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A B S T R A C T

In Honduras, corn is the most important staple food for the majority of the population. This high-demand crop is
susceptible to biological contamination with mycotoxins, which could represent a latent hazard for consumers. To
assess the incidence of aflatoxins and fumonisins in grain, masa and tortilla, and the dietary exposure to these
substances among consumers, a study was conducted in four municipalities in the department of Lempira. Total
aflatoxin and fumonisin content were quantified by fluorometry in 144 samples from 48 farmers. Sixty five
percent of the samples were contaminated with aflatoxins with levels of 1.28–32.05, 1.15 to 12.61, and 1.01–5.98
μg/kg in grain, masa and tortilla, respectively. Fumonisins were detected in 100% of the samples at levels be-
tween 0.82 and 28.04, 0.66 and 14.36, and 0.63 and 12.04 mg/kg in grain, masa and tortilla, respectively. The
reduction in aflatoxin and fumonisin contamination after processing grains into tortillas was of 83% and 52%,
respectively. The difference in aflatoxin and fumonisin concentration in the three products was significant (p <

0.05). With a per capita tortilla consumption of 490 g/day, dietary exposure was estimated between 0.003 and
0.073 μg/kg bw/day for aflatoxins and 6.16 and 151.98 μg/kg bw/day for fumonisins. Therefore, the risk of
exposure to mycotoxins in the evaluated communities was considered high. Mixed effect models showed that
postharvest grain management and the nixtamalization process affect the incidence of mycotoxins in corn-based
products.
1. Introduction

After wheat and rice, corn (Zea mays L.) is the third most important
cereal for human consumption worldwide (Girolamo et al., 2016). Ac-
cording to the United States Department of Agriculture, in 2018 the
world corn production was approximately 1,120 million metric tons. The
United States, China, and Brazil were the largest producers of this grain
(USDA, 2020). For rural population in Honduras, corn represents the
most important grain due to the high consumption of corn-based prod-
ucts (SAG, 2015).

A common issue associated with grain production are the losses
caused by mycotoxins-producing fungal species, especially in Meso-
american countries, where corn is grown twice a year (Bressani, 1990).
Mycotoxins are secondary metabolites produced during the differentia-
tion and sporulation phase of toxigenic fungal species and can be present
in all phenological stages of maize cultivation including post-harvest
(Gilbert and Anklam, 2002; Hendry and Cole, 1993; Mi�skovi�c and
Maldonado).
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in the corn crop contributes to the proliferation of mycotoxins (Mendoza
et al., 2017). In addition, during storage, the presence of pests increases
the humidity in the grains, which favors the presence of fungal toxins
(Pitt and Miller, 2017).

It is estimated that about 25% of food worldwide is lost during post-
harvest, particularly grains contaminated by high concentrations of
mycotoxins (Fuesanta et al., 2006). In developed countries, a lot of
research is being done to reduce economic losses due to grains contam-
inated by fungal toxins (Pitt and Miller, 2017). Meanwhile, in developing
countries, such as Honduras, mycotoxins represent a latent risk for the
population's health (Liu and Wu, 2010). Both grain exports and the
population's dietary exposure are directly affected when contamination
levels exceed the permitted limits (Egmond, 2002).

Aflatoxins and fumonisins are the most common mycotoxins repre-
senting the highest incidence in grains (Kimanya et al., 2008). Both
mycotoxins are chemo-stable and thermo-resistant and they can be
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present in the final consumer's food, even after going through chemical
processes and high temperatures (Bullerman and Bianchini, 2007). The
Joint FAO/WHO Expert Committee on Food Additives (JECFA) and the
Codex Alimentarius, have established that the maximum limits allowed
in corn kernels are 20 ppb for total aflatoxins and 4 ppm for total
fumonisins (Codex Alimentarius, 2018). In Mesoamerican countries,
Mexico has established a maximum limit of 12 ppb of total aflatoxin
contamination in tortillas (NOM-247-SSA1-2008, 2008).

The International Agency for Research on Cancer (IARC) has linked
the consumption of aflatoxins and fumonisins with carcinogenic damage
(IARC, 2006). The United States Centers for Disease Control and Pre-
vention (CDC) has also indicated that more than 4 million people in the
world, specifically from developing countries may be chronically
exposed to aflatoxins due to their reduced diet diversification (Schmidt,
2013). Health conditions caused by high aflatoxin intake are associated
with liver damage (Schrenk et al., 2020; Shephard, 2008), edemas and
aflatoxicosis that can even cause death (Wu, 2006). In addition, esoph-
ageal cancer (Stockmann-Juvala and Savolainen, 2008), damage to the
neural tube during gestation period (Gong et al., 2008), children growth
problems, and kidney disease (Pitt and Miller, 2017) are related to intake
of fumonisins.

In Honduras, it is essential to carry out research on mycotoxins to
understand the current risk of contamination, due to the high demand
associated with corn-based products. The population in this country
consumes these foods up to three times a day in products like tortillas
(ENCOVI, 2004). Tortillas represent approximately 59% of protein and
45% of caloric daily intake (Bressani, 1990). Approximate per capita
consumption of corn-based products for 2016 reached 87.5 kg/year
(COHEP, 2017). The Honduran dry corridor includes communities from
eight departments: Cop�an, La Paz, Lempira, Intibuc�a, Francisco Moraz�an,
Valle, Choluteca, and El Paraíso (USAID, 2017). This area represents a
focus of exposure because corn cultivation is the main source of food, the
low economic income of inhabitants of this area, and the little diversi-
fication in their diet (Ben-Davies et al., 2014).

The present study was carried out in four municipalities in the
department of Lempira: Gracias, Lepaera, La Campa, and San Marcos de
Caiquín, which are located in the west of the country (INE, 2018). Ac-
cording to the Permanent Multi-Purpose Household Survey of the Na-
tional Statistics Institute (INE, for its acronyms in Spanish) of Honduras,
the department of Lempira has 29 municipalities and is the poorest
department in Honduras; the majority of the population survives on less
than $ 1.90/day (World Bank, 2019). This leads to an increase in food
insecurity in the rural areas and little diet diversification, where the main
source of food is the maize consumed in the form of tortillas (Ben-Davies
et al., 2014). In Honduras, the last Development and Health Survey re-
ported that 30% of children are stunted and 48% of the child population
is in a state of malnutrition (ENDESA, 2013).

Nowadays, there are various strategies available to reduce the loss of
food contaminated by mycotoxins, including biological control with
atoxigenic strains (Molo et al., 2019; Savi�c et al., 2020), manual sepa-
ration of contaminated grains, efficient drying of corn before storage
(Agbetiameh et al., 2018), nixtamalization during masa preparation for
tortillas (Bullerman and Bianchini, 2007; Fuesanta et al., 2006), and
other corn-based foods. Although mycotoxin control measures may be
available worldwide, studies in vulnerable areas are still required to es-
timate losses from contaminated grains and levels of dietary exposure for
population at risk. This study on the incidence of aflatoxins and fumo-
nisins in three products of the corn food chain: kernels before nixtam-
alization, nixtamalized masa and tortillas, is a pioneer assessment in
Honduras. In addition, the study provides an insight on the risk of
mycotoxin dietary exposure in the population of the municipalities
evaluated in the department of Lempira, based on the daily intake corn
contaminated with aflatoxins and fumonisins.

Considering the socioeconomic level of the population, the risk of
exposure to mycotoxins due to the high intake of corn-based foods, and
the prevalence of the subsistence agriculture in the department of
2

Lempira, Honduras; this paper focused on determining the incidence of
aflatoxins and fumonisins in corn kernels, masa, and tortillas from four
municipalities in this area. Furthermore, the relationship between these
two mycotoxins and the post-harvest management factors that may affect
their incidence in corn and corn-based foods was evaluated, and the risk
of dietary exposure in the communities under study was estimated. More
broadly, this research aims to contribute with technical and scientific
information to future projects to implement corrective and preventive
measures for the control of mycotoxins in the country.

2. Material and methods

2.1. Location and selected communities

The study was carried out in the department of Lempira, located in
western Honduras and part of the country's dry corridor. Four munici-
palities were randomly selected, Gracias, La Campa, Lepaera and San
Marcos de Caiquín. The samples were collected with the support of
technicians of FINTRAC, an international US-based consulting company
working in Honduras in a Project sponsored by the United States Agency
for International Development (USAID). FINTRAC technicians assisted
on selecting families in communities belonging to the municipalities
under evaluation. In Gracias, samples were collected from 15 families; in
La Campa from 8 families, in Lepaera samples were obtained from 10
families and San Marcos de Caiquín, samples were collected from 15
families.

2.2. Collection of samples in the field

Samples of corn kernels (n ¼ 48), nixtamalized masa (n ¼ 48) and
tortillas (n ¼ 48) for a total of 144 samples were collected from 48
families. The samples were collected from September through November
2019. Criteria for sample collection included that all corn products (masa
and tortillas) had to come from the same corn storage lot (Silo or sacks) at
the time of collection. For the batches of corn grains, 2.5 kg were
collected from different points of the metal silo (upper, middle and lower
part) using a spear-shaped grain sampler. This sample size was selected
due to the low intrinsic concentrations of mycotoxins in corn, in the
range of ppb or ppm. For the grains in sacks, subsamples were taken from
different parts of the sacks to obtain a representative sample of 2.5 kg.
These sub-samples were deposited in a double Ziploc® bag. For the masa
and tortilla samples, 1 kg was collected (the corn for the dough and the
tortillas came from the same lot). Samples were collected and deposited
in a double Ziploc® bag. The samples were stored at -8.5 � 0.5 �C before
further analysis. During sample collection, a survey consisting of 50
questions was conducted to the 48 families in order to obtain information
about the corn varieties they used, practices related to agriculture, the
harvesting and post-harvest handling they were carrying out to the
grains, how they performed the nixtamalization process, milling, and
manufacturing of tortillas. For the nixtamalization process, the farmers
explained that they used it for preparation of the masa; this process
consists on adding calcium hydroxide (lime) and water to corn kernels,
carrying out a cooking process, steeping, and subsequently washing the
kernels (Anguiano et al., 2005). During nixtamalization, a breakdown of
the pericarp's cellulose in corn kernels occurs, which is then removed
during washing (Bressani, 1990).

2.3. Preparation of samples collected in the field

The density, temperature, and moisture content of the kernel samples
were measured with a Dickey John GAC500 XTTM grain moisture meter
(Auburn, IL, USA). The samples that exceeded 13% of moisture content
were subjected to an oven drying process at 60 �C for 18 h. Subsequently,
the samples were processed using a Romer Series II™ mill (Getzersdorf,
Austria). After samples preparation, total aflatoxins and fumonisins were
quantified (methods described in section 2.3). For the tortillas, the
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particle size was reduced to approximately 1 mm using a blender. To
express the amount of toxin contamination on a dry basis, the tortilla and
masa samples were dehydrated in an oven at 105 �C for 18 h and the
moisture content was calculated using Eq. (1):

% Moisture¼ðInitial weight� final weightÞ
initial weight

� 100 (1)

2.4. Analysis method for aflatoxins and fumonisins

The samples were processed in the Food Analysis Laboratory of
Zamorano (LAAZ) of the Food Science and Technology Department at the
Panamerican Agricultural School, Zamorano University. Detection of
aflatoxins and fumonisins was performed using the fluorometry method
and competitive enzyme-linked immunosorbent assays (ELISA) using
VICAM's FumoniTest™ and AflaTest™ immunoaffinity columns. The
lower detection limit for aflatoxins was 1 ppb and the upper limit was 50
ppb. Fumonisin limits of detection were in the range of 0.25–100 ppm.
When toxins exceeding the upper limits were quantified, dilutions were
made, and the final concentration was adjusted according to the number
of dilutions. Approximately 25 g of corn were processed for aflatoxin
analysis and 50 g for fumonisin analysis.

In the literature, the use of different chemical methods for mycotoxin
analysis is reported, such as High-Performance Liquid Chromatography
(HPLC), Thin-Layer Chromatography (TLC), UV-Vis or fluorescent de-
tector, Liquid Chromatography with Mass Spectrometry (LC-MS), Tan-
dem Mass Spectrometry (LC-MS/MS), Fluorescence Imaging, Infrared
Imaging, and Enzyme-Linked Immunosorbent Assay by Fluorometer
(Chavez et al., 2020; Kumphanda et al., 2019). The chromatographic
methods stand out for their accuracy, precision, and adjustable limit of
quantification; however, they tend to be more expensive, slow, and
difficult to access. In our study, the Enzyme-Linked Immunosorbent
Assay by Fluorometry was used. This method is practical, easily acces-
sible, with validated procedures, and allows greater processing of sam-
ples in shorter time (Baglo et al., 2020; Chavez et al., 2020). However,
the simultaneous identification of individual mycotoxins is not always
possible, and the limit of detection is established by the manufacturer,
which tends to be higher than the chromatographic methods (Kum-
phanda et al., 2019).

2.5. Validation of analytical matrix for masa and tortillas

Before collecting samples in the field, validation of the analytical
matrices was required to quantify aflatoxins and fumonisins in corn
kernels, masa and tortillas by fluorometry. The protocol was validated to
account for characteristics, lack of consistency and particle size. To
evaluate the extraction of toxins, organic solvents were evaluated at
different concentrations, as well as the weight of the samples until
optimal levels of toxin recovery were obtained.

The protocol used for the analysis of total aflatoxins in corn kernels
was the method AOAC 991.31B, which was adjusted when masa and
tortillas were analyzed. For the analysis of fumonisins in kernels, the
method AOAC 2001.06 was used, without any modifications when toxins
were quantified in masa and tortillas.

2.5.1. Reagents for aflatoxins and fumonisins
Aflatoxin B1 standard (1 mg, product number: A6636), aflatoxins

mixture (B1, B2, G1, G2; product number: 34036), and the liquid mixture
of fumonisins FB1 and FB2 (~50 μg/mL in acetonitrile: water, product
number: 34143) were purchased from Sigma-Aldrich, Inc. (St. Louis, MO,
USA) and fumonisin standard FB1 (1 mg, Item No. 62580) was purchased
from Cayman Chemical Company (Ann Arbor, MI, USA). Working solu-
tions were prepared according to the specifications of AOAC 991.31B.

HPLC grade reagents, methanol (99.8% purity), 10X phosphate buffer
solution (PBS), 0.1% Tween-20/2.5% PEG/PBS 5X, AflaTest™ and
FumoniTest™ immuno-affinity columns, Developer, and calibration
3

standards for aflatoxins and fumonisins (AflaTest and FumoniTest) were
purchased from VICAM (Milford, MA, EE.UU.).

2.5.2. Preparation of working solutions for aflatoxins

Before preparing aflatoxin working solutions, the powder standard (1
mg) was diluted with 5mL of acetonitrile (99.8% purity) to obtain a stock
solution with final concentration of 200 μg/mL. Different amounts of
stock solution were used to achieve final theoretical concentrations
varying from 1.5 to 10 μg/mL. The final concentration was measured in
the spectrophotometer at a wavelength of 350 nm, where aflatoxin B1 is
more sensitive.

Table 1 describes the actual concentration calculated by spectro-
photometry based on absorbance at 350 nm Eq. (2) obtained from AOAC
971.22 (Nesheim et al., 1999) was used to calculate the actual
concentration:

Concentration¼Ax MWx1000
ε (2)

where;

A ¼ Absorbance
MW ¼ Molecular weight of the solvent (methanol; 312 g/mol)
Ɛ ¼ Molecular absorptivity (aflatoxin B1; 21500 L mol�1 cm�1)
2.5.3. Preparation of working solutions for fumonisins
Before preparing fumonisin working solutions, the powder standard

(1 mg) was diluted with 4 mL of a mixture of ultrapure water and
acetonitrile (50:50), to obtain a stock solution with final concentration of
250 μg/mL.Working solutions for fumonisins were then prepared using a
mixture of ultrapure water: acetonitrile (70:30). Different amounts of
stock solution were used to achieve final theoretical concentrations
varying from 50 - 250 μg/mL. Table 2 describes the concentration and
volume used to prepare each of the solutions. Subsequently, the solutions
were subjected to a vaporization process and after that they were
reconstituted with a solution of methanol:water (50:50).

Since fumonisins are not fluorescent, to validate the concentration of
each of the working solutions, three corn flour samples were contami-
nated at 1 mg/kg in spiking duplicate, and fumonisin B1 was quantified
by fluorometry 24 h later. The calculated recovery values were 90, 92
and 95%, for each of the three samples.

2.5.4. Preparation of samples in the laboratory
For the validation of the fluorometric method, three repetitions were

performed in triplicates for nixtamalized corn flour, masa, and tortillas.
Every 25 g of sample used for aflatoxin analysis was contaminated with
either 15 or 20 ppb of aflatoxin B1, and every 50 g of sample used for
analysis of fumonisins was contaminated with either 0.50 or 1 ppm of
fumonisin B1. When an adequate method for corn flour, masa and tortilla
was obtained, then 200 g of corn flour were spiked with aflatoxins and
fumonisins to determine method recovery after converting the nixta-
malized flour into masa, and tortillas.

For masa preparation, 200 g of corn flour were homogeneously mixed
with 380 mL of water, using a ratio of 1:1.9 (flour:water). To prepare
masa with corn flour without nixtamalization, 200 g of flour were
weighed with 360 mL of water, using a ratio of 1:1.8 (flour:water); this
type of flour required a lower proportion of water because it is less dense
than nixtamalized flour.

2.6. Quantification of aflatoxins

Total aflatoxins were quantified by fluorometry, using the VICAM
series 40X kit (Watertown, MA, USA) with the method AOAC 991.31
(Trucksess et al., 1991). The same method with modifications was used



Table 1. Preparation of standard solutions for aflatoxins.

Working solution Stock solution (μL)a Acetonitrile (μL) Theoretical concentration (μg/mL) Final volumen (mL) Spectophotometric
concentration (μg/mL)b

1 64 436 1.5 5 1.65

2 125 375 3 5 4.58

3 100 1900 10 2 11.97

a Concentration of stock solution was 1 mg, this was used to prepare the 3 working solutions described in Table 1.
b Work solutions were reconstituted with methanol grade HPLC to determine real concentration with spectrophotometer.
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for aflatoxin determination in masa and tortilla. For toxins extraction, 25
g of each sample were weighed, 5 g of sodium chloride (ACS grade) and
125 mL of solvent were added; 70% (v/v) methanol for corn flour and
80% (v/v) methanol for masa and tortilla samples. Flour samples were
blended for 2 min, while the masa and tortilla samples were homoge-
nized for 4 min. The extract was filtered using a striated VICAM filter and
an aliquot of 15 mL was diluted in 30 mL of distilled water, filtered again
using a VICAM funnel andmicrofiber filter. A 15mL aliquot of the diluted
extract was transferred to a glass syringe, in which the AflaTest™
immunoaffinity column was placed, and vacuum filtered at a rate of 1–2
drops per second. After this, two aliquots of 10 mL of distilled water were
passed through the column. At the end of the washing steps, 1 mL of
methanol (HPLC grade) was placed into the column, vacuum filtered for
toxin elution and collected in a glass cell. The collected sample was
treated with 1 mL of AflaTest developer before quantification of afla-
toxins was obtained in the fluorometer.

2.7. Quantification of fumonisins

Total fumonisins were quantified by fluorometry using the reagents
and test columns from VICAM. For sample extraction, the method AOAC
2001.06 was used (Bird et al., 2002). For quantification of fumonisins in
corn products, the same analytical method was maintained for corn flour,
masa, and tortilla, as it provided quite favorable toxin recovery results.
For each extraction, 50 g of sample were weighed, 5 g of sodium chloride
and 100mL of 80%methanol were added. Each sample was blended for 1
min at high speed. The extract was filtered, and subsequently, an aliquot
of 10 mL was diluted in 40 mL of Tween-20/25% PBS and filtered again
using a funnel and a microfiber filter. Then 5 mL of the extract was
transferred to a glass syringe, in which the FumoniTest™ immunoaffinity
column was placed, and the extract was passed through the column at a
rate of 1–2 drops per second. One aliquot of 1 mL of Tween-20/2.5% PBS
was placed directly in the immunoaffinity column and one aliquot of 5
mL of the same solution in the glass syringe attached to the column and
all this content was passed through the column. In addition, two more
washing steps were performed following the same procedure, but this
time with phosphate buffer solution. At the end of the washing steps, 1
mL of methanol was passed through the column for toxin elution and this
was collected in a glass cell. The collected sample was treated with 1 mL
of the mixture of developer A and B. After this, fumonisin quantification
was performed in the fluorometer.
Table 2. Preparation of standard solutions for fumonisin.

Working
solution

Stock
solution
(μL)

Acetonitrile:
water (μL)

Theoretical
concentration (μg/
mL)

Final
Volumen
(mL)

1 0α 4000 250 4

2 2000 3000 100 5

3 1000 4000 50 5

α Fumonisin B1 was in powder form at a weight of 1 mg.
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2.8. Risk exposure

Risk exposure was calculated based on the daily intake of corn in
grams and the average levels of aflatoxin and fumonisin found in the
tortilla samples evaluated. In addition, an estimated average body weight
(bw) of 60 kg was used for an adult. Exposure risk was estimated for each
municipality, considering different amounts of daily corn intake esti-
mated in this study. Eq. (3) describes the dietary exposure (Andrade and
Caldas, 2015).

μg
kg

¼
XConsumptionðgÞ � Concentration

�
μg
g

�

Body weight ðbwÞ (3)

2.9. Experimental design and statistical analysis

A Randomized Complete Block design was used, with four blocks
corresponding to the municipalities: Gracias, Lepaera, La Campa and San
Marcos de Caiquín. Three treatments were evaluated in each block: non-
nixtamalized corn kernels, nixtamalized masa and tortilla. For each
experimental unit, aflatoxins and total fumonisins were quantified. For
the analysis of the variables, the “Statistical Analysis Software” program
(SAS 9.4®) was used. For the mean separation among for treatments,
Least Significant Difference (LSD) and Duncan tests were used at a sig-
nificance level of 95%. For the construction of mixed-effects models,
“RStudio” version 3.6.1 was used, with analysis carried out at a signifi-
cance level of 90, 95 and 99%.

The variables that affected the incidence of aflatoxins and fumonisins
in kernels, masa and tortilla, were found using mixed-effect models.
Since there are multiple factors that could affect the incidence of toxins in
the samples analyzed, the model allowed the variables to be randomized
and the variances and covariances of each one to be analyzed (Correa and
Salazar, 2016). For the construction of each model, Maximum Residual
Likelihood (REML) was used. Given the number of observations (n ¼ 48)
per treatment, the likelihood method contributed to reducing biased
estimates of the variance components of each of the variables selected by
the model, since losses of degrees of freedom are compensated when
working with linear models of fixed variables (Wong and Mason, 1985).

3. Results and discussion

3.1. Aflatoxins determination

Themethodology used in the present study quantified total aflatoxins,
which are mainly produced by the fungal strains Aspergillus flavus and
Aspergillus parasiticus (Ciegler and Bennett, 1980; Hendry and Cole,
1993). Quantification in kernels, masa, and tortillas were carried out
separately. The presence of aflatoxins was detected in 65.01% of the total
samples analyzed (n ¼ 144). Considering the kernel samples from the
four municipalities under study (n ¼ 48), it was found that 81.25% of
them were contaminated. The incidence of aflatoxins in masa (n ¼ 48)
was 75.01% and 35.01% in the tortilla (n¼ 48). It was found that 25% of
the total samples exceeded the regulatory limit for human consumption
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(Codex Alimentarius, 2018). In general, aflatoxin contamination was
highly variable in each municipality evaluated and the lowest levels were
found in tortilla samples. Previous studies carried out in Tanzania and
Guatemala also showed similar results of high incidence of aflatoxin in
corn. Kamala et al. (2018) reported an incidence of aflatoxins in 83% of
corn samples from 30 villages in Tanzania, while Mendoza et al. (2018)
reported aflatoxin incidence in 100% of the samples evaluated, from
Chiantla and Todos Los Santos municipalities in Guatemala. The risk of
contamination may increase with mishandling of the grains after they
reached physiological maturity and when storage conditions favor hu-
midity and presence of insects (Agbetiameh et al., 2018; Kamala et al.,
2018). An association has been established between storage time, grain
moisture and aflatoxin incidence (Walker et al., 2018).

In this study, the total aflatoxins mean was 6.23, 1.89 and 1.06 μg/kg
with levels up to 32.05, 12.61 and 5.98 μg/kg for kernels, masa, and
tortilla, respectively. These results are consistent with those reported by
Chebon et al. (2017), where aflatoxins were evaluated in different vari-
eties of corn in the Kitui/Kibwezi and Uasin-Gish regions in Kenya. The
average contaminations reported in that study were 1.62, 14.60, and
15.60 μg/kg, depending on the variety. Table 3 details the statistical
differences found in the levels of aflatoxin contamination by product and
municipality. The results showed significant differences between prod-
ucts but not among municipalities, because there are similarities in the
postharvest practices used in this area of the country. Table 4 shows the
maximum andminimum values determined by product andmunicipality.
Aflatoxins in the corn kernels were found to be transferred to the masa
and tortillas. Other authors have also reported that aflatoxins can be
transferred from grains to final-consumer products (Bullerman and
Bianchini, 2007). A study by Wall-Martínez et al. (2019) determined that
the levels of aflatoxins in tortillas in the city of Veracruz, Mexico were in
a range of 0–22.17 μg/kg, where themaximum reported was less than the
results shown here. Additionally, Londo~no and Martínez (2017) reported
the presence of aflatoxins in final products derived from corn, which
indicates that this chemical agent is resistant to chemical and thermal
processes.

The department of Lempira is located in the called “dry corridor of
Honduras”, which is a region of vulnerability and affected by climate
change (USAID, 2017). In 2019, prolonged droughts in the area caused
corn losses, especially in the first cycle of harvest in 2019 (USAID, 2019).
Agro-climatic conditions of the municipalities under study are favorable
for the growth of mycotoxin-producing fungi because the temperatures
reported in the last four years were between 8.9 and 28.9 �C (COHEP,
2017; DICTA, 2015; USAID, 2019). A study carried out in Guatemala by
Mendoza et al. (2017), shows that the main causes of maize losses, from
high to low problems, mentioned by farmers are: rot grain, rodents, grain
moisture content, fungi and insect damage. A similar scenario is
encountered in Lempira because losses are attributed by farmers to in-
sects damage to grains (45.50%), fungi (32.01%), grain and relative
humidity (12.01%), and wind effects (4.48%). Fungal damage is related
to moisture, temperature, soil characteristics, wind, climate, and insect
attack, since these factors favor the proliferation of fungal toxins (Hendry
and Cole, 1993; Miraglia et al., 2009). The above characteristics may be
associated with the incidence of aflatoxins in corn kernels in the present
Table 3. Means, standard deviation and R2 of aflatoxins incidence (μg/kg), by produ

Products Municipality

Gracias La Campa

Corn kernels 5.66 � 7.71A 6.20 � 9.42A

Masa 1.88 � 2.54B 1.45 � 3.22B

Tortilla 1.08 � 1.62B 1.02 � 1.59B

Pr > F 0.0000 0.0320

R2 0.73 0.65

A - B Different letters in the same column represent statistical differences between pro
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study, especially grain moisture, since approximately 60% of the corn
kernel samples exceeded 13% moisture.

3.1.1. Factors influencing the incidence of aflatoxins in corn kernels and
tortillas

Mixed-effects model evaluated at the producer level showed the
factors that influence the incidence of total aflatoxins in kernels
(Table 5). Among the variables evaluated in the characterization of the
agri-food system, it was found that incidence of aflatoxins in grains dried
on the cob was higher and statistically different (p < 0.05) than those
dried after separation of the cob. When standardized coefficients were
used, it was found that the contamination levels of corn on the cob can
increase up to 25.66 μg/kg. In the study, it was found that 37.42% of the
farmers dried corn on the cob; of which, 18.75% dried it during the
“dobla” in the field, 2.01% placed the cobs on nylon exposing the corn to
the sun in the backyard of the houses and 16.67% used locally assembled
solar dryers. When corn is dried on the cob, it may retain up to 3.5%more
moisture due to a lower diffusion and permeability during drying (Crane
et al., 1959). Kamala et al. (2018) mentioned that drying corn at ground
level leads to a greater probability of water entering the grain, in addition
to contamination by soil fungi. Therefore, they suggest the use of
elevated structures or platforms to improve the drying process.

Another significant factor related to aflatoxin contamination was the
type of process used for grain cleaning: metal sieve versus wind cleaning.
When grain cleaning was done using a metal sieve, aflatoxin levels were
quantified at 21.96 μg/kg. Fortunately, sieve cleaning is the method least
used (2.08%) by farmers, while the most frequent is wind cleaning
(86.50%). For instance, in the municipality of San Marcos de Caiquín,
they prefer to implement manual cleaning, since it allows them to select
good grains and visually discard the damaged kernels. In La Campa y
Gracias, winnowing is more common, since tossing the grains into the air
and from one side to the other allows them to discard small and broken
kernels as well as other foreign impurities found in the corn (FAO, 2019).
In Lepaera, cleaning is most often done using a sieve, which is a metal
grid that allows the separation of damaged grains based on their size;
small or broken grains are screened and discarded, leaving larger grains
on the surface. However, some contamination of mycotoxins may remain
on the grid (FAO, 2019; Medina et al., 1999). Previous studies have
indicated that strategies to separate and discard damaged kernels reduce
the risk of mycotoxin contamination (Kamala et al., 2018).

Mixed-effects models for the incidence of total aflatoxins in tortillas
showed the variables that can influence the contamination (Table 6).
Samples that were stored for periods equal to or greater than 4 months
had levels of contamination increased by 1.18 μg/kg, compared to
samples that were stored for 1–3 months. On the other hand, the washing
of kernels during nixtamalization influenced the incidence of aflatoxins
in tortillas (p < 0.001). This process consists on adding calcium hy-
droxide and water to corn kernels, carrying out a cooking process,
steeping, and subsequently washing the kernels (Anguiano et al., 2005).
When 3 to 4 nixtamal washes were done, contamination levels decreased
up to 5.93 μg/kg. Anguiano et al. (2005) considered that water is a
remnant where aflatoxin hydrolysates are formed. Therefore, the
washing step is a means to remove residues of both calcium hydroxide
cts and municipality.

Lepaera San Marcos de Caiquín

9.48 � 11.99A 3.59 � 4.37A

3.07 � 4.29B 1.17 � 1.41B

1.51 � 1.87B 0.62 � 0.76B

0.0030 0.0002

0.72 0.73

ducts in the same municipality (p < 0.05).



Table 4. Maximum and minimum values of aflatoxins incidence (μg/kg) by products and municipality.

Products Municipality

Gracias La Campa Lepaera San Marcos de Caiquín

Min Max Min Max Min Max Min Max

Corn kernels 1.89 25.72 1.86 25.78 1.77 32.05 1.28 14.07

Masa 1.28 8.15 1.22 8.70 1.15 12.61 1.17 4.45

Tortilla 1.02 5.98 1.02 3.66 1.01 4.99 1.01 2.46

Table 5. Mixed effects model with standardized coefficients of the factors that
affect aflatoxins incidence in corn kernels.

Factor Value Standard
deviation

P value

Intercept 5.35 5.32 0.3240

Storage (Silo) -3.30 3.13 0.2980

Genetic material (Improved) -1.38 2.57 0.5940

Drying (Cobs) 25.66 8.92 0.0060**

Drying (Kernels) -1.20 3.67 0.7470

Cleaning (Manual) 2.61 4.05 0.5230

Cleaning (Metal sieve) 21.96 9.53 0.0270**

Without cleaning 4.65 9.39 0.6240

n ¼ 48

Akaike Information Criteria (AIC) ¼ 306.04

Bayesian Information Criteria (BIC) ¼ 325.99

** Significance level (p < F) ¼ 0.05.

Table 6. Mixed effects model with standardized coefficients of the factors that
affect aflatoxins incidence in corn tortilla.

Factor Value Standard
deviation

P value

Intercept 6.24 1.44 0.0010

Calcium hydroxide (10 g) 0.48 0.55 0.3860

Calcium hydroxide (15 g) -0.21 1.18 0.8590

Nixtamal washes (3) -5.94 1.63 0.0010***

Nixtamal washes (4 or more) -5.93 1.44 0.0000***

Tortilla storage (2 days) 0.65 0.70 0.3610

Tortilla storage (3 days) -0.42 1.43 0.7690

n ¼ 48

Akaike Information Criteria (AIC) ¼ 168.76

Bayesian Information Criteria (BIC) ¼ 191.31

*, *** Significance level (p < F) ¼ (p < F) 0.01 y 0.1, respectively.
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and toxins (Roque et al., 2016). Generally, 3 washes are carried out
during the process to remove calcium hydroxide (Arriola et al., 1988).
3.2. Aflatoxin reduction

Aflatoxin contamination in corn kernels was statistically higher (p <

0.05) than contamination observed in masa and tortilla samples. How-
ever, it was observed that tortillas were still contaminated even after
nixtamalization and thermal processes. Figure 1 shows the percentage of
aflatoxin reduction by municipality and by products. Similar reductions
were found between municipalities. When considering the reductions
obtained at different stages of the process, the reduction observed be-
tween corn kernels and tortillas was the highest in the process. This
reduction ranged from 81.50-83.30% depending upon the municipality.
Figure 1. Aflatoxins reduction (%) after grains were processed into
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The reduction observed between contamination levels associated with
kernels and masa was 72.75–76.16%. Additionally, converting masa to
tortillas lead to a percentage reduction between 46.79-51.36%.

Due to chemical stability, aflatoxins can be present even in final
products such as tortillas (Bullerman and Bianchini, 2007), but, the
nixtamalization process could potentially inactivate toxins produced by
fungi (Arriola et al., 1988; Bressani, 1990). In 1988, Arriola et al. eval-
uated the reduction of aflatoxins through nixtamalization; they reported
a reduction in masa of 96.67% in dry weight and in tortillas of 97.95%. In
(2004), M�endez and Albores carried out a study that worked with
traditional nixtamalization and ecological nixtamalization. For tradi-
tional nixtamalization, the reduction of aflatoxins from kernels to masa
was 90% and from kernels to tortilla 92%. The reductions with ecological
nixtamalization were 46 and 78%, respectively. Similar results were
presented by Anguiano et al. (2005), who reported that nixtamalization
reduces aflatoxins by up to 96%.
tortilla (G–T), grain to masa (G–M) and masa to tortillas (M–T).



Table 7. Means, standard deviation and R2 of fumonisins incidence (mg/kg), by products and municipality.

Products Municipality

Gracias La Campa Lepaera San Marcos de Caiquín

Corn kernels 8.34 � 4.31A 4.36 � 3.60A 6.88 � 8.29A 9.04 � 7.67A

Masa 4.66 � 2.95B 3.41 � 1.75B 3.08 � 2.00B 5.28 � 4.18B

Tortilla 3.34 � 1.78B 1.87 � 0.98B 1.51 � 1.87B 3.92 � 3.61B

Pr > F <0.0001 0.0030 0.0010 <0.0001

R2 0.86 0.76 0.65 0.87

A - B Different letters in the same column represent statistical differences between products in the same municipality (p < 0.05).

Table 8. Maximum and minimum values of aflatoxins incidence (mg/kg) by products and municipality.

Product Municipality

Gracias La Campa Lepaera San Marcos de Caiquín

Min Max Min Max Min Max Min Max

Corn kernels 2.09 15.91 1.17 12.77 1.37 29.76 0.82 28.04

Masa 1.27 12.76 1.41 6.13 1.19 7.20 0.66 14.36

Tortilla 1.19 5.98 0.59 3.27 0.77 6.84 0.63 12.40

Table 9. Mixed effects model with standardized coefficients of the factors that
affect fumonisins incidence in corn kernels.

Factor Value Standard
deviation

P value

Intercept 32.89 10.82 0.0050

Storage (Silo) -1.69 3.27 0.6090

Genetic material (Improved) -14.56 8.25 0.0880*

Drying (Cobs) -3.47 8.10 0.6720

Drying (Kernels) -2.98 3.72 0.4310

Grain density -0.34 0.19 0.0860*

Moisture verification (Kernels sound test) -2.32 3.64 0.5290

Moisture verification (Kernels bite test) 2.23 6.90 0.7490

Moisture verification (Other tests) -4.78 6.49 0.4680

Days after harvest 0.01 0.02 0.4090

Dobla (Leaf color) -7.45 4.26 0.0910*

Dobla (Nail insertion test) -4.33 4.85 0.3800

Dobla (Kernels bite test) -14.55 11.34 0.2100

Dobla (Black spots on the leaf) -6.85 7.65 0.3780

Genetic material*Density 0.29 0.19 0.1540

n ¼ 48

Akaike Information Criteria (AIC) ¼ 228.59

Bayesian Information Criteria (BIC) ¼ 251.15

* Significance level (p < F) ¼ 0.10.
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3.3. Fumonisins determination

In contrast to aflatoxins, 100% of the 144 samples analyzed were
contaminated by fumonisins. Eighty percent of kernel samples exceeded
the regulatory limit of contamination established by JECFA (4 mg/kg). In
masa and tortillas, 60% and 36% of the samples exceeded this limit,
respectively. Tables 7 and 8 show that the maximum levels of incidence
of fumonisins for each product and municipality were above the limit;
this situation is of concern given the health risks caused by consumption
of food contaminated by fumonisins. For kernels, the contamination limit
is 4 mg/kg and for corn flour is established at 2 mg/kg (Codex Ali-
mentarius, 2018), however, for foods derived from corn such as tortillas,
there are still no established contamination limits (Petersen, 2018). Re-
sults in this study are consistent with those reported by Oliveira et al.
(2016), where fumonisins were evaluated in corn from S~ao Paulo, Brazil,
and they found that 83.30% of the analyzed samples were contaminated
with levels ranging from 0.15 to 6.47 mg/kg. Knutsen et al., (2018) re-
ported that fumonisins can be transferred from kernels to final products
due to their chemical and thermal stability during food processing.

3.3.1. Factors influencing the incidence of fumonisins in corn kernels and
tortillas

In tropical corn-producing regions, the most frequent fumonisins (B1,
B2, and B3) are associatedwith this commodity (Girolamo et al., 2016; La
Campa, Miller and Hendricks, 2004); of which Fumonisin B1 is the most
abundant, and therefore, causing the greatest health effects (Stock-
mann-Juvala and Savolainen, 2008). Mixed-effects model were used at
the producer level to find the factors that influenced the incidence of total
fumonisins in kernels (Table 9). It was found that fumonisin contami-
nation associated with improved corn varieties was less than lines asso-
ciated with the native varieties (p < 0.1). In this case, improved varieties
reduced the levels of contamination up to 14.56 mg/kg. In other coun-
tries like Mexico (Wall-Martínez et al., 2019) and Guatemala (Torres
et al., 2014), it has also been reported that native varieties are more
susceptible to fumonisin contamination. Rural communities in the pre-
sent study are still cultivating native materials with open pollination,
which over time have adapted to local conditions (Rosas et al., 2006).

The Agriculture and Livestock Secretary of Honduras (SAG, Spanish
acronym) has recommended improved varieties to alleviate issues asso-
ciated with climate, and incidence of diseases such as Tar Spot and ear rot
(SAG, 2015). Despite the cultural bond that exists with native corn
cultivation, some authors (Plasencia, 2004) emphasize the vulnerability
of native maize to the attacks of mycotoxin-producing fungi. More than
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50% of farmers in the region have access to improved seeds (SAG, 2015),
however, some still have limited access. For example, because of Lep-
aera's altitude of 2000 m above sea level (INE, 2018), the dissemination
of improved seeds is limited and the families in the area prefer the sen-
sory characteristics of tortillas made with native varieties. Therefore,
they store the seeds for the next planting season. In Gracias on the other
hand, which is only 800 m above sea level (INE, 2018), farmers have
easier access to improved seeds.

Statistical analysis also showed that the density of kernels is a sig-
nificant factor in the incidence of fumonisins (p < 0.1). Grains with a
density greater than 669 kg/m3 presented lower levels of contamination
(<7 mg/kg) in comparison to the kernels with a density�592 kg/m3 (29
mg/kg). Density of grains is a parameter that the United States estab-
lished to assess grain quality, and for corn, it must be 721 kg/m3 to be
considered a good quality grain. Low-density grains may be prone to
contain up to 70% more fumonisins than higher-density grains (Paulsen
et al., 2018).



Table 10. Mixed effects model with standardized coefficients of the factors that
affect fumonisins incidence in tortillas.

Factor Value Standard
deviation

P value

Intercept 3.99 2.63 0.1370

Calcium hydroxide (10 g) 1.39 1.07 0.2040

Calcium hydroxide (15 g) -1.08 0.96 0.0570*

Nixtamal washes (3) -1.19 3.23 0.6190

Nixtamal washes (4 or more) -0.11 0.96 0.2710

n ¼ 48

Akaike Information Criteria (AIC) ¼ 208.70

Bayesian Information Criteria (BIC ¼ 231.25)

* Significance level (p < F) ¼ 0.10.
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Another significant factor associated with fumonisin contamination
was the practice of bending the plant stem as corn seeds reach their
physiological maturity. This practice is called "dobla" and it is done in the
field before the corn is harvested.With the “dobla”, the transport of water
and nutrients from the stem to the cobs is interrupted (ICTA, 2014). It is
also thought that the “dobla” leads to decreased moisture in cobs pre-
venting proliferation of fungi, and reducing the exposure of kernels to
damage from birds (DICTA, 2013). It was found that when “dobla” was
performed based on the leaf color criterion, contamination was reduced
by up to 7.45 mg/kg. In the evaluated municipalities, the “dobla” prac-
tice was carried out by 100% of the farmers, of which 54.17% used the
yellowish color of the leaf criterion. This practice is generally performed
80–90 days after planting, and cobs are harvested 25–40 days after
“dobla” (ICTA, 2014).

The factors that influenced the incidence of fumonisins in tortillas are
shown in the mixed-effect model shown in Table 10. Only the addition of
calcium hydroxide was significant in reducing fumonisins contamination
in tortillas (p < 0.1). When 15 g of calcium hydroxide were added for
every 3–4.5 kg of corn, fumonisin levels were reduced up to 1.07 mg/kg,
when compared to the addition of 10 g of calcium hydroxide. Girolamo
et al., (2016) reported that there is a correlation between the concen-
tration of calcium hydroxide used during nixtamalization and the
reduction of fumonisins. Families in Lempira have established quantities
of lime to be used based on experience; when 3 kg of corn were cooked,
female members of the families mentioned that 15 g of lime were added.
M�endez-Albores et al. (2004) used 6 g of lime per 2 kg of corn with the
ecological nixtamalization method. In other studies, the use of 10 g of
lime per kg of corn was reported (Anguiano et al., 2005; Roque et al.,
Figure 2. Fumonisins reduction (%) after grains were processed into
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2016). This indicates that there is no standardization in the quantities of
calcium hydroxide to be used. Therefore, more research on nixtamali-
zation should be carried out using different amounts of this component to
establish adequate ranges of addition per amount of corn to be prepared.

3.4. Fumonisin reduction

Considering the different types of products (corn kernels, masa, and
tortillas) analyzed (n¼ 144), it was found that the contamination in corn
kernels was the highest, and statistically different (p < 0.05) from the
contamination in masa and tortilla. Even after nixtamalization and
thermal processes, it was observed that fumonisin contamination persists
in tortillas. Figure 2 shows the percentage of fumonisin reduction for
each municipality and by products. The percentage of reduction in tor-
tillas with respect to the contamination levels found in kernels was
48.00–57.35%, while the reduction of fumonisins from kernels to masa
was in the range of 33.39 and 41.20%. It was also observed that the
process of transforming masa into tortilla leads to fumonisin reductions
between 15.59-26.32%.

Unlike aflatoxins, fumonisins are more stable under chemical and
thermal processes (Knutsen et al., 2018), and they can also be found in
final products, such as tortillas (Bullerman and Bianchini, 2007). How-
ever, the nixtamalization process could potentially inactivate toxins
produced by fungi (Arriola et al., 1988; Bressani, 1990). La Campa et al.
(2004) reported a reduction of fumonisin between 70 and 80% through
the use of different proportions of lime and water in nixtamalization.
Girolamo et al. (2016) reported fumonisin reductions in corn, between
45 and 78% after going through a nixtamalization process.

3.5. Exposure risk from consumption of corn products contaminated with
aflatoxins and fumonisins

Rural communities of Lempira are frequent consumers of corn-based
products. A 72.92% of the interviewed farmers expressed that they
consume an average of 5 tortillas per day (245 � 135 g), 14.58%
consume approximately 10 tortillas/day (490 � 88 g), and 7.5%
consume 15 tortillas/day (735� 135 g). The remaining 5% consumed 20
tortillas daily (980 � 176 g). High daily intake of corn increases the di-
etary mycotoxin exposure risk. In rural zones of Lempira, climate
vulnerability, food insecurity, socioeconomic status, and social
inequality are factors that contribute to perpetuating subsistence agri-
culture (Ben-Davies et al., 2014; Harvey et al., 2018) focused on corn
production. Per capita consumption of tortillas in the four municipalities
tortilla (G–T), grain to masa (G–M) and masa to tortillas (M–T).
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Figure 3. Exposure risk by aflatoxins daily intake (μg/kg bw/day) for maize tortillas in the San Marcos de Caiquín (SMC), La Campa (LC), Gracias (GR) and Lepaera
(LE) municipalities.

y

Figure 4. Exposure risk by fumonisins daily intake (μg/kg bw/day) for maize tortillas in the San Marcos de Caiquín (SMC), La Campa (LC), Gracias (GR) and Lepaera
(LE) municipalities.

J. Cabrera-Meraz et al. Heliyon 7 (2021) e08506
studied was estimated to be approximately 490 g/day. This average
consumption is lower compared to rural communities in Guatemala,
where the daily intake was reported to be approximately 600 g/day
(Mendoza et al., 2018), but greater than regions of Mexico where con-
sumption was found to be between 120 and 300 g/day (Wall-Martínez
et al., 2019). In addition to average consumption, the levels of aflatoxin
and fumonisin contamination are determining factors in the risk of
exposure. It should be mentioned that the daily limit of aflatoxin intake is
0.001 μg/kg bw/day (FAO/WHO, 2017; Wall-Martínez et al., 2019;
WHO/FAO, 2018) and for fumonisins, it is 2 μg/kg bw/day (Knutsen
et al., 2018; WHO/FAO, 2018).
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It is important to mention that the tortillas consumed in rural areas of
Lempira are artisanal, so their dimensions differ with respect to the
tortillas in other regions of the country. Tortillas in this department have
an average diameter of 102 � 3 mm, thickness of 3 � 1 mm, and weight
of 49 � 8 g. These characteristics contribute to higher maize consump-
tion compared to urban areas where tortillas are more commercial,
therefore, their average weight is lower, and the daily consumption is
also lower due to availability of other foods in the urban sector.

Figures 3 and 4 show the calculated risk of dietary exposure to afla-
toxin and fumonisin. The exposure risk to aflatoxin and fumonisin from
consumption of tortillas for each municipality was calculated based on
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the levels of contamination found in the samples evaluated and the re-
ported amount of tortillas consumed in the region. For aflatoxins, the
ascending order of risk by municipalities was San Marcos de Caiquín, La
Campa, Gracias, and Lepaera. However, the risk for fumonisins was the
opposite, as San Marcos de Caiquín presented a higher risk and Lepaera a
lower risk of exposure. For both mycotoxins, the risk of exposure
exceeded the limits established by the JECFA and the Food and Drug
Administration (FDA). With this scenario, it is necessary to implement
measures throughout the corn value chain to decrease mycotoxin
contamination levels (Andrade and Caldas, 2015). Strategies should be
aimed to improve the sustainability of maize production systems and to
reduce food insecurity rates in rural areas (Donatti et al., 2019) in
Lempira. It would also be beneficial to study the associations and stability
of aflatoxins and fumonisins during processing and digestion to reduce
the health risks of the population (Massarolo et al., 2020).

4. Conclusion

In the municipalities of Gracias, La Campa, San Marcos de Caiquín
and Lepaera, there was a higher incidence of fumonisins than aflatoxins.
Masa and corn tortilla samples had a considerable reduction of aflatoxins,
and a lower percentage of fumonisins, when compared to kernels.
Traditional chemical and thermal processes of nixtamalization reduced
the levels of aflatoxin and fumonisin contamination in masa and tortillas.
This reduction was influenced by the amount of calcium hydroxide and
washing steps of the nixtamal. Nevertheless, the levels of contamination
that persisted in the final products are worrisome, due to the daily fre-
quency of corn consumption. Mycotoxin exposure in the four munici-
palities evaluated was higher than those deemed safe by international
guidelines, due to the daily consumption of corn-based food and the
levels of contamination found in the samples. During the post-harvest
stage, to prevent or control the incidence of aflatoxins and fumonisins
in corn and corn-based products, the implementation of practices such as
manually discarding damaged grains to reduce cross-contamination,
maintaining optimal moisture levels in the grain, and periodically
checking the storage to avoid the entry of pests is essential. Therefore, it
is important to create programs to disseminate awareness of preventive
and corrective measures associated with the corn production chain.
These measures, when applied to the corn chain would decrease grain
losses and ensure the consumption of final products with non or tolerable
levels of mycotoxins. Additionally, regulatory actions are required to
stablish permissible levels of contamination and intake of aflatoxins and
fumonisins, considering the country context and the high demand for
consumption of corn products.
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