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Paroxysmal eye–head movements in
Glut1 deficiency syndrome

ABSTRACT

Objective: To describe a characteristic paroxysmal eye–head movement disorder that occurs in
infants with Glut1 deficiency syndrome (Glut1 DS).

Methods:We retrospectively reviewed themedical charts of 101 patients with Glut1 DS to obtain
clinical data about episodic abnormal eye movements and analyzed video recordings of 18 eye
movement episodes from 10 patients.

Results: A documented history of paroxysmal abnormal eye movements was found in 32/101 pa-
tients (32%), and a detailed description was available in 18 patients, presented here. Episodes
started before age 6 months in 15/18 patients (83%), and preceded the onset of seizures in
10/16 patients (63%) who experienced both types of episodes. Eye movement episodes
resolved, with or without treatment, by 6 years of age in 7/8 patients with documented long-
term course. Episodes were brief (usually ,5 minutes). Video analysis revealed that the eye
movements were rapid, multidirectional, and often accompanied by a head movement in the same
direction. Eye movements were separated by clear intervals of fixation, usually ranging from 200
to 800 ms. The movements were consistent with eye–head gaze saccades. These movements
can be distinguished from opsoclonus by the presence of a clear intermovement fixation interval
and the association of a same-direction head movement.

Conclusions: Paroxysmal eye–head movements, for which we suggest the term aberrant gaze
saccades, are an early symptom of Glut1 DS in infancy. Recognition of the episodes will facilitate
prompt diagnosis of this treatable neurodevelopmental disorder. Neurology® 2017;88:1666–1673

GLOSSARY
Glut1 DS 5 Glut1 deficiency syndrome; KD 5 ketogenic diet; VOR 5 vestibulo-ocular reflex.

Glut1 deficiency syndrome (Glut1 DS) (OMIM 606777) is a disorder of brain energy metab-
olism caused by impaired glucose transport into the brain mediated by the glucose transporter
Glut1.1 Classically, patients present in infancy with intractable seizures, acquired microcephaly,
developmental delay, intellectual disability, spasticity, ataxia, dystonia, and paroxysmal neuro-
logic events.1,2 Patients may present with a benign idiopathic epilepsy-like syndrome.3 They may
also present with paroxysmal exertional dyskinesia with or without epilepsy.4,5 Despite the
phenotypic variability, overlapping features are often present.6,7 The disease hallmark is low
CSF glucose concentration in association with normoglycemia. The CSF/blood glucose ratio is
typically less than 0.4.8 The Glut1 defect can be confirmed by a functional in vitro assay that
measures glucose uptake in erythrocytes,9 and by mutation analysis of the gene encoding the
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glucose transporter type 1 (SLC2A1).10 Het-
erozygous de novo mutations in SLC2A1 are
detected in the majority of patients.6,8 Treat-
ment of the nutrient deficiency is based on
providing ketone bodies as an alternative brain
fuel. Early diagnosis is crucial, since treatment
with the ketogenic diet (KD) dramatically im-
proves symptoms and may also improve the
long-term outcome.11

Patients with Glut1 DS have paroxysmal
abnormal eye movements,12–14 and eye move-
ment abnormalities are the first neurologic
event in 38% of patients.15 The eye move-
ments have been tentatively called opsoclo-
nus,16 but description and characterization of
these events is, in fact, lacking. Based on the
retrospective analysis of 101 patients with
genetically confirmed Glut1 DS and video
analysis of the eye movement episodes, we
describe the characteristics of the paroxysmal
abnormal eye movements in infants with
Glut1 DS.

METHODS Video analysis. Home videos from 10 patients

were independently reviewed by 2 pediatric neurologists

(T.S.P., R.P.) and a pediatric neuro-ophthalmologist (S.A.K.)

who generated a consensus description of eye movement findings.

We then performed quantitative video analysis on a subset of

videos to characterize the time course of eye movements. For this

purpose, we selected 30- to 60-second excerpts from 4 episodes

from 4 patients, in which the eyes and head were clearly visible in

close-up, and used frame-by-frame analysis to manually mark the

time of onset of each eye movement (video frame rate: 30 frames

per second for 3 videos, 13 frames per second for 1 video).

Retrospective medical record review. Medical records of 101

patients with confirmed Glut1 DS who were evaluated at Colum-

bia University Medical Center between 1989 and 2014 were

screened for paroxysmal abnormal eye movements. For all

patients who had experienced one or more paroxysmal eye move-

ment events, the following data related to events were analyzed:

(1) age at onset, (2) direction and alignment of eye movements,

(3) velocity, (4) duration, (5) level of alertness, (6) associated head

movements, (7) EEG correlation, (8) frequency, (9) time course,

(10) age at resolution, (11) precipitating factors, and (12) reliev-

ing factors. Response to the KD or to antiepileptic medication

was assessed when applicable.

Abnormal eye movements associated with loss of conscious-

ness, apnea, head drop, or abnormal focal or generalized myo-

clonic, tonic, or clonic movements were excluded. Episodes

described as eye flutter without further characterization were also

excluded.

RESULTS Description of 3 representative cases. Patient

1. A 10-year-old boy developed episodes of unusual
eye movements, associated with nodding head
movements that appeared to follow the direction of
the eyes, at age 1 month (video 1 at Neurology.org).

During the episodes, he was awake and at times re-
sponded by smiling, and at other times appeared
upset. Episodes seemed to be precipitated by excite-
ment and typically lasted 10–20 minutes. Rarely,
episodes lasted up to 1 hour. A peak frequency of 10–
15 episodes per month occurred at age 4–5 months.
Episode frequency decreased towards the end of
infancy and ceased by age 8 years.

The patient developed intractable epilepsy at age 3
months. His first seizures were myoclonic and atonic.
At age 2 years, he developed absence seizures, and at
age 3 years, generalized tonic seizures. He experienced
other paroxysmal events including episodic choreoa-
thetosis, limb dystonia associated with crying and
drooling, and episodes of lethargy and generalized
paralysis.

The patient was started on a KD at age 7 years.
His seizures, paroxysmal neurologic events, motor
and language skills, attention span, and mood all
improved.

Brain MRI was normal and investigations for
occult neuroblastoma were negative. Glut1 DS was
diagnosed at age 10 years (table 1, patient 1). Exam-
ination at age 10 years revealed a head circumference
at the 25th percentile, lower limb spasticity, and cer-
ebellar dysfunction with dysarthria, limb dysmetria,
and a mixed spastic-ataxic gait.

Patient 2. A 10-year-old-girl had her first episode of
unusual eye movements at age 14 weeks. The 3-
minute episode began with crossing of the eyes, fol-
lowed by repeated eye movements with head turns.
She then had 14 more episodes before age 15 months,
each lasting 1–10 minutes with preserved alertness.
Her mother described the episodes as follows: “it’s as
if she’s watching something whiz past her. She doesn’t
turn her head in a repetitive motion or have a pattern.
It seems more like she’s turning her head to try to
focus her eyes on something” (video 2). The episodes
seemed to improve with feeding.

At age 16 months, the patient had 3 brief general-
ized tonic-clonic seizures, which responded to carba-
mazepine. The paroxysmal eye movements also
subsided, although she had 7 further episodes, the last
at age 23 months.

Due to the abnormal eye movements, at age 27
months the patient was investigated for a possible
diagnosis of opsoclonus-myoclonus syndrome. Lum-
bar puncture demonstrated low CSF glucose. The
diagnosis of Glut1 DS was subsequently confirmed
by erythrocyte glucose uptake assay and SLC2A1
analysis (table 1, patient 2).

The KD was initiated at age 29 months. The
patient had no further seizures and anticonvulsant
therapy was discontinued at age 3.5 years. At age
10 years, she has mild ataxia and difficulties with
motor coordination, learning, and attention.
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Patient 3. A 6-year-old boy experienced, at age 4
months, an episode of abnormal eye movements that
his parents likened to “someone following a fly.” He
had further episodes approximately once per month
during the first year of life. The episodes lasted less
than 1 minute and occurred towards the end of the
day when he was tired. As he became older, he com-
plained of dizziness during the episodes without asso-
ciated nausea, vomiting, or headaches. The events’
frequency gradually decreased, and at age 5 years he
had his last episode. He never had clinical seizures.
EEGs were normal on 2 occasions.

On examination at age 6 years, head circumfer-
ence was between the 3rd and 10th percentiles. The
patient was restless, distractible, and impulsive, but
cooperative and able to follow simple instructions.
He had lower limb spasticity and hyperreflexia, mild
dysarthria, truncal ataxia, intention tremor, poor
coordination, and difficulty carrying out complex
motor tasks. The diagnosis of Glut1 deficiency was
confirmed by the finding of low CSF glucose concen-
tration, reduced erythrocyte glucose uptake, and
SLC2A1 analysis (table 1, patient 3).

Video analysis. We reviewed home video examples of
18 individual episodes from 10 patients.

The episodes were characterized by frequent
movements of the eyes and head. Several features
were consistent across all patients. The eye move-
ments were rapid, consistent with saccades, and were
followed by epochs of fixation as if they were normal
gaze shifts. Movements occurred in multiple direc-
tions, were clearly separated in time by intervening
periods of fixation, and were often accompanied by
a head movement in the same direction (figure 1,
videos 1–3). In particular, we never observed 2 eye
movements in immediate succession without a brief
period of fixation between them.

Eye movements were usually conjugate, but in
many episodes the eyes appeared intermittently dys-
conjugate. Dysconjugate gaze was characterized by
convergence of either one or both eyes (video 2, seg-
ment 1), giving a temporary cross-eyed appearance.

In some cases, the head movements were large in
amplitude and prominent (video 3), while in others, they
were subtle. There was only 1 video (10 seconds in dura-
tion) in which we did not observe any head movements.

The patients were awake during the episodes in all
cases. Responsiveness was difficult to judge in reliably
very young infants, but older infants clearly demon-
strated preserved consciousness and the ability to respond
to their parents during the episode (video 2, segment 3).

Table 1 Clinical characteristics of 18 patients with paroxysmal eye–head movements

Patient Sex First symptom

Onset of eye
movements,
age, mo

Onset of
seizures,
age, mo

Age at
diagnosis,
mo

CSF glucose,
mg/dL

CSF:serum
glucose ratio

RBC 3-OMG
uptake, %

SLC2A1
mutation type

Clinical
severitya

1 M Eye movements 1 3 86 24 0.30 70 Missense Moderate

2 F Eye movements 3 15 27 28 0.35 66 Missense Mild

3 M Eye movements 4 — 78 34 0.39 43 Missense Mild

4 F Eye movements 3 7 8 27 0.34 45 Frameshift Mild

5 F Eye movements 2 3.5 3.5 27 0.33 43 Missense Severe

6 F Eye movements 1
seizures

3 3 26 32 0.43 59 Insertion Moderate

7 M Eye movements 2 — 90 35 0.40 45 Insertion Moderate

8 M Eye movements 6 9 45 36 0.49 59 Missense Mild

9 F Seizure 1.5 0.5 77 37 — — Frameshift Moderate

10 M Eye movements ,1 8 120 — — 52 Missense Moderate

11 M Eye movements 6 13 19 — — 38 Splice site —

12 M Eye movements 3 24 96 30 0.37 50 Missense Severe

13 F Eye movements 2 18 95 32 — — — —

14 F Eye movements 1
seizures

5 5 16 26 0.30 40 Frameshift Moderate

15 M Seizure 1.5 1 94 37 0.38 51 Missense Moderate

16 M Seizure 8 4 30 31 — — Deletion Moderate

17 F Eye movements 1
seizures

,1 ,1 30 29 0.36 56 Frameshift Moderate

18 F Eye movements 3 18 41 33 0.38 59 Splice site Severe

Abbreviation: RBC 3-OMG 5 red blood cell 3-O-methyl-glucose.
aClinical severity rating based on Columbia Neurologic Score.9
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Frame-by-frame video analysis of 4 individual
patient episodes revealed the time course of move-
ments in further detail. The timing of eye movements
was irregular and there was a clear interval between
saccades (figure 2A). For the vast majority of move-
ments, the interval between saccades ranged from 200
to 800 ms. The pattern of distribution of intersacca-
dic intervals, with a peak at 400–500 ms, was mark-
edly similar for all 4 patients (figure 2B).

Frame-by-frame analysis also demonstrated that
initiation of the eye movements usually occurred first,
followed by head turning in the same direction 30–60
ms later (figure 1, panels 5–6, 10–11). Fixation of eye
gaze on an apparent target was often maintained dur-
ing the head movement phase (suggesting active
vestibulo-ocular reflex [VOR] during this phase of
the movement). During larger amplitude head move-
ments, eye position in the head remained constant
during the head movement phase (suggesting VOR
suppression) (video 3). These movement features are
consistent with shifts of gaze.

Retrospective medical record review. Paroxysmal abnor-
mal eye movements were documented in 32 of 101
patients (32%) with Glut1 DS. Words used by pa-
rents or doctors to describe the movements included,
in decreasing order of frequency, the following: eye
rolling (n 5 11); strange, unusual, or funny (n 5

5); chaotic (n 5 4); opsoclonus (n 5 4); searching,
“like someone following a fly” or “like following an
object visually” (n 5 3); darting (n 5 3); jerky or
jumping (n 5 3); uncontrollable (n 5 2); oscillating
(n5 2); repetitive (n5 2); roving (n5 1); triangular;
and up and down eye movements (n 5 1).

In 18/32 patients, the abnormal eye movements
were described in the medical chart in sufficient detail
to suggest the depiction of a consistent type of

episode. Only episodes of these 18 patients are
described further below (table 2).

The mean age at onset of eye movement episodes
was 3.1 months (range, neonatal period to 8 months).
The first episode occurred before age 6 months in 15
of 18 patients.

Eye movement speed was subjectively reported as
rapid in 7 patients and slow in 2. Velocity was not re-
ported in the remaining patients. Associated head
movements were documented in 7 patients: head nod-
ding in 2, head back and forth in 2, and head turning
in 1. The parents of 2 patients specifically described the
head turning in the direction of the eyes.

None of the patients lost consciousness during
their episodes. In 3 patients there was a questionable
alteration of alertness described as “relatively unre-
sponsive,” “zoned out,” or “detached.”

Event duration was typically brief (,5 minutes in
9 patients and ,1 minute in 4). One patient experi-
enced rare episodes lasting up to 1 hour. Episode
frequency was variable, ranging from 1 or 2 episodes
in 2 patients to 10 episodes per day in 1 patient.
Among patients for whom the long-term course of
eye movement episodes was documented (n5 8), the
episodes disappeared between 3 and 6 years of age in
7 patients, and were still present at age 8 years in 1
patient (table 2).

Potential precipitating factors reported by parents
included fatigue, hunger, excitement, and being
placed on the back. Feeding was reported to be a pos-
sible ameliorating factor in 1 patient.

In 5 patients, episodes were captured during con-
tinuous EEG monitoring and had no EEG correlate.
In 6 further patients, an EEG was performed around
the time of the occurrence of the abnormal eye move-
ments. Epileptiform discharges were detected in only
1 patient, with no clinical correlate.

Figure 1 Eye–head gaze saccades

In each of these 3 gaze shifts, movement of the eyes is followed by a head movement in the same direction. There is a period of fixation between eye move-
ments (total time: 1.8 seconds, interval between frames: 150 ms).
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Improvement in eye movement episodes following
initiation of the KD was documented in 2 patients.
Episodes had resolved spontaneously prior to initia-
tion of the diet in 3 patients, and in other cases, the
response of these episodes to the diet was not specif-
ically documented. Six patients were treated with
antiepileptic medications: in 1 patient, the episodes

improved, in 3 the response was unclear, and in 2
there was no benefit.

Sixteen patients in our cohort of 18 had seizures.
Of those, 10 of 16 patients experienced eye move-
ment episodes before their first seizure. The latency
from onset of eye movements to first seizure ranged
from 1 to 21 months (table 1) in those 10 patients.

DISCUSSION In this report, we describe characteris-
tic, brief episodes of eye–head movements that occur
in one-third of infants with Glut1 DS. These move-
ments are rapid, multidirectional, and often accom-
panied by head movements in the same direction.
The movements are always clearly separated in time
by intervals typically ranging from 200 to 800 ms,
corresponding to an average eye movement frequency
of approximately 2 per second. These features are
most consistent with saccadic eye–head gaze shifts,
which are characterized by the presence of inter-
saccadic intervals, aligned direction of the eye and
head movement, and optional presence of the head
component. Paroxysmal eye–head gaze saccades of
this type may be a specific feature of cerebral glucose
insufficiency in infancy.

The eye movements of Glut1DS have been
described as opsoclonus. However, unlike the eye
movements that we observed, the eye movements of
opsoclonus have no intermovement fixation interval,
and are not associated with a same-direction head
movement. The episodes we observed can also be dis-
tinguished from other eye movement disorders that
may occur in infancy, including infantile nystagmus,
ocular flutter, and spasmus nutans.

The pathophysiologic mechanism underlying par-
oxysmal eye–head gaze saccades in Glut1 DS is
unknown. Gaze shifts normally serve the function
of bringing an object of interest, detected in the
peripheral visual field, to the fovea, where it can be
seen in greater detail. In the mature nervous system,
the control of gaze involves both active signals to drive
the eyes and active signals to suppress eye movements
and therefore facilitate fixation.17 Gaze shifts often
involve both eye saccades and head movements.
The signals for head and eye movements originate
in the paramedian pontine reticular formation (for
horizontal eye movements) and the mesencephalic
reticular formation (for vertical eye movements).18

A network including the superior colliculus,19 the
frontal eye field,20 and the posterior parietal cortex21,22

then specifies the target for a possible gaze shift and
entrains the brainstem gaze mechanism. Simulta-
neously a hierarchy of areas suppresses eye move-
ments: the nucleus of the dorsal raphe inhibits the
brainstem saccade generators,23 the substantia nigra
pars reticulata suppresses the superior colliculus,24

and neurons in the frontal eye field specify objects

Figure 2 Timing of eye movements

(A) Time of onset of eye saccades in a single patient over a 15-second period (excerpt from
video 3). Saccades occur at variable intervals. (B) Distribution of intervals between onset of
saccades in 4 individual patients. Bins are 50ms. Top graph is the same patient as in A (num-
ber of eye movements per patient, top to bottom: 40, 94, 78, 90; total 5 302).
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Table 2 Features of eye movement episodes reported in the medical chart

Patient
Onset,
mo Eye movement description

Direction,
alignment Velocity Head movement Alert? Duration, min Frequency Precipitant

Resolution/
age, y

Response to
KD

Response to
AED

1 1 Uncontrollable, chaotic,
“opsoclonus”

All Rapid Nodding, bobbing, following
direction of eyes

Yes 5–60 10–15/mo Excitement Yes/5 ΝΑ Unclear

2 3 As if watching something
whiz past

All Rapid Head jerks, head turning Yes 1–10 1–2/mo Preprandial,
fatigue

Yes/2 NR Yes

3 4 Like following a fly All Rapid No Yes ,1 1/2 mo Fatigue Yes/6 ΝΑ ΝΑ

4 3 Darting, chaotic Horizontal,
dysconjugate

Rapid Yes Yes 3–5 3/mo NR Yes/3 Yes ΝΑ

5 2 Triangular All ΝR NR Yes NR 1 episode NR ΝR ΝΑ ΝΑ

6 3 Darting All Rapid NR Yes 1–2 NR NR NR ΝΑ ΝΑ

7 2 Rolling ΝR ΝR Yes Yes 1–4 1/d-wk NR NR ΝΑ ΝΑ

8 6 Chaotic, rolling ΝR Rapid NR Yes ,1 2 episodes NR NR ΝΑ ΝΑ

9 1.5 “Opsoclonus” ΝR ΝR NR Yes NR 1/1–2 mo NR Yes/3 ΝΑ ΝΑ

10 ,1 Chaotic ΝR, conjugate ΝR NR Yes 1–3 NR NR NR ΝΑ ΝΑ

11 6 Strange NR, conjugate Rapid Yes Yes 2 NR NR NR ΝΑ Νο

12 3 Jumping, “opsoclonus” Horizontal, ΝR Rapid,
Slow

Back and forth Yes ,1–5 NR Lying on back NR ΝΑ Unclear

13 2 Repetitive ΝR ΝR Yes Yes NR 1/mo NR Noa NR NR

14 5 Repetitive Vertical ΝR NR Relatively
unresponsive

,1 1/mo Preprandial,
fatigue

Yes/2 ΝΑ ΝΑ

15 1.5 “Opsoclonus” All Slow Nodding Yes 2–3 2/wk Chocolate NR Yes ΝΑ

16 8 Rolling, jerky Horizontal ΝR NR Yes Brief NR Lying on back Yes/4 ΝΑ ΝΑ

17 ,1 Like following a fly ΝR, dysconjugate ΝR Βack and forth Zoned out NR NR NR NR NR No

18 3 Rolling, like following an
object visually

All ΝR NR Detached ΝR ΝR NR NR NR No

Abbreviations: AED 5 antiepileptic drug; KD 5 ketogenic diet; NA 5 not applicable; NR 5 not reported.
aEpisodes still occurring at age 8 years.
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in the visual field that are inappropriate targets for
saccades.25 Just like the aberrant spontaneous saccades
in Glut1 DS, normal saccades are often dysconjugate
when they involve shifts in vergence angle.

Our patients’ episodes were characterized by
apparently involuntary repeated gaze saccades. Symp-
toms almost always emerged during the first 6
months of life, a time when the visual system is
undergoing rapid maturation, and the ability to sup-
press reflexive saccades to visual stimuli develops.26

Because neurons in the dorsal raphe and the substan-
tia nigra pars reticulata discharge at high rates except
during eye movements, it is possible that their activity
is compromised by the glucose deficiency of Glut1
DS, allowing the release of inappropriate saccades.
Insufficient energy supply to meet demand is one
mechanism that has been postulated to underlie other
paroxysmal events in Glut1 DS.5 Consistent with this
hypothesis, eye movement episodes were precipitated
by fatigue, excitement, or fasting, and responded
favorably to the KD in some patients.

The possibility that these episodes represent a type
of focal seizure that is not detectable by scalp EEG
cannot be fully excluded, but is unlikely. Preserved
alertness, absence of other typical clinical manifesta-
tions of seizures, and normal ictal EEG suggest that
these events are nonepileptic. The majority of pa-
tients had coexisting epilepsy, which manifested at
a similar age to the eye movement episodes in 10 pa-
tients (table 1). In 6 patients, the first seizure did not
occur until 7–21 months after the onset of the eye
movement episodes.

Eye movement episodes emerged before age 6
months in 83% of our patients. Among the 8 patients
for whom the course of the episodes was known,
events decreased in frequency by late infancy, and dis-
appeared in all but one patient by age 8 years. Thus
these episodes represent an age-dependent manifesta-
tion of the disease that is likely related to a specific
stage of brain development. Other features of Glut1
DS also occur in an age-dependent manner: for exam-
ple, seizures tend to be more prominent in infancy
and childhood, and improve or even disappear by
adulthood, while dystonia and other paroxysmal
movement disorders tend to develop later in child-
hood or during adolescence.11,27

Verbal description of the eye movement episodes
by parents and doctors was highly variable. Some de-
scriptions were strikingly vivid and accurate, but
many were imprecise. For example, the movements
were often described as eye rolling in the medical
chart, but video review clearly demonstrated that
the eye movements were rapid. Associated head
movements (nodding, bobbing, or back and forth)
were documented in only 50% of patients, but head
movements were present in all but 1 of the 18 video

episodes that we reviewed. This highlights the diag-
nostic challenge posed by rare and unusual symptoms
for which there is not a recognized medical term.

The retrospective nature of our study has some
limitations. For example, our finding of a 32% inci-
dence of eye movement episodes in patients with
Glut1 DS may be an underestimate, since patients
were not systematically questioned about a history
of these specific symptoms. Also, data about the epi-
sodes’ long-term outcome and response to treatment
were not available for all patients, and these details
warrant future clarification.

Brief paroxysmal episodes of eye and head move-
ments, for which we propose the term aberrant gaze sac-
cades, are a characteristic and early feature of Glut1 DS
during infancy. Failure tomeet energy demand is a likely
pathophysiologic mechanism, but the precise underly-
ing neuronal basis remains unknown. Since early diag-
nosis and prompt implementation of the KD is believed
to improve the long-term prognosis of patients with
Glut1 DS, it is vital that neurologists recognize these ep-
isodes as an early diagnostic clue to the disease.
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