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1  | INTRODUC TION

Tumour biomarkers are molecules produced by tumour cells, 
which can indicate the biological status of tumour and can be used 
to evaluate the disease status and the efficiency of therapeutic 
interventions.

To survive and adapt in human and animal body, tumour cells 
have inherited genetic instability that leads to genetics alteration, 

including cancer‐specific mutations or changes in gene expression. 
These genetic alterations not only promote tumour development but 
provide researchers with a chance to chase the disease status at the 
same time. Although the term “tumour biomarker” now covers any 
molecular, biochemical, physiological, or anatomical property that 
reflects tumour's presence and status which can be quantified or 
measured, an ideal tumour biomarker is preferred to be collected 
non‐invasively from body fluids, such as the blood. These biomark‐
ers include microRNAs, ctDNAs, proteins, exosomes and CTCs re‐
leased by the tumour and circulating in the body fluids.
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Abstract
In recent years, with the increase in cancer mortality caused by metastasis, and with 
the development of individualized and precise medical treatment, early diagnosis 
with precision becomes the key to decrease the death rate. Since detecting tumour 
biomarkers in body fluids is the most non‐invasive way to identify the status of tu‐
mour development, it has been widely investigated for the usage in clinic. These bio‐
markers	include	different	expression	or	mutation	in	microRNAs	(miRNAs),	circulating	
tumour	DNAs	(ctDNAs),	proteins,	exosomes	and	circulating	tumour	cells	(CTCs).	In	
the present article, we summarized and discussed some updated research on these 
biomarkers. We overviewed their biological functions and evaluated their multiple 
roles in human and small animal clinical treatment, including diagnosis of cancers, 
classification of cancers, prognostic and predictive values for therapy response, 
monitors for therapy efficacy, and anti‐cancer therapeutics. Biomarkers including 
different expression or mutation in miRNAs, ctDNAs, proteins, exosomes and CTCs 
provide more choice for early diagnosis of tumour detection at early stage before 
metastasis. Combination detection of these tumour biomarkers may provide higher 
accuracy at the lowest molecule combination number for tumour early detection. 
Moreover,	tumour	biomarkers	can	provide	valuable	suggestions	for	clinical	anti‐can‐
cer treatment and execute monitoring of treatment efficiency.
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Generally, tumour biomarkers are not expected to simply show 
the status of tumour, but to exhibit important functions for tu‐
mour's survival, growth and metastasis. Based on this fact, tumour 
biomarkers	are	recently	regarded	as	treatment	targets.	Moreover,	
tumour biomarkers get an emerging role to direct the treatment of 
anti‐tumour	 drugs.	 In	 2017,	 Food	 and	Drug	Administration	 (FDA)	
accelerated	 the	 approval	 of	 Keytruda	 (pembrolizumab),	 an	 anti‐
body	drug	targeting	PD‐1(programmed	death	1),	for	the	treatment	
of adult and paediatric patients with unresectable or metastatic 
solid tumours that have been identified as having a specific genetic 
feature	 (or	 tumour	 biomarker)	 referred	 to	 as	microsatellite	 insta‐
bility‐high	 (MSI‐H)	 or	 mismatch	 repair	 deficient	 (dMMR).	 Doctor	
Richard Pazdur, the acting director of the Office of Hematology and 
Oncology Products in the FDA's Center for Drug Evaluation and 
Research and director of the FDA's Oncology Center of Excellence, 
recommended this work as “this is an important first for the can‐
cer community,” he said, “Until now, the FDA has approved can‐
cer treatments based on where in the body the cancer started‐for 
example, lung or breast cancers. We have now approved a drug 
based on a tumor's biomarker without regard to the tumor's original 
location.” [https://www.fda.gov/newsevents/newsroom/pressan‐
nouncements/ucm560167.htm]. In this review, we will overview 
some current tumour biomarkers, discuss their biological functions, 
evaluate their roles in clinical treatment and compare the strength 
and limitations between different detected markers (Table 1), which 
may provide a prospect for the clinic applications of these mark‐
ers during different stages of tumour development and anti‐cancer 
treatment (Figure 1).

2  | THE MOLECUL AR FUNC TIONS AND 
CLINIC AL USE OF MIRNA S A S TUMOUR 
BIOMARKERS

2.1 | The discovery of miRNAs as biomarker

miRNAs	 are	 small	 non‐coding	 RNAs	 (ncRNAs)	 that	 target	 corre‐
sponding	messenger	RNAs	(mRNAs)	to	post‐transcriptionally	down‐
regulate certain gene expression. miRNAs were first identified in 
Caenorhabditis elegans in 1993,1 and extracellular miRNAs were 
first discovered in plants in 1996.2 Until now, over 2500 human miR‐
NAs have been identified.3

2.2 | Cancer‐related molecular functions of 
circulating miRNAs

The first study linking miRNA with cancer was published in 
2002.4 After that, many groups focused their research on miRNA 
regulating cancer process and found that it involves in all hall‐
marks of cancer as defined by Hanahan and Weinberg.5 The 
functions of miRNAs can either be tumour supportive or tumour 
suppressive, often depending on the genes they targeted. For 
example, some best‐characterized cancer‐related microRNAs 
were listed below.

2.2.1 | Let‐7 family

The	Let‐7	 family	 include	13	different	members	 and	have	been	 re‐
ported to be related with many types of cancer, and it was recog‐
nized	 as	 a	 tumour	 suppressor	 generally.	 Let‐7	 regulates	 cancer	
cell cycle and proliferation by targetingRAS genes,6,7	 HMGA2,8,9 
STAT3,10 UHRF211	and	MYC,12‐14 and additionally, it can regulate cell 
apoptosis by targeting CASP3.15

2.2.2 | miR‐15/16

miR‐15/16 is also an important tumour‐suppressing miRNA dur‐
ing various types of tumour progression. It can regulate apoptosis 
through	targeting	FEAT/METTL13,16 RPS6KB1, IGF1R,17 CCND1,18 
BCL2,19 RECK and/or SOX6.20 It is a regulator of cell cycle process 
by targeting FG2F, CCNE1 and E2F1,21‐23 and it is also involved in 
cell autophagy and metastasis by targeting mTORC2 and SOX5.24,25

2.2.3 | miR‐21

The function of miR‐21 is mainly tumour promoting, since it targets 
many genes that are important tumour suppressors. These targeted 
genes mainly related to cell apoptosis, growth, invasion and tumour 
migration,	 such	 as	 BCL2,26 PTEN,27,28 TP53, TGFB1,29 RECK,30 
RHOB,31	TPM132and PDCD4.33,34

2.2.4 | The miR‐29 Family

Members	of	miR‐29	family	usually	act	as	tumour	suppressors,	and	their	
downregulation always related to many types of cancer. They directly 
target cell cycle gene CDK6,35‐37	 apoptosis	 genes	MCL1,	BCL2	 and	
FHIT,35,38,39	and	migration	and	invasion	genes	LAMC1	and	CDC42.40,41

2.2.5 | The miR‐34 Family

ThemiR‐34 family are well known to regulate cell cycle, senescence, 
apoptosis and invasiveness in cancer. They target at genes that en‐
code	factors	required	for	G1/S	transition	such	as	MYC,	E2F,	CDK4	
and	 CDK6.	 They	 also	 target	 anti‐apoptotic	 genes	 such	 as	 BCL2,	
SIRT1	and	genes	involved	in	tumour	cell	invasion	such	as	MET.42

2.2.6 | miR‐155

The genes targeted by miR‐155 are involved in multiple pathways 
related	to	multiple	cancer‐related	processes.	For	example,	SMAD5	
regulates	 the	 epithelial‐mesenchymal	 transition	 (EMT)	 process,	
while SOCS1, INPP5D and CSF1R regulate cell proliferation, and 
CASP3, FADD, APAF1 and FOXO3A regulate cell apoptosis.43‐49

Currently, there are about thousands of studies about miR‐
NAs as tumour biomarkers, including numerous reviews that have 
summarized the detail information about the history, classification 
and functions of tumour‐related miRNAs. Since tumour is of highly 
heterogeneity, different cancer types have different regulating 

https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm560167.htm
https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm560167.htm
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molecule mechanisms, so some reviews also summarized the miRNA 
clinical usage by cancer types.50‐52

2.3 | Present applications of circulating miRNAs 
in clinic

In cancer patients, cancer‐related miRNAs will get some changes in ex‐
pression or mutations and resulted in abnormal functions that facilitate 
cancer progression. The high‐throughput sequencing was applied to an‐
alyse the expression and mutation of miRNA genes and identified a se‐
ries of aberrant expression profiles in many human cancers types, such 
as lymphoma,53 breast cancer,54 colorectal cancer,55 prostate cancer56 
and glioma.57 These miRNAs change can be reflected in blood or other 
body fluid and FFPE tissues, and is even detectable in exosome or CTCs.

2.3.1 | Circulating miRNAs for the 
diagnosis of cancers

In plasma, the combination of miR‐21, miR‐145 and miR‐155 could 
help distinguish lung cancer patients with 69.4% sensitivity and 
78.3% specificity.58 Combination of miR‐148b, miR‐409‐3p and 
miR‐801 could significantly distinguish breast cancer cases and 
healthy controls.59 In other body fluids, such as sputum, the combina‐
tion of miR‐205, miR‐210 and miR‐708 distinguished lung squamous 
cell carcinoma patients with 73% sensitivity and 96% specificity.60

2.3.2 | Circulating miRNAs for the 
classification of cancers

The reason why miRNAs can be used for the classification of cancers 
is that different tissues have different miRNAs expression pattern, 

and miRNAs can reflect the origin of a specific type of tumour or 
even cellular subsets. In a blind study including 22 different tumour 
types, classifying tumours according to tissue of origin, the miRNA 
expression signatures can reach accuracy higher than 90%.61 Recent 
studies showed that distinct miRNA expression signatures could in‐
dicate	different	cellular	subsets	in	acute	myeloid	leukaemia	(AML)62 
and prostate cancer.63 Since we are entering the era of personalized 
medicine, the anti‐cancer treatment for each patient increasingly de‐
pends on molecular analyses, which means establishing a classifica‐
tion according to miRNAs molecular functions that can direct clinic 
therapy is urgently in need.

2.3.3 | The prognostic and predictive values of 
circulating miRNA for therapy response

Since miRNAs have important regulatory functions during cancer 
development, their levels can reflect tumour status to some extent 
and thus could predict the outcome of therapy response. For ex‐
ample, low level of let‐7, a tumour suppressor miRNA, is correlated 
with poor prognosis including tumour size, overall survival and early 
recurrence.	Moreover,	the	expression	of	miR‐21,	a	tumour‐promot‐
ing miRNA, is negatively correlated with relapse‐free survival of dif‐
fuse	 large	B‐cell	 lymphoma	 (DLBCL)	patients.64 In a study of 391 
patients	with	advanced	NSCLC,	Wang	et.	al.	found	that	high	expres‐
sion of miR‐16 was obviously associated with better survival.65

2.3.4 | Circulating miRNAs as monitors 
for therapy efficacy

In	 chronic	 myeloid	 leukaemia	 (CML),	 the	 level	 of	 cells	 with	 the	
BCR‐ABL	rearrangement	is	widely	used	to	characterize	the	disease	

F I G U R E  1   Clinical applications of tumour biomarker in different stage during cancer development and anti‐cancer treatment
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progression, and decreases after imatinib treatment. It was reported 
that	miR‐451	 levels	 negatively	 correlate	with	 BCR‐ABL	 levels	 and	
can monitor the therapy effect of imatinib at both the time of diag‐
nosis and after treatment.66

2.3.5 | Circulating miRNA as targets for anti‐
cancer therapeutics

The	first	microRNA‐based	anti‐cancer	therapy	is	MRX34,	a	synthetic	
miR‐34a mimic that is loaded into liposomal nanoparticles,67 which 
acts as a tumour suppressor miRNA downstream of p53. Another 
example	 is	 Miravirsen,	 a	 modified	 sequence	 complementary	 to	
miR‐122.	Miravirsen	was	used	for	hepatitis	C	therapy	and	showed	
reduction in viral RNA with no evidence of resistance.68 Despite the 
different therapy effects of different miRNAs targets, the remaining 
problem is drug resistance, so developing a proper drug combination 
is one way to have better therapy outcomes.

3  | THE MOLECUL AR FUNC TIONS AND 
CLINIC AL USE OF C TDNA S A S TUMOUR 
BIOMARKERS

3.1 | The discovery of ctDNAs as biomarker

Cell‐free	DNA	(cfDNA)	is	small	pieces	of	DNAs	released	into	blood	
by various mechanisms mainly including cell apoptosis and necrosis. 
It	was	 first	 identified	 in	1948	by	Mandel	 and	Metais	 in	 the	blood	
of healthy people.69 Under normal conditions, cell‐free DNA levels 
are relatively low since apoptotic and necrotic cells are cleared by 
infiltrating phagocytes. For cancer patients, the cell‐free DNA frac‐
tion is often tumour cells derived, which is called circulating tumour 
DNA	(ctDNA).	ctDNAs	are	usually	at	a	higher	level	with	cancer	pa‐
tients and contain some genetic alterations specific for tumour cells.

3.2 | Cancer‐associated genetic 
alterations of ctDNAs

ctDNAs were initially used to identify the presence of tumour in 
1994, when Vasioukhin et al detected tumour‐specific RAS muta‐
tions in the plasma of cancer patients.70 Generally, ctDNA carries 
genomic and epigenomic information different from normal cfDNAs, 
such as point mutations, changed integrity, rearranged sequences, 
copy	number	variation	(CNV),	loss	of	heterozygosity	(LOH),	micros‐
atellite	instability	(MSI)	and	DNA	methylation.71

3.2.1 | Tumour‐specific genetic alterations

Abundant mutations have been detected in the ctDNAs of patients 
with various types of cancer. For example, PIK3CA mutations,72 
HER273 and ESR174 higher amplification were detected in breast 
cancers patients. In colorectal cancers, tumour‐specific gene altera‐
tions	of	EGFR,	BRAF,	ALK,	KIT,	PDGFR,	HER2	and	KRAS75‐77 were 
detected via ctDNA‐based assays. In the cases of lung cancers, 

EGFR	mutations	and	ALK	rearrangements	were	also	identified.78‐80 
ctDNA concentration was significantly increased in other types 
of cancers such as periampullary cancer,81 oesophageal cancer,82 
head and neck cancer,83 renal cancer,84 melanoma85 and prostate 
cancer.86	Besides,	high	LOH	frequencies,	particularly	the	observed	
CCND2 loss, were associated with the aggressiveness of breast 
cancer.87

3.2.2 | DNA methylation in ctDNA

DNA methylation plays important regulatory roles in gene expres‐
sion and genome stability. For example, high levels of 5‐methylcy‐
tosine at the promoter region always result in gene transcriptionally 
silence. And methylation at the promoter region or non‐coding se‐
quences is often dysregulated in many types of tumour and is as‐
sociated with tumour initiation, progression, dissemination and 
metastasis.88 Some detectable ctDNA methylation in cancer pa‐
tients	 consists	 of	MLH1,	 CDKN2A	 (INK4A),	 ALX4,	 CDH4,	 NGFR,	
RUNX3,	SEPT9,	TMEFF289‐95and so on.

3.3 | Present applications of ctDNAs in clinic

It is believed that cancers are results of gene mutation accumulation. 
These oncogenic genetic alterations can not only facilitate tumour 
progression and metastasis, but also be closely correlated with ac‐
quired treatment resistance.

3.3.1 | ctDNAs for the diagnosis of cancers

Present studies for ctDNAs used in diagnosis are lack of large scale 
study, and the specificity is not ideal enough for early diagnosis 
of certain types of cancers. This is partially because the detection 
methods at present are limited to detect the very low amount of 
ctDNAs in early stage of cancer patients, and some mutations such 
as KRAS are not specific for certain types of tumour but exist in 
many tumour types.96

Recently,	Dennis	Lo	group	use	plasma	Epstein‐Barr	virus	DNA	to	
screen for nasopharyngeal cancer. In the study, a total of 20,174 par‐
ticipants underwent nasopharyngeal cancer screening, and the sen‐
sitivity and specificity were 97.1% and 98.6%, respectively.97 This 
study may provide us a new sight about detecting cell‐free DNAs, 
not simply limited by tumour secreted factors but also include those 
factors that cause the cancer.

3.3.2 | The prognostic and predictive 
values of ctDNAs

Some patients cured by surgery still receive adjuvant chemotherapy 
in case of tumour relapse. Studies showed that detecting ctDNAs 
before and after surgical resection can identify individuals with 
residual disease,98 and predict disease recurrence.83,84 For exam‐
ple, the high concentration of ctDNA is positively correlated with 
a poorer survival in metastatic colorectal cancers with detectable 
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KRAS ctDNA.99 Another example is that detecting the methylation 
of	MGMT	promoter	 region	on	ctDNAs	 in	glioblastoma	multiforme	
patients can also direct whether it is necessary to have adjuvant 
treatment after surgery.100,101 Nowadays, the prognostic and pre‐
dictive value of ctDNA has been extended to different type of can‐
cers, such as cervical cancer,102 colorectal cancer,103,104 pancreatic 
cancer,105‐107 melanoma108,109 and breast cancer,110,111 in which the 
increased levels of ctDNA are related to poor overall survival.

3.3.3 | ctDNAs as monitors for therapy efficacy

The level of ctDNA is closely correlated with tumour burden and 
therapeutic responses. It has been reported that its levels increased 
rapidly with disease progression and declined correspondingly after 
successful treatment in melanoma,109,112 breast,110 ovarian113 and 
colon cancers.114,115

3.3.4 | ctDNAs as guidance for treatments

Recently, there are many new methods for the detection of ctDNA to 
monitor emerging resistant mutations during anti‐cancer treatment, 
which allow us to choose appropriate treatment based on specific mu‐
tations detected in the drug‐resistant tumour for each individual. For 
example, in colorectal cancer patients undergoing anti‐EGFR treat‐
ment, detecting KRAS mutations in ctDNAs of patients with anti‐EGFR 
therapies can identify relapse10 months before radiographic docu‐
mentation of disease progression.116 Similar situations also include 
BRAF	L597	mutation	in	cutaneous	melanoma	with	MEK	inhibitor	and	
PIK3CA mutation in solid tumours with PIK3CA inhibitors.117,118

There are many more reports which introduce ctDNAs as cancer 
biomarkers at different aspects; a selection of reviews119‐122may also 
serve as a starting point for readers outside the field.

4  | THE MOLECUL AR FUNC TIONS AND 
CLINIC AL USE OF PROTEINS A S TUMOUR 
BIOMARKERS

Compared with other types of tumour biomarkers, cancer‐related 
proteins are earlier and more widely used in the clinic. Until now, 
numerous proteins have been identified to be upregulated with tu‐
mour burden, which can either be detectable in tumour tissues or in 
patients’ blood.

4.1 | Cancer‐associated protein markers

4.1.1 | Present protein markers in clinic

At present, American National Cancer Institute lists the protein tu‐
mour markers that are now used in clinic, for example, alpha‐fetopro‐
tein	(AFP)	for	liver	cancer	and	germ	cell	tumours,	CA15‐3	for	breast	
cancer, CA19‐9 for pancreatic cancer and gastric cancer, CA‐125 
for	 ovarian	 cancer,	 carcinoembryonic	 antigen	 (CEA)	 for	 colorectal	

cancer and some other cancers, and so on. Other protein biomarkers 
also include calcitonin for medullary thyroid cancer, CD20 for non‐
Hodgkin	 lymphoma,	chromogranin	A	(CgA)	for	neuroendocrine	tu‐
mours,	beta‐2‐microglobulin	(B2M)	for	multiple	myeloma,	and	so	on.

4.1.2 | Other potential markers to be used in clinic

In breast cancer, there is a clear molecular subtype based on some 
important protein such as ER, PR and HER2, whose function is corre‐
lated with breast cancer progression. And the combination of several 
genes was also commercially used to predict the clinical outcome of 
breast cancer patients.123 Another widely used marker is EGFR muta‐
tions for lung cancer, whose function is closely related to tumour pro‐
gression	 through	 important	signalling	pathways	such	as	MAPK	and	
AKT/PI3K, and there are also many clinical drugs targeting EGFR.124

4.2 | Present applications of cancer biomarker 
proteins in clinic

4.2.1 | Protein markers for the diagnosis of cancers

At present, the accuracy of a single protein biomarker can only dis‐
criminate cancer patients and healthy individuals, which is certainly 
not enough for early diagnosis and further clinical use. Currently, 
only few body fluid‐based protein markers were approved by FDA, 
and none of them have high accuracy for early clinical diagnosis. 
One promising way to increase the accuracy for disease diagnosis 
is to combine several protein markers. For example, the OVA1 test 
for ovarian cancer identified five protein markers in serum including 
CA125,	 transthyretin,	 apolipoprotein	A‐I	 (APOA1),	β2‐microglobu‐
lin and transferrin125,126; the combination of these five proteins has 
a ROC AUC of 0.90 and predicts 91.4% ovarian malignancy in the 
cases of early‐stage disease. This result shows a dramatic accuracy 
improvement compared with 65.7% for CA125 alone.127,128

4.2.2 | The prognostic and predictive values of 
protein markers

In breast cancer patients, 21 proteins were identified from an antibody 
microarray containing 135 antibody fragments, whose functions related 
to the development of metastasis. The combination of these 21 proteins 
could distinguish patients at high or low risk for developing metastasis, 
with an ROC AUC of 0.85.129 What is more, this 21 proteins combina‐
tion also provided an added value to clinic. That is when combined with 
conventional clinical parameters, which the ROC AUC is 0.66, the ROC 
AUC could increase to 0.90 for prediction of recurrence.129

4.2.3 | Protein markers as monitors 
for therapy efficacy

Another function that is widely used in clinic is to monitor the ther‐
apy efficacy. Besides some traditional tumour biomarkers such as 
CA125, many studies work to identify other new tumour biomarkers 
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in different cancer types to improve the present situation. For exam‐
ple, the level of a newly identified tumour biomarker Hsp90α in pa‐
tients’ plasma showed significant correlation with therapy efficacy 
in lung cancer.130

5  | THE MOLECUL AR FUNC TIONS AND 
CLINIC AL USE OF E XOSOMES A S TUMOUR 
BIOMARKER

5.1 | The discovery of tumour‐derived exosomes as 
tumour biomarkers

Exosomes are 30‐100 nm small vesicles secreted by cells to the ex‐
tracellular matrix or body fluids. It was first discovered in 1980s by 
Johnstone	group	who	declared	that	transferrin	receptor	could	be	se‐
lectively released in circulating vesicles, which was later named ex‐
osomes.131‐133 In 1990s, people recognized exosomes to be related 
with immune system functions.134 In 2010s, researchers found that 
exosomes contain RNAs, DNAs, proteins and metabolites.135 And in 
recent years, exosomes were found to have an important role in cell‐
cell communication and signalling transduction.

5.2 | Functions of exosomes during cancer 
development

Exosomes play an important role in cell‐cell communication, since 
exosomes can package certain RNAs, DNAs, proteins and other 
metabolism from the donor cells. There are emerging evidences 
that tumour cells secret exosomes to facilitate cancer growth, an‐
giogenesis, invasion, metastasis, immunity and even drug resistance 
acquirement.

5.2.1 | Exosomal Nucleic Acids

The nucleic acids in exosomes include RNAs such as miRNAs, 
mRNAs, tRNAs, lncRNAs136‐139 and DNAs including single stranded 
and double stranded.135,140 Among these nucleic acids, exosomal 
miRNAs draw most of the attention.141‐143 It has been reported 
that pro‐angiogenic miRNAs within tumour‐derived exosomes can 
induce angiogenesis.144 Furthermore, miRNAs, such as miR21 and 
miR29a that are highly expressed in tumour cells, can be transported 
by exosomes and bind to toll‐like receptors to trigger the inflamma‐
tory response, which will facilitate tumour growth and metastasis.145 
Cancer cells can also gain miRNAs information from other cancer‐as‐
sociated cells. For example, miR21 could help to suppress ovarian 
cancer apoptosis and bind to apoptotic protease‐activating factor‐1 
(APAF1)	to	confer	drug	resistance	to	paclitaxel.146

5.2.2 | Exosomal Proteins

Tumour‐derived exosomes can transport many proteins to estab‐
lish a complex metastatic microenvironment. For example, HSP70, 
HSP90 and survivin can inhibit apoptosis and promote cellular 

proliferation.147,148 VEGF, FGF and TGF‐β were reported to facili‐
tate angiogenesis.149 Tumour‐derived exosomes were enriched with 
MMPs	(such	as	MMP‐1	and	MMP‐19),150	which	could	degrade	ECM	
components to facilitate cancer invasion.151 Recently, exosomes 
were found to inhibit immune system to promote tumour develop‐
ment by increasing the immune suppressive cells, decreasing NK 
and T cells proliferation and cytotoxicity, inhibiting antigen‐pre‐
senting cell number and function.152‐154 There are emerging reports 
that tumour‐derived exosome also mediates the acquirement of 
drug resistance. One example is that exosomes of HER2‐overex‐
pressed breast cancer cells also contain HER2 molecules, which 
can be combined with the HER2 antibody drug trastuzumab, thus 
prevent the drug from binding to tumour cells and inhibit the anti‐
tumour effects.155

5.3 | Present applications of tumour‐derived 
exosomes in clinic

5.3.1 | Tumour‐derived exosomes for the 
diagnosis of cancers

One advantage for exosomal markers in clinical detection is its sta‐
bility to avoid from enzyme‐based degradation compared with cir‐
culating markers, which may increase the accuracy of the detection. 
For example, miRNA‐1246 shows a sensitivity of 71.3% and a speci‐
ficity of 73.9% for the diagnosis of oesophageal squamous cell can‐
cer	(ESCC),	and	its	level	is	also	correlated	with	the	tumour	metastasis	
and poor survival.156 Actually, many circulating cell‐free biomarkers 
can also be detected in exosomes in many types of cancer. For ex‐
ample, oncogene EGFR also exists in exosomes from prostate cancer 
patients.157 miRNAs such as miR‐21 and miR‐141, which was pre‐
viously known as diagnostic markers for ovarian cancer, were also 
present in exosomes from ovarian cancer patients.141 KRAS and p53 
mutations in exosomal DNA of pancreatic cancer also could predict 
the treatment option and therapy resistance.158

5.3.2 | The prognostic and predictive values of 
tumour‐derived exosomes

Similar to the diagnosis property, exosomal biomarker also shows 
values in prognosis and prediction. For example, in tongue squamous 
cell	 carcinoma	 (TSCC),	 the	higher	 level	of	caveolin‐1	 (CAV1)	 in	ex‐
osomes is negatively correlated with recurrence and survival.159 In 
nasopharyngeal	carcinoma	(NPC),	the	level	of	miR‐24‐3p	was	higher	
in exosomes from patients compared with healthy people and was 
correlated with lower disease‐free survival.154

5.3.3 | Tumour‐derived exosomes as monitors 
for therapy efficacy

It was reported that the amount of cisplatin in exosomes released 
from cisplatin‐resistant cells is 2.6 times higher than that from cispl‐
atin‐sensitive cells after treatment with cisplatin.160
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5.3.4 | Tumour‐derived exosomes in anti‐
cancer therapy

Since exosomes play an important role in cancer growth, metastasis 
and drug resistance, some drugs target to inhibit the secretion of ex‐
osomes or just remove exosomes from blood circulation.161,162 Since 
exosomes can protect its contents from degradation by enzymes, 
they are ideal drug delivery vehicles, especially for delivering some 
suppressor miRNAs such as miR‐143.163,164 Because of the role of 
exosomes in the immune system, exosome could represent new an‐
tigens to the immune cells to evoke the immune system and finally 
overcome the immune escape of tumour cells.165

Although many challenges exist, it is still a promising field of biomarker, 
and interested readers are referred to some excellent reviews.166‐168

6  | THE MOLECUL AR FUNC TIONS AND 
CLINIC AL USE OF C TC S A S TUMOUR 
BIOMARKERS

6.1 | The discovery of CTCs as tumour biomarkers

CTCs are tumour cells from a primary tumour that circulate in the 
blood around the body, and act as seeds for subsequent secondary 
metastatic tumour at distant organs. The amount of CTCs in blood 
is	very	low	at	about	1‐10	CTCs	per	mL	of	whole	blood	in	metastatic	
patients.169 CTCs were first identified in 1869.170 Recent years, with 
the development of CTCs isolation and detection techniques, CTCs 
have been investigated as promising clinical tumour biomarkers in 
numerous types of cancer.

6.2 | Functions of CTCs during cancer development

Since studies have recognized that CTCs are heterogeneous, which 
means a CTC cluster may not only contain different sizes or compo‐
nents of CTCs, but also include tumour‐associated stromal cells. These 
certain different characteristics have distinct biological functions 
and higher metastatic potential,171‐173 and CTC clusters have higher 
metastatic	potential	(near	100‐fold)	compared	to	individual	CTCs.174 
For example, the formation of CTC clusters requires protein expres‐
sion such as plakoglobin and keratin 14, which are related to tumour 
metastases.171,175 Some factors in the circulation microenvironment 
also participate in CTC metastasis ability such as pro‐inflammatory 
cytokines system.176 The presence of stromal cells such as endothelial 
cell and platelets also facilitates CTC cluster metastasis through dif‐
ferent mechanisms.177,178 What is more, bigger size CTC clusters are 
under more hypoxia conditions and are more potent to metastasis.179

6.3 | Present applications of CTCs in clinic

6.3.1 | CTCs for the diagnosis of cancers

The origin and function of CTCs determine that it can be detected 
in patients already undergoing metastasis. But for early‐stage 

non‐metastasis patients, it can rarely be detected in the circulation, 
which may limit its sensitivity and specificity for cancer diagnosis. 
However, in some cases, it can be used to distinguish lung cancer 
from benign lesions in patients at CTC count over 25.180 It can also 
be used for cancer screening, in tobacco‐induced chronic obstruc‐
tive pulmonary disease, which are at high risk of developing lung 
cancer, only patients with detectable CTCs were diagnosed lung 
cancer later.181

6.3.2 | The prognostic and predictive values of CTCs

The numbers and characteristics of CTCs are getting widely stud‐
ied for the use of survival prognosis or therapy response prediction. 
For example, in metastasis breast cancer, 46.9% of the patients had 
higher	CTC	level	(≥	5	CTCs/7.5	mL),	which	meant	lower	progression‐
free survival and overall survival compared to patients with lower 
CTC	number	(<5	CTCs/7.5	mL).182 What is more, CTCs that are un‐
dergoing	EMT	with	 the	expression	of	EMT	marker	plastin‐3	 could	
also predict therapy outcome.183

6.3.3 | CTCs as monitors for therapy efficacy

Patients with lower CTC level after certain treatment exhibit better 
survival compared to those patients remain high CTC level. For ex‐
ample, in metastatic breast cancer, after one cycle of chemotherapy, 
patients with decreasing CTC levels have a better prognosis than pa‐
tients with persistently high CTC levels.184 Similar results were also re‐
ported in colon cancer,185 castration‐resistant prostate cancer,186,187 
rectal cancer188,189 and small cell lung cancer.190 In ovarian cancer, 
monitoring CTC has an even higher accuracy than protein marker 
CA125 for predicting chemotherapy response and cancer relapse.191

6.3.4 | CTCs as guidance for treatments

The response of tumour cells to therapy can be dynamic; thus, meas‐
uring CTCs during the course of therapy may reveal tumour changes 
timely and provide us guides for further treatment. However, until 
now, only limited studies showed CTC‐based treatment direction 
applicable. For example, breast cancer patients with HER2‐negative 
setting but HER2‐positive CTCs were treated with trastuzumab or 
observation. The results showed that 27 of 36 patients treated with 
trastuzumab became CK19 mRNA‐negative compared to 7 of 39 ob‐
servation patients, and trastuzumab treatment also decreased the 
risk of disease recurrence and prolonged disease‐free survival.192 
In a recent clinical trial investigating the clinical utility of CTC num‐
bers in ER‐positive metastatic breast cancer patients, patients with 
low CTC numbers are given hormone therapy, while patients with 
high CTC numbers are treated by first‐line chemotherapy. After one 
cycle of chemotherapy, patients remaining high CTC numbers (>5 
CTCs/7.5	mL)	were	possibly	switched	to	second‐line	chemotherapy	
at earlier time. However, until now, this study was reported as nega‐
tive, since an early switch of chemotherapy did not improve overall 
survival of these patients.193	Many	 reasons	may	 cause	 this	 result;	
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however, based on the property of CTCs, it is still believed to be 
the future direction for guiding treatment timely, and new effective 
treatment is also urgently needed after identifying the CTC status.

Some reviews that summarized the advantages and challenges in 
this field also listed here for readers who are interested.194‐196

7  | CONCLUSIONS

Large	portions	of	cancer	death	are	caused	by	metastasis,	so	early	
diagnosis becomes the key to decrease the death rate. Since detect‐
ing tumour biomarkers in body fluids is the most non‐invasive way 
to identify the status of tumour development, it has been widely 
investigated for the use in clinic. These biomarkers include differ‐
ent expression or mutation in miRNAs, ctDNAs, proteins, exosomes 
and CTCs. For the use of early diagnosis, which requires the detec‐
tion of tumour markers at early stage before metastasis, high sen‐
sitivity and specificity are very important. Due to the characteristic 
of CTCs, which are often detected when metastasis already hap‐
pened, the sensitivity and specificity for early diagnosis are not high 
enough to be ideal prospective marker for diagnosis. Other molecu‐
lar markers such as miRNAs, ctDNAs and proteins can be secreted 
by tumour cells at very early stage to facilitate tumour development 
and	metastasis,	thus	could	be	detected	at	an	early	stage	(Figure	1).	
However, at present, the sensitivity and specificity of these molecu‐
lar markers are not high enough, which may partially due to the pre‐
sent limited detection methods, limited stability or may be limited 
by the different molecular function of different patients. So, one 
promising way to solve this problem is to combine these biomark‐
ers and achieve a highest accuracy at the lowest molecule combi‐
nation number for tumour early detection. Recently, exosomes are 
identified as an emerging hot spot in the field of diagnostic tumour 
biomarker, because circulating exosomes shows important func‐
tions in long distance message transport between different cells, 
and detecting miRNAs, ctDNAs and proteins in exosomes can avoid 
enzyme‐based degradation of these molecules, which allow an el‐
evated	accuracy	(Figure	1).	However,	methods	for	detection	of	iso‐
late exosomes and molecular marker combinations still need further 
study, especially considering their biological functions.

After the diagnosis of cancer, patients usually need certain 
anti‐cancer treatment. Another important function for tumour bio‐
markers	is	to	direct	the	determination	of	therapeutic	regimen.	Many	
oncogenic miRNAs, ctDNAs and proteins have functions to facilitate 
cancer progression and metastasis, so they usually correlate with 
poor	prognosis	 (Figure	1).	CTCs,	which	often	occurred	 just	before	
metastasis, possess ideal accuracy for prognosis and treatment effi‐
ciency prediction. These may provide some information for choosing 
certain anti‐cancer treatment. Further studies should also focus on 
biomarkers‐targeted treatments based on their molecular functions, 
which could have a more precise direction for drug treatment.

Another important clinic use for tumour biomarker is to monitor the 
treatment efficiency. Since the tumour markers could reflect the sta‐
tus of tumour development, these levels could evaluate whether the 

treatment	is	effective	to	inhibit	tumour	development.	Meanwhile,	it	can	
monitor	whether	there	is	a	relapse	after	a	period	of	remission	(Figure	1).	
However, the accuracy for this use is limited and required more efficient 
alternative treatments if the first‐line treatment is not effective.

During the anti‐cancer treatment, tumour cells may evolve new 
properties to gain drug resistance. These properties can be reflected 
in the genomic change of metastasis tumour cells, and the genetic 
information in CTCs provides an ideal way to identify these changes 
(Figure	1).	At	present,	the	study	of	this	application	is	only	at	a	very	
beginning stage, and the clinical results for CTCs directed treatment 
changes cannot improve their overall survival of these drug resis‐
tance patients. It may because that the alternative treatment is not 
effective. And the method for isolating CTCs is not mature, since 
different CTCs have different surface markers, and present method 
may not isolate all kinds of CTCs in the circulation.

At present, traditional tumour biomarkers widely used in clinic 
are still at protein level. However, due to their limited sensitivity and 
specificity, novel serum biomarkers such as CTCs and nucleic acids 
will have a great advantage in the future. Although, novel biomark‐
ers have their own technical limitation, and protein markers may 
not soon be replaced, it is a trend that using different biomarkers 
in combination to increase the sensitivity and specificity. In the era 
of individualized medical treatment and precise medical treatment, 
the diagnosis and treatment decision relied much on the informa‐
tion provided by tumour biomarkers. One important event for this 
era is that in this year, FDA first approved a drug based on a tu‐
mour's biomarker without regard to the tumour's original location. 
And we believe that researchers will pay more attention on the mo‐
lecular functions and the underlying mechanisms of these tumour 
biomarkers, to have a more precise use in the clinics in the future.
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