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Key Points 

  

Question: Do white matter hyperintensities, a magnetic resonance imaging marker of small 

vessel cerebrovascular disease, predict plasma Alzheimer’s biomarker concentrations of 

amyloid, tau, and neuroinflammatory pathophysiology and downstream neurodegeneration in 

adults with Down syndrome? 

 

Findings: Increases in white matter hyperintensity volume precede and promote inflammation- 

and tau-related pathophysiology, directly and indirectly, leading to downstream 

neurodegeneration. 

 

Meaning: Small vessel cerebrovascular disease may contribute to the pathophysiological 

progression of Alzheimer’s disease in adults with Down syndrome. These findings support the 

hypothesis that cerebrovascular disease is a core feature of Alzheimer’s disease in adults with 

Down syndrome.  
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Abstract  

Importance: By age 40 years over 90% of adults with Down syndrome (DS) have Alzheimer’s 

disease (AD) pathology and most progress to dementia. Despite having few systemic vascular 

risk factors, individuals with DS have elevated cerebrovascular disease (CVD) markers that track 

with the clinical progression of AD, suggesting a role for CVD that is hypothesized to be 

mediated by inflammatory factors. 

Objective: To examine the pathways through which small vessel CVD contributes to AD-related 

pathophysiology and neurodegeneration in adults with DS. 

Design: Cross sectional analysis of neuroimaging, plasma, and clinical data. 

Setting: Participants were enrolled in Alzheimer’s Biomarker Consortium – Down Syndrome 

(ABC-DS), a multisite study of AD in adults with DS. 

Participants: One hundred eighty-five participants (mean [SD] age=45.2 [9.3] years) with 

available MRI and plasma biomarker data were included. White matter hyperintensity (WMH) 

volumes were derived from T2-weighted FLAIR MRI scans and plasma biomarker 

concentrations of amyloid beta (Aβ42/Aβ40), phosphorylated tau (p-tau217), astrocytosis (glial 

fibrillary acidic protein, GFAP), and neurodegeneration (neurofilament light chain, NfL) were 

measured with ultrasensitive immunoassays.  

Main Outcomes and Measures: We examined the bivariate relationships of WMH, 

Aβ42/Aβ40, p-tau217, and GFAP with age-residualized NfL across AD diagnostic groups. A 

series of mediation and path analyses examined causal pathways linking WMH and AD 

pathophysiology to promote neurodegeneration in the total sample and groups stratified by 

clinical diagnosis. 
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Results: There was a direct and indirect bidirectional effect through GFAP of WMH on p-tau217 

concentration, which was associated with NfL concentration in the entire sample. Among 

cognitively stable participants, WMH was directly and indirectly, through GFAP, associated with 

p-tau217 concentration, and in those with MCI, there was a direct effect of WMH on p-tau217 

and NfL concentrations. There were no associations of WMH with biomarker concentrations 

among those diagnosed with dementia.  

Conclusions and Relevance: The findings suggest that among individuals with DS, CVD 

promotes neurodegeneration by increasing astrocytosis and tau pathophysiology in the 

presymptomatic phases of AD. This work joins an emerging literature that implicates CVD and 

its interface with neuroinflammation as a core pathological feature of AD in adults with DS.   
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Introduction 

Virtually all individuals with Down syndrome (DS) develop Alzheimer’s disease (AD) 

pathology, including abnormal amyloid-beta (Aβ) plaques and tau neurofibrillary tangles, by the 

age of 40 years1,2 and most develop dementia by the age of 60.3 Down syndrome is considered a 

genetic form of AD4 and pathogenesis is attributable to the triplication of chromosome 21, which 

contains the amyloid precursor protein (APP) coding gene.5 Models of AD progression in both 

late onset and genetic forms emphasize the role of Aβ in initiating tau pathology and subsequent 

neurodegeneration, sometimes referred to as the ‘ATN framework.’6 While there is general 

support for this pathophysiological cascade,6,7 there is increasing evidence that additional 

pathways may promote AD pathogenesis and progression.8  

Cerebrovascular disease contributes to risk and course of clinical AD and increases the 

likelihood of developing dementia.9,10  Neuroimaging biomarkers for small vessel CVD, 

including white matter hyperintensities (WMH), are associated with neurodegeneration, indexed 

by AD-related patterns of cortical atrophy and fluid biomarker concentrations.11-13 Despite 

consistent observations of its occurrence and contributions to clinical outcomes in people with 

AD, CVD is generally considered a common comorbidity with AD that is not a hallmark 

characteristic of the disease.6  

We turned to populations at genetic risk to determine the extent to which CVD represents a ‘core 

feature’ of AD. Among community-dwelling older adults, those carrying the APOE ε4 allele, the 

strongest genetic risk factor for late onset AD, there are greater degrees of cerebrovascular 

disease than in non-ε4 carriers.14 Despite their younger age and relatively low vascular risk 

factor profiles, individuals with autosomal dominant, fully penetrant mutations for AD, have 
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increased WMH volumes up to 20 years prior to expected symptom onset compared with 

individuals without genetic mutations for AD but who are at similar risk.13 Such changes account 

for more variance in cognition than do other AD biomarkers.15 Similarly, individuals with DS 

generally have lower degrees of vascular risk compared with neurotypical adults and seem to be 

protected against developing hypertension,16-18 yet have neuroimaging evidence of CVD that 

increases with clinical progression of AD.19  

Evidence from late onset and genetic forms of AD suggests that cerebrovascular pathology is 

indeed a prominent feature of AD that cannot be attributable solely to exposure to vascular risk 

factors, but whether CVD promotes primary AD pathophysiological progression remains 

unclear. Reports of associations between CVD and AD biomarkers are mixed, with some 

showing codependency20 and others not.21,22 In a preclinical model of WMH, we found that 

white matter damage induced by transient hypoperfusion promotes tau hyperphosphorylation, 

but it is unclear what factors mediate this effect.12 Emerging work suggests the critical role of 

neuroinflammation, mainly manifesting as a change in microglia morphology,23-26 astrocytosis,27-

29  and inflammatory mediators,30 in AD pathogenesis and course, with emerging evidence of 

intimate crosstalk between inflammatory processes and the brain’s vasculature.31 In adults with 

DS, MRI markers of CVD are associated with proteomic patterns reflective of inflammation 

earlier in the disease and with patterns reflective of neurodegeneration later in the disease.32 Glial 

fibrillary acidic protein (GFAP) is a cytoskeletal protein found in astrocytes, released during 

astrogliosis, and can be measured reliably in cerebrospinal and blood compartments.33 GFAP 

concentration is elevated in people with and at-risk for AD34-36 and appears to mediate the 

relationship between Aβ and tau pathology.37,38 In adults with DS, plasma GFAP concentration 

discriminates between individuals who are asymptomatic and those diagnosed with AD.39 
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Further, GFAP levels are strongly correlated with indicators of Aβ and tau pathology, 

neurodegeneration, and clinical progression of AD in adults with DS.39-41  

In the current study, we examined the association between WMH, as a marker of small vessel 

cerebrovascular disease, and AD plasma biomarker concentrations, including Aβ40/Aβ42, 

phosphorylated tau 217 (p-tau217), and GFAP, with neurofilament light chain (NfL) across 

disease stages in adults with DS. Because (i) astrocytosis is prominent around blood vessels in 

AD,42 (ii) induced cerebral hypoperfusion, a characteristic of DS,43 increases the number of 

GFAP positive astrocytes,44 and (iii) astrocytosis is an early disease feature of AD,45 we used a 

series of mediation and path analyses to test our hypothesis that CVD gives rise to tau pathology 

and ultimately neurodegeneration via astrocytosis across different AD disease stages in adults 

with DS. 

Methods 

Participants and participant diagnosis. Participants came from the Alzheimer Biomarkers 

Consortium – Down Syndrome (ABC-DS), a multisite, observational study designed to examine 

biomarker, clinical, and genetic correlates of and contributors to AD among adults with DS.46 

The sample included individuals from the Neurodegeneration in Aging Down Syndrome (NiAD; 

U01 AG051406) and Biomarkers of Alzheimer’s Disease in Adults with Down Syndrome 

(ADDS; U01 AG051412), both of which are now contained within ABC-DS. For the current 

study, participants with available MRI data and derived plasma biomarkers of interest were 

selected for analysis. One hundred thirty-eight participants characterized as cognitively stable, 24 

patients with mild cognitive impairment (MCI), 16 patients with AD dementia (DS-AD), and 8 

with diagnoses that were “unable to be determined” were included. Diagnoses were based on a 

consensus conference that reviewed available neuropsychological and clinical data, as described 
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previously in detail.46 In short, clinical experts in the assessment and diagnosis of AD in DS 

performed a standardized clinical evaluation of each participant, which considered functional 

abilities and health history. Participants were then assigned one of four AD-related diagnoses 

(i.e., cognitively stable, MCI, DS-AD, unable to be determined). This study was conducted in 

accordance with the institutional review boards of participating institutions and written informed 

consent was obtained from each participant or their legal guardian or legally authorized 

representative.  

Magnetic resonance imaging. MRI scans were acquired at ADDS and NiAD participating sites. 

NiAD sites acquired 2D T2-weighted fluid-attenuated inversion recovery (FLAIR) scan 

(repetition time [TR]/ echo time [TE]/ inversion time [TI] = 5,000/386/1,800 milliseconds, voxel 

size = 0.4 × 0.4 × 0.9mm3) and ADDS sites acquired 3D T2-weighted FLAIR scan (TR/TE/ TI = 

4,800/119/1,473 milliseconds, voxel size = 0.9 × 0.9 × 0.5mm3).  

White matter hyperintensity volume was quantitated with in-house software. Briefly, FLAIR 

images were reconstructed to a uniform matrix of 256x256x256 with a voxel size of 1 mm3. The 

images were reoriented to standard anatomical space (MNI152), skull stripped, and bias field 

corrected.47,48 The images were processed through a customized module designed to extract 

percentile thresholds from the intensity histogram of each image automatically.49,50 Next, a white 

matter segment was created using the convolutional neural networks tool.51 Two specific 

percentile thresholds were computed: one for the transition between dark and bright voxels 

intensity, and another for the transition between bright and brightest voxels intensity. These 

thresholds initialized a Gaussian mixture model (GMM) and expectation-maximization 

algorithm52 within the white matter segment of the FLAIR images, using two components to 

represent hyperintense and non-hyperintense voxels. 
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Following the computation of percentile thresholds, we calculated the inter-percentile range 

(IPR) between these values and introduced a relaxed threshold of 10 to account for variations in 

FLAIR image quality. This adjustment was made by applying a multiplicative factor to the IPR.  

Finally, probability distribution maps were generated to represent the segmented WMH within 

the FLAIR images. The Roberts edge detection function53 was applied to the probability 

distribution maps, ensuring the removal of any non-white matter voxels from the brain's contour. 

The labeled voxels were added together and multiplied by voxel dimensions to calculate total 

WMH volume in cm3. Figure 1 displays the voxel-wise frequencies of WMH across all 

participants.    

Plasma samples and analysis. Plasma Aβ42, Aβ40, p-tau217, NfL, and GFAP concentrations 

were derived for each participant from plasma samples as previously described.40 Plasma 

samples were shipped to the University of North Texas where Aβ42, Aβ40, and NfL 

concentrations were quantified with single molecule array (Simoa) assays (Quanterix). We 

calculated the ratio of Aβ42 to Aβ40 as the biomarker for amyloid pathology.54 Plasma samples 

from the same group of participants were shipped to Lund University for quantification of p-

tau217 and GFAP concentrations. The p-tau217 concentration was assayed according to the 

published protocols using immunoassay on a Mesoscale Discovery platform developed by Lilly 

Research Laboratories as previously descibed.41,55 GFAP concentration was quantified using 

Simoa assays (Quanterix). We calculated age-residualized values for NfL concentration values, 

our primary dependent variable, because the pathophysiological progression of AD among 

individuals with DS is strongly age-dependent.1,2 This age-dependency may induce 

epiphenomenological relationships among AD-related variables when conducting cross-sectional 
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analyses due to their shared association with age. On the other hand, statistical adjustment for 

age may obscure important associations among factors whose variance is strongly age 

dependent. Therefore, we chose to operationalize neurodegeneration as age-residualized NfL in 

the subsequent analyses.  

Statistical Analysis 

Association of biomarkers with neurodegeneration. We examined the association of WMH and 

each ADRD biomarker concentration with age-residualized NfL in the entire sample and 

stratified by diagnosis with bivariate Pearson correlations. Participants with an undetermined 

diagnosis were not included in any analyses stratified by diagnosis. 

Mediation analyses. We conducted a series of causal mediation analyses in the entire sample of 

the observed bivariate associations. We used the ‘mediation’ package in R56 to examine whether 

1) GFAP mediates the relationship between WMH volume and p-tau217 concentration, 2) 

whether p-tau217 concentration mediates the relationship between WMH volume and NfL 

concentration, and 3) whether p-tau217 concentration mediates the relationship between GFAP 

and NfL concentrations. To probe directionality, we ran models in which the hypothesized 

predictor and mediator were switched. The average causal mediation effect (ACME), the portion 

of the direct effect on the outcome that is attributable to the mediator’s effect, and the 

corresponding p-value were extracted from each mediation model.  

Path analysis. We tested our a priori hypothesis of pathophysiological cascade that is initiated 

by CVD with a path analysis in the combined sample and in groups stratified by AD-related 

diagnosis. The path analysis tested the effect of WMH on downstream neurodegeneration (i.e., 

age-residualized NfL concentrations) via GFAP and p-tau217. The paths were estimated using 
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the ‘lavaan’ package in R,57 which established the direct and indirect effects between biomarkers 

and the model was fit using the sem() function. All analyses were adjusted for research site.  

Results 

Sample characteristics across diagnostic groups are reported in Table 1.  Cognitively stable 

participants and those with an undetermined diagnostic status were younger than those with MCI 

and DS-AD and a lower proportion of women were diagnosed with MCI than other groups. 

There were no differences in reported history of hypertension, hypotension, type 1 or 2 diabetes, 

or hypercholesterolemia (Table 1).  

We confirmed strong associations between age and AD biomarker concentrations, apart from 

Aβ42/40: GFAP: r=0.612 [0.513, 0.695], p<0.0001; NfL: r=0.523 [0.409, 0.62], p<0.0001; p-

tau217: r=0.379 [0.248, 0.496], p<0.0001; Aβ42/40: r=0.107 [-0.036, 0.248], p=0.147. 

Associations of plasma biomarkers and WMH with age-residualized NfL concentration across 

diagnostic groups. Table 2 displays the associations of plasma biomarkers and WMH volume 

with age-residualized NfL concentration. WMH volume, GFAP concentration, and p-tau217 

concentration were positively associated with age-residualized NfL in the entire sample. In 

cognitively stable participants, neither WMH volume nor plasma AD biomarker concentrations 

were associated with age-residualized NfL levels, likely reflecting the limited amount of 

variance in these factors at this disease stage. Among those with MCI, increased WMH volume 

was associated with higher age-residualized NfL, while increased GFAP concentration and p-

tau217 concentration was associated with higher age-residualized NfL in participants with MCI 

and AD.   
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Mediation analyses. Three results emerged from the statistical mediation analyses. First, p-

tau217 concentration mediated the relationship between WMH and age-residualized NfL 

concentration (ACME[CI]=0.44 [0.17, 0.83], p<0.0001). When we reversed the independent 

variable and mediator variable and re-ran the analyses, WMH did not mediate an association 

between p-tau217 concentration and NfL (ACME[CI]=0.88 [-0.66, 2.50], p=0.22). Second, 

GFAP concentration mediated the relationship between WMH and p-tau217 concentration 

(ACME[CI]=0.0201 [0.01, 0.02], p<0.001); the reverse model revealed a congruent mediation 

effect of WMH, albeit to a lesser extent, on the relationship between GFAP and p-tau217 

(ACME[CI]=0.0003 [0.0001, 0.0002], p<0.001). Third, p-tau217 concentration mediated the 

relationship between GFAP concentration and age-residualized NfL concentration 

(ACME[CI]=0.04 [0.01, 0.05], p<0.0001). When reversed, GFAP did not mediate an association 

between p-tau217 concentration and NfL (ACME[CI]=-0.80 [-2.96, 2.66], p=0.67). A post-hoc 

analysis revealed an interaction between WMH and GFAP on p-tau217 concentration, such that 

WMH was most strongly associated with p-tau217 in the presence of elevated GFAP while 

GFAP was most strongly associated with p-tau217 in individuals with high WMH volume (see 

Figure 2).  

Path analysis. Informed by the relationships observed in the mediation analyses, we conducted a 

path analysis to examine statistical causality within our hypothesized pathophysiological cascade 

in the entire sample and stratified by diagnosis. In the entire sample (Figure 3A), the analysis 

revealed a cascade initiated by WMH, which had a direct and an indirect effect through GFAP 

on p-tau217 concentration. P-tau217 concentration, in turn, was associated with age-residualized 

NfL concentration. In this combined sample, increasing p-tau217 concentration was primarily 

attributable to increasing WMH volume, while increases in NfL were mainly related to 
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increasing p-tau217 concentration. Among cognitively stable participants (Figure 3B), there was 

a direct and indirect effect through GFAP of WMH on p-tau217 concentration, but p-tau217 

concentration was not associated with NfL concentration. No AD biomarkers were associated 

with age-residualized NfL concentrations among cognitively stable participants, likely due to 

low variance in neurodegeneration at this disease stage. Among those with MCI (Figure 3C), 

increased WMH volume had a direct effect on p-tau217 and NfL concentrations but not GFAP 

concentration. GFAP concentration had an indirect effect on NfL concentration through p-

tau217. Finally, in those diagnosed with dementia (Figure 3D), there were no direct or indirect 

effects of WMH on plasma AD biomarker concentrations. Still, GFAP continued to have a 

positive indirect effect on NfL through p-tau217 concentration.  

Discussion 

Our findings suggest that among adults with DS, CVD promotes AD-related neurodegeneration 

indirectly through increasing astrocytosis and tau pathophysiology in the preclinical stages of the 

AD and directly and indirectly in the clinical stages of AD. These results support our hypothesis 

that WMH may initially promote increases in inflammation and tau pathophysiology, giving rise 

to downstream neurodegeneration.  

Pathogenic models of AD emphasize a precipitating role of Aβ that leads to tau pathology and 

subsequent neurodegeneration;6 however, we found that tau pathology did not appear to exert a 

direct effect on neurodegeneration until elevated by both cerebrovascular disease and 

astrocytosis. Post-hoc analyses revealed an interaction between GFAP and WMH in promoting 

AD pathophysiology and downstream neurodegeneration, suggesting synergy between vascular 

and inflammatory processes in this pathophysiological cascade.  
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Our findings are consistent with our previous study, which showed more consistent associations 

between peripheral proteomic markers of inflammation and MRI markers of cerebrovascular 

disease in presymptomatic phases of AD among adults with DS.32 Further, postmortem data 

revealed a unique inflammatory profile in adults with DS and inflammatory proteins related to 

astrocytosis were elevated in the early stages of AD.58 Adults with DS also show evidence of 

blood-brain barrier (BBB) disruption at autopsy.59 Individuals with DS may be genetically 

predisposed to BBB disruption, which may promote the cerebrovascular lesions observed on 

MRI.60 Additionally, in mouse models of AD, white matter abnormalities, including those due to 

hypoperfusion,12 promote AD pathology61,62 and astrocytosis is an early event in AD in both 

humans and mouse models.45 Therefore, it is possible that BBB dysruption gives rise to 

cerebrovascular lesions, which has a subsequent impact on astrocytosis, downstream tau 

accumulation, and neurodegeneration.  

White matter hyperintensities are generally considered to reflect “end organ” ischemic damage 

due to chronic exposure to vascular risk factors.63 In the context of AD, however, the etiology of 

WMH has been widely debated.63 Some argue that in AD WMH are attributable primarily to 

cerebral amyloid angiopathy (CAA).64 Others argue that WMH are the result of AD-related 

neurodegeneration, so called Wallerian degeneration.65,66 We have argued against some of these 

pathways on the basis of temporality, experimental evidence, and anatomical distribution.67 The 

results of this study provide further evidence against these possibilities. First, as noted, adults 

with DS have minimal vascular risk factors; for example, only 2% of participants had a history 

of hypertension. Nonetheless, WMH are observed across every disease stage. Second, in post 

hoc analyses we did not observe an association between WMH volume and number of cerebral 

microbleeds (r=-0.043 [-0.226, 0.143], p=0.649), a radiological marker of CAA.19,68 This 
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observation is consistent with our finding that cerebral microbleeds only modestly mediate an 

association between autosomal dominant mutations for AD and increased WMH volume.69 

Finally, our statistical modeling suggests that WMH precede or are upstream from tau 

pathophysiology and neurodegeneration markers. Animal stroke models show evidence of 

increased GFAP positive astrocytes observed around the lesion days after vessel occlusion, 

specifically in models of small vessel and white matter stroke70,71 and white matter 

hypoperfusion increases tau hyperphosphorylation in mouse models.12 Taken together, we 

speculate that there is an endogenous cerebrovascular component to AD pathogenesis that likely 

is not associated with amyloid and tau pathology but instead interacts with inflammatory 

processes to promote tauopathy and subsequent neurodegeneration.  

Notably, we did not find any association between plasma Aβ concentration and WMH volume or 

NfL concentration. This finding was unexpected, given the well-documented overproduction of 

Aβ in individuals with DS.1 However, plasma Aβ concentrations remain steady across the adult 

lifespan in adults with DS after about age 30 years72 and may have plateaued in most participants 

prior to enrollment. Therefore, the lack of dynamic range in Aβ concentrations may have yielded 

null results despite the importance of the amyloid pathology. Additionally, plasma amyloid 

measures may not capture brain-related amyloid pathology with as high fidelity as the other 

plasma AD biomarkers.73,74   

Conclusions 

Our study provides evidence of a pathophysiological cascade reflecting a progression of AD 

pathology in adults with DS initiated by vascular pathology and suggests that cerebrovascular 

disease and inflammation play a key role and early in AD-related neurodegeneration in adults 

with DS. As these individuals do not have the same vascular risk factors as the neurotypical 
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population, our study suggests an endogenous vascular component implicated in the progression 

of AD in DS. The associations between cerebrovascular disease and AD plasma biomarkers in 

this study indicate that abnormal vascular pathology is a core disease feature and could be a 

critical treatment target for the DS population.   
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Table 1. Sample characteristics by diagnostic group 
APOE: apolipoprotein E, MCI: mild cognitive impairment. 

 Cognitively 

Stable 

MCI Dementia Undetermined Whole 

Sample 

Test 

Statistic 

p-

value 

n 137 24 16 8 185   

Demographic        

Age, mean (SD) years 43 (9.1) 51 

(5.8) 

54.5 (6) 48.4 (8.8) 45.2 (9.3) F = 27.05  <0.001 

Women, n (%) 64 (47) 4 

(17) 

9 (56) 4 (50) 81 (44) 2 = 8.7 0.003 

        

Vascular risk factors        

Hypertension, n (%) 3 (2) 0 (0) 0 (0) 0 (0) 3 (2) F = 0.9 0.08 

Hypotension, n (%) 3 (2) 1 (4) 0 (0) 0 (0) 4 (2) F = 0.8 0.06 

Type 1 diabetes, n (%) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) -- -- 

Type 2 diabetes, n (%) 2 (2) 0 (0) 0 (0) 0 (0) 2 (1) F = 0.6 0.1 

Hypercholesterolemia, 

n (%) 

15 (11) 1 (4) 2 (13) 1 (13) 19 (1) 2 = 1.1 0.3 
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Table 2. Associations of plasma biomarkers and WMH with age-residualized NfL concentrations 

across diagnostic groups  
. 

 Whole Sample Cognitively 

Stable  

MCI  Dementia  Undetermined 

 r [CI] p-value r [CI] p-value r [CI] p-value r [CI] p-value r [CI] p-value 

WMH 

volume 

0.32 

[0.18, 

0.44] 

<0.0001 0.14 [-

0.03, 

0.30] 

0.10 0.62 

[0.23, 

0.80] 

0.003 0.42 

[0.18, 

0.85] 

0.12 0.44 [-

0.39, 

0.87] 

0.32 

Aβ42/40 0.14 [-

0.01, 

0.28] 

0.06 0.12 [-

0.05, 

0.28] 

0.18 -0.14 

[-0.52, 

0.28] 

0.51 0.31 [-

0.22, 

0.70] 

0.24 -0.41 [-

0.87, 

0.41] 

0.31 

p-tau217 0.52 

[0.41, 

0.62] 

<0.0001 0.10 [-

0.07, 

0.26] 

0.25 0.86 

[0.70, 

0.94] 

<0.0001 0.82 

[0.55, 

0.94] 

<0.0001 0.21 [-

0.58, 

0.80] 

0.61 

GFAP 0.31 

[0.18, 

0.44] 

<0.0001 0.09 [-

0.081, 

0.25] 

0.31 0.47 

[0.08, 

0.74] 

0.02 0.62 

[0.25, 

0.87] 

0.005 0.19 [-

0.59, 

0.79] 

0.65 

 
Aβ: β-amyloid, WMH: white matter hyperintensities, p-tau217: phosphorylated tau 217, GFAP: glial fibrillary 

acidic protein, NfL: neurofilament light chain, MCI: mild cognitive impairment 
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Figure 1. Frequency map of white matter hyperintensities in adults with Down syndrome.  

A voxel-wise frequency map of WMH was created by summing voxels labeled across all 185 

individual 3D and dividing by 185. Each voxel’s value represents the proportion of times it was 

labeled as a WMH across the 185 masks from low frequency (red) to high frequency (yellow). 
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Figure 2.  Conditional relationship between WMH and GFAP on p-tau217 concentration  

Relationship between GFAP and p-tau217 concentration conditioned by WMH volume (A) and 

relationship between WMH and p-tau217 concentration conditioned by GFAP (B).  The plots 

show the relationship between GFAP or WMH and p-tau217 for different ranges of WMH and 

GFAP, respectively. The panels are read from bottom left to top right along each row with the 

bottom row representing the lowest range of WMH volume and the top row representing the 

highest range of WMH volume. Rows demonstrating the relationship in individuals with higher 

distributions are indicated by (ii) while relationships in participants with lower distributions are 

indicated by rows labeled (i). For example, in Figure 2A., the top right plot shows the 

relationship between GFAP and p-tau217 in individuals with the largest WMH volume (i) while 

the bottom left panel shows the relationship between GFAP and p-tau217 in individuals with the 

smallest WMH volume (ii).  

WMH: white matter hyperintensities, GFAP: glial fibrillary acidic protein, p-tau217: 

phosphorylated tau 217  
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Figure 3. Path models for biomarker progression across diagnostic groups.  

Statistical modeling calculates relative causal relationships among different pathophysiological 

contributors. Larger numbers (regression coefficients) signify stronger direct effects. 

Aβ: β-amyloid, WMH: white matter hyperintensities, p-tau217: phosphorylated tau 217, GFAP: 

glial fibrillary acidic protein, NfL: neurofilament light chain, MCI: mild cognitive impairment. 
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