengers (here sodium pyruvat, MnTBAP, Carboxy-PTIO) given

prior to BEMER therapy (Fig 9A). While sodium pyruvate only abolished the effect of BEMER

therapy in UTSCC15 but not in A549 cells (Fig 9B), the ROS scavengers MnTBAP and Car-

boxy-PTIO abrogated the BEMER-mediated radiosensitization in both cell lines leading to

similar clonogenic survival as observed for BEMER sham-treated, irradiated controls (Fig 9B).

Fig 5. BEMER therapy-mediated radiosensitization depends on treatment intervals and frequency. (A) Flow chart of colony formation assay. (B)

Clonogenic survival after BEMER therapy (~13 μT, 8 min) combined with 6-Gy irradiation of indicated cell lines. BEMER sham-treated (sham) and

irradiated cells served as control. Time intervals of 0, 1, 6, and 24 h between BEMER therapy and radiotherapy were applied. (C) Flow chart of colony

formation assay. (D) Clonogenic survival of one time or two time BEMER therapy (~13 μT, 8 min) combined with 6-Gy irradiation of indicated cell lines

(BEMER sham-treated (sham), irradiated cells as control). All results represent mean ± SD. Student’s t-test. n = 3. * P < 0.05; ** P < 0.01. n.s., not

significant.

doi:10.1371/journal.pone.0167931.g005
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Next, we tested the effect of MnTBAP and Carboxy-PTIO pretreatment on DSB induction

upon BEMER treatment and irradiation and found that both scavengers reduced DSB num-

bers to a level similar to controls (Fig 9C). These findings indicate that the radiosensitization

mediates by the BEMER therapy elicits from increased ROS levels and subsequent generation

of DSBs.

Discussion

Different studies showed the influence of EMF exposure on various functions of tumor cells,

which beneficially impact on therapy response and tumor growth. On this basis, we hypothe-

sized BEMER therapy to exhibit radio- and chemosensitizing potential in tumor cells. Here we

show radiosensitization of cancer cell lines upon pretreatment with the particular low-fre-

quency, pulsed EMF pattern of the BEMER system as compared with radiotherapy alone.

Mechanistically, this effect is mediated through elevated ROS levels that are critically involved

in the generation of DSBs.

Reviewing the literature for effects of EMF therapy in tumor cells, one has to take into con-

sideration large differences in EMF application devices and exposure set-ups. Variations in

EMF signal pulsation, strength, amplitude and frequency are highly likely to fundamentally

Fig 6. Sensitivity to chemotherapy and Cetuximab is not influenced by BEMER therapy. (A) Flow chart of colony formation assay. Cells were plated

in 3D lrECM, treated with respective agents followed by BEMER therapy 23 h later. (B) Basal surviving fraction after Cisplatin (0.1 μM; DMEM as control)

treatment and BEMER therapy (~13 μT, 8 min). (C) Basal surviving fraction after Gemcitabine (10 nM; DMEM as control) treatment and BEMER therapy

(~13 μT, 8 min). BEMER sham-treated (sham) cells served as control. (D) Basal surviving fraction after Cetuximab (5 μg/ml; IgG as control) treatment and

BEMER therapy (~13 μT, 8 min). IgG-treated cells served as control. All results represent mean ± SD. Student’s t-test. n = 3. * P < 0.05; ** P < 0.01. n.s.,

not significant.

doi:10.1371/journal.pone.0167931.g006
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accomplish a differential impact on cell behavior and degree of investigated effects. Using the

BEMER system had the clear advantage of reported observations about improved blood flow,

vasomotion and microcirculation [22,23]. Testing the BEMER EMF pattern in conjunction

with conventional tumor therapies was conducted to identify the therapy-sensitizing potential

of this specific EMF pattern.

As first step, we performed a broad metabolome analysis as EMF exposure is reported to

alter physiological and metabolic processes [7,35,36]. Cancer cells exhibit a deregulated metab-

olism and produce their energy mainly via glycolysis [37,38]. Interestingly, we found decreased

levels of metabolites of the glycolysis and the TCA cycle upon BEMER therapy. While the iden-

tification of such changes is difficult to test in-vitro, it was of utmost importance to demon-

strate that the BEMER therapy does not induce cancer cell proliferation and enhanced survival

of either single cells as well as microtumors.

Intriguingly, we found cells originating from lung, head and neck and pancreas to be radio-

sensitized by BEMER EMF exposure. As approximately 60% of cancer patients are receiving

radiotherapy alone or as part of a radiochemotherapeutic regimen, this result provides the first

basis describing a therapeutic potential for applying the BEMER therapy to cancer patients

Fig 7. BEMER therapy-mediated radiosensitization remains unaltered upon chemotherapy and Cetuximab. (A) Flow chart of colony formation

assay. (B) Clonogenic survival after 6-Gy irradiation combined with BEMER therapy (~13 μT, 8 min) and Cisplatin (0.1 μM; DMEM as control). (C)

Clonogenic survival after 6-Gy irradiation combined with BEMER therapy (~13 μT, 8 min) and Gemcitabine (10 nM; DMEM as control). Sham-treated

(sham) but irradiated cells served as control. (D) Clonogenic survival after 6-Gy irradiation combined with BEMER therapy (~13 μT, 8 min) and Cetuximab

(5 μg/ml; IgG as control). IgG-treated, irradiated cells served as control. All results represent mean ± SD. Student’s t-test. n = 3. * P < 0.05; ** P < 0.01.

n.s., not significant.

doi:10.1371/journal.pone.0167931.g007
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briefly before radiotherapy. By means of more physiological cell culture models intensively val-

idated to in-vivo growth conditions [34,39], our results indicate a differential impact of the

BEMER EMF in different tumor types. Why cells from colorectal cancers, taking into account

that only one cell line was examined, demonstrated resistance to BEMER therapy warrants fur-

ther analysis. Moreover, we found the radiosensitization generated by BEMER therapy to

depend on (i) the duration of the treatment, (ii) the interval between BEMER therapy and

radiotherapy, and (iii) the signal intensity of the EMF. Although highly speculative concerning

clinical usage, it becomes obvious that the BEMER therapy is most efficient for radiosensitiza-

tion when applied 1 h prior to radiotherapy with certain intensity.

Addressing the potential of the BEMER therapy to chemo- or radiochemotherapy, we

observed no changes in clonogenic cancer cell survival upon chemotherapy alone or upon

radiochemotherapy. This result strongly suggests that chemotherapy confers cytotoxicity via

molecular mechanisms independent from BEMER therapy-related changes in cell physiology

in contrast to X-ray radiation. Moreover, this could be due to our treatment schedule with a

23-h drug pretreatment before BEMER signal application. Ruiz-Gómez and colleagues showed

that the EMF therapy is more efficient when cells are simultaneously exposed to EMF and

cytostatic agents [40]. In our hands, administering cisplatin on top of BEMER/radiotherapy,

the radiosensitizing effect caused by BEMER was even abolished. Discussing these observa-

tions on a clinical background is highly challenging and speculative. In-vivo studies are clearly

Fig 8. BEMER signal intensity determines radiosensitization and DSB numbers. (A) Flow chart of colony formation assay and foci assay. (B)

Clonogenic survival after 6-Gy irradiation combined with BEMER therapy (2.7–35 μT; 8 min) of A549 and UTSCC15 cells. (C) Immunofluorescence

images show nuclei with γH2AX/53BP1-positive foci after 6-Gy irradiation with (~13 or ~35 μT; 8 min) and without BEMER therapy in A549 cells. (D)

Number of γH2AX/53BP1-positive DSBs 24 h after irradiation in A549 and UTSCC15 cells. BEMER sham-treated (sham), irradiated cells served as

control. All results represent mean ± SD. Student’s t-test. n = 3. * P < 0.05; ** P < 0.01.

doi:10.1371/journal.pone.0167931.g008
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required administering clinically applied radiochemotherapy regimens to identify the transla-

tional bench-to-bedside potential of BEMER EMF exposure for cancer patients.

To further explore the radiation-related mechanisms contextually linked to the BEMER

therapy, we measured ROS levels and DSBs as most life-threatening DNA lesions produced by

X-ray irradiation [41]. Interestingly, the application of scavengers for superoxide anions

(MnTBAP) and nitric oxides (Carboxy-PTIO) abolished BEMER-related radiosensitization,

which strongly proposes that the specific BEMER EMF pattern considerable increases ROS

Fig 9. BEMER therapy induces elevated ROS levels resulting in increased DSB numbers. (A) Flow chart of colony formation assay and foci assay.

(B) Surviving fraction of indicated cell lines treated with sodium pyruvate (10 μM), MnTBAP (50 μM) or Carboxy-PTIO (50 μM) in combination with BEMER

therapy and radiotherapy. (C) Number of γH2AX/53BP1-positive DSBs 24 h after irradiation in A549 and UTSCC15 cells. Cells were treated with indicated

scavenger agents and BEMER therapy (~35 μT, 8 min). BEMER sham-treated (sham), irradiated cells served as control. All results represent mean ± SD.

Student’s t-test. n = 3. ** P < 0.01. n.s., not significant.

doi:10.1371/journal.pone.0167931.g009

BEMER Therapy Reduces Cancer Cell Radioresistance

PLOS ONE | DOI:10.1371/journal.pone.0167931 December 13, 2016 15 / 19



levels by yet to be discovered mechanisms. Despite the fact that our observations are in line

with other cancer research studies showing EMF exposure to indirectly provoke DNA strand

breaks via free radicals [5,42,43], the induction of DNA damage by EMF is quite controver-

sially discussed. Other studies reported changes of the redox status and increased DNA dam-

age in EMF-treated neuroblastoma [44] or leukemia cells [45,46]. Mechanistically, EMF

therapy reduced antioxidant enzyme activity and enhanced nitrogen intermediates in leuke-

mia cells [45] and increased ROS levels in neuroblastoma cells [46]. Kim and colleagues pub-

lished repetitive EMF exposure of cervical cancer cells and normal lung fibroblasts to result in

an increase of γH2AX phosphorylation indicative of DSBs [47]. In accordance, Winker and

colleagues found increased chromosomal aberrations and elevated numbers of micronuclei

upon exposure to EMF [48]. These studies support our view that BEMER therapy induces

higher levels of ROS converted into elevated DSB numbers by X-ray irradiation finally detect-

able as radiosensitization.

In conclusion, our data suggest that the BEMER therapy radiosensitizes cancer cells via

ROS in a time- and intensity-dependent manner. Future studies are required in animal tumor

models treated with conventional radiochemotherapy to evaluate the reasonable and safe ben-

efit and bench-to-bedside transferability.
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pulsed weak electromagnetic field and HPMA-bound doxorubicin on mouse EL4 T-cell lymphoma. J

Drug Target. 2011; 19: 890–9. doi: 10.3109/1061186X.2011.622403 PMID: 21981636

28. Eke I, Hehlgans S, Sandfort V, Cordes N. 3D matrix-based cell cultures: Automated analysis of tumor

cell survival and proliferation. Int J Oncol. 2016; 48: 313–21. doi: 10.3892/ijo.2015.3230 PMID:

26549537

29. Eke I, Deuse Y, Hehlgans S, Gurtner K, Krause M, Baumann M, et al. β1Integrin/FAK/cortactin signaling

is essential for human head and neck cancer resistance to radiotherapy. J Clin Invest. 2012; 122: 1529–

1540. doi: 10.1172/JCI61350 PMID: 22378044

30. Eke I, Hehlgans S, Zong Y, Cordes N. Comprehensive analysis of signal transduction in three-dimen-

sional ECM-based tumor cell cultures. J Biol methods. 2015; 2: e31. doi: 10.14440/jbm.2015.96 PMID:

26618185

31. Kafka WAP. Vorrichtung und elektrisches oder elektromagnetisches Signal zur Beeinflussung biolo-
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