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Abstract. We have studied the posttranslational 
modifications of the 52-kD protein, an estrogen- 
l~gulated autocrine mitogen secreted by several human 
breast cancer cells in culture (Westley, B., and H. 
Rochefort, 1980, Cell, 20:353-362). The secreted 
52-kD protein was found to be phosphorylated mostly 
(94%) on high-mannose N-linked oligosaccharide 
chains, and mannose-6-phosphate signals were 
identified. The phosphate signal was totally removed 
by alkaline phosphatase hydrolysis. The secreted 
52-kD protein was partly taken up by MCF7 cells via 
mannose-6-phosphate receptors and processed into 
48- and 34-kD protein moieties as with lysosomal 
hydrolases. By electron microscopy, immunoperoxidase 
staining revealed most of the reactive proteins in lyso- 
somes. After complete purification by immunoaffinity 
chromatography, we identified both the secreted 52-kD 
protein and its processed cellular forms as aspartic 
and acidic proteinases specifically inhibited by pep- 
statin. The 52-kD protease is secreted in breast cancer 

cells under its inactive proenzyme form, which can be 
autoactivated at acidic pH with a slight decrease of 
molecular mass. The enzyme of breast cancer cells, 
when compared with cathepsin D(s) of normal tissue, 
was found to be similar in molecular weight, en- 
zymatic activities (inhibitors, substrates, specific ac- 
tivities), and immunoreactivity. However, the 52-kD 
protein and its cellular processed forms of breast can- 
cer cells were totally sensitive to endo-13-N-acetyl- 
glucosaminidase H (Endo H), whereas several cellular 
cathepsin D(s) of normal tissue were partially Endo 
H-resistant. This difference, in addition to others con- 
cerning tissue distribution, mitogenic activity and hor- 
monal regulation, strongly suggests that the 52-kD 
cathepsin D-like enzyme of breast cancer cells is 
different from previously described cathepsin D(s). 
The 52-kD estrogen-induced lysosomal proteinase may 
have important functions in facilitating the mammary 
cancer cells to proliferate, migrate, and metastasize. 

T 
HE mechanism of the control of cell proliferation by 
intraceUular hormones is unknown but can be studied 
in hormone-responsive human cell lines. The recent 

discovery of a close relationship between some oncogenes 
(Bishop, 1983) and growth factors (Waterfield, 1985), some 
of which act as autocrine signals (Sporn and Todaro, 1980; 
Heldin and Westermark, 1984), could serve as a guide in 
finding a new class of growth factors and oncogene products 
which are regulated by steroid hormones in hormone- 
responsive cancer. In the estrogen receptor-positive human 
breast cancer cells (Lippman et al., 1976; Soule et al., 1973), 
estrogens stimulate the synthesis of several secreted proteins 
(reviewed in Rochefort et al., 1986) and subsequently in- 
crease cell proliferation. We have more specifically studied 
a glycoprotein, defined according to its apparent molecular 

mass in SDS PAGE (52,000 daltons, 52 kD), which is 
secreted into the culture medium when MCF7 cells are 
treated with estrogens (Westley and Rochefort, 1980). The 
protein contains at least two N-linked high-marmose or hy- 
brid oligosaccharide chains (Touitou et al., 1985) and is 
processed intracellularly into a 48-kD protein and a more 
stable 34-kD protein (Morisset et al., 1986a). The distribu- 
tion of this protein in human tissues, as determined with 
several monoclonai antibodies by using immunoperoxidase 
staining (Garcia et al., 1985), appears to be relatively 
specific for epithelial mammary cells, sweat glands, and 
liver, and to be associated with tumor development and/or 
cell growth. The protein has been detected in several human 
mammary cancers but not in the normal resting mammary 
gland or in endometrium (Garcia et al., 1984). In a study of 
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125 tissue samples of benign breast disease, the immuno- 
staining was found to be associated with cysts and ductal 
hyperplasias, both being lesions that increase the risk of de- 
veloping breast cancer (Garcia et al., 1986). 

Several characteristics of the 52-kD protein suggest that 
it might be an autocrine mitogen (Vignon et al., 1983; 
Rochefort et al., 1984): (a) its increased level in the medium 
always precedes the stimulation of cell growth by estrogen; 
(b) the protein is not secreted when the wild-type MCF7 
cells are treated by antiestrogens or progestins that block cell 
growth; (c) the 52-kD protein became specifically inducible 
by antiestrogens in antiestrogen-resistant clones of MCF7 
cells, unlike other regulated proteins (Westley et al., 1984); 
(d) more directly, the purified 52-kD protein (Capony et 
al., 1986) stimulated the growth of resting MCF7 cells and 
transformed the cell surface (Vignon et al., 1986). 

In an attempt to identify the function ~tf this protein, we 
have studied its posttranslational modifications and searched 
for an enzymatic activity. In a preliminary report, we noticed 
that the secreted 52-kD protein contains mannose-6-phos- 
phate signals and displays an in vitro acidic proteinase activ- 
ity (Morisset et al., 1986b). We now report a complete char- 
acterization of the posttranslational modifications of the 
secreted and cellular 52-kD protein, and of its cellular local- 
ization and processing. The enzymatic activities of the cellu- 
lar and secreted 52-kD proteins have been characterized and 
compared to normal human cathepsin D(s). 

Materials and Methods 

Cell Culture 
MCF7 cells were derived from a metastatic human breast cancer and sup- 
plied by the Michigan Cancer Foundation (Detroit). Cells plated out in wells 
(Nunc 3.5-cm diam) at a concentration of 3 x 105 cells per well were 
hormone-withdrawn for 6 d, and then stimulated with estradiol (10 nM) for 
2 d as previously described (Westley and Rochefort, 1980). 

Labeling of Cells 
After stimulation, the cells were labeled with [35S]methionine (200 gCi/ 
ml) for 8 h in 500 gl of MEM as previously described (Westley and 
Rochefort, 1980). To label glycoproteins, cells were labeled in 500 gl of 
MEM containing 1/10th the normal concentration of glucose plus 0.6 mCi/ 
ml of [2-33H]mannose (54 Ci/mmol, Amersham International, Amer- 
sham, UK) or D-[U-14C]glucose (0.3 Ci/mmol, Commissariat ~t l'Energie 
Atomique, Saclay, France). For 32p-labeling, the cells were first rinsed 
twice with 1 ml of MEM containing 1/20th the normal concentration of 
phosphate and labeled for 7 h in 500 Ixl of the same MEM plus 2 mCi/ml 
of [32p]H3PO4 (Commissariat ~t l'Energie Atomique). At the end of the in- 
cubation, NaF was added to the 32p-labeled medium at a final concentra- 
tion of 10 raM, and the cells were rinsed twice in cold PBS containing 10 
mM NaF. 

Preparation of Medium, NP40 Cell Extracts, and 
Immunoprecipitation of the Secreted and Cellular 
52-kD Proteins 
After labeling, the media were collected and centrifuged for 5 rain at 
1,200 g. The cells were lysed directly in the wells in 10 mM Na H2PO4, 
pH 7.4, 10 mM NaC1, 10 mM EDTA, 1% NP-40 (wt/voi), 1 mM 
phenylmethylsnifonyi fluoride (PMSF), and 100 kalikrein inhibitors units 
of trasyloi (Sigma Chemical Co.) per ml and centrifuged to give a NP-40 
cell lysate. Immunoprecipitation of the cellular 52-kD proteins were carded 
out in 100 mM Na H2PO4, pH 7.4, 2% BSA, 1% NP-40, 1% sodium deox- 
ycholate, 0.1% SDS with hybridoma supernatant containing 10 gg/ml of 
M1G8 monoclonal antibody to the 52-kD protein and 5 % of normal BALB/c 
mouse serum (Garcia et al., 1984). After 18 h at room temperature, sheep 
anti-mouse antibody was added and the incubation continued for 22 h. Im- 

munoprecipitates were pelleted in an Eppendorf microfuge (Hamburg, Fed- 
eral Republic of Germany) and washed three times in immunoprecipitation 
buffer but with 1 mM EDTA and without BSA. Control immunoprecipita- 
tions were carried out with a supernatant of parental myeloma strain. Deter- 
gents were omitted to immunopreeipitate the secreted 52-kD protein. 

Purification of the Secreted and Cellular 
52-kD Proteins 

Proteins were purified by sequential column chromatographies on con- 
canavalin A (Con A)-Sepharose and anti-52-kD antibody-Sepharose as de- 
scribed (Vignon et al., 1986; Capony et al., 1986). Elution from the immu- 
noaflinity column was performed either at pH 3.0 or 11.0 as indicated when 
necessary. 

Detection of Phosphoamino Acids in Protein 
The secreted 52-kD protein was immunoprecipitated and subjected to SDS 
PAGE. Radioactive bands detected by autoradiography corresponding to the 
52-kD proteins were cut out and processed as described by Cooper et al. 
(1983) for hydrolysis and purification on Dowex AG1-X8 (Dow Coming 
Corp., Midland, MI). Separation of phosphoamino acids was carded out 
by cation exchange as previously described (Capony and Demaille, 1983). 

Detection of Phosphorylated Oligosaccharides 
The radioactive secreted or cellular 52-kD immunoprecipitates were dis- 
solved in 50 mM NaH2PO4, pH 5.4, containing 1% SDS heated for 1 rain 
at 100°C, and diluted 10-fold with quartz double-distilled water to dilute the 
SDS to 0.1%. Endo-I~-N-acetylglucosaminidase H (Endo H), 1 from Miles 
Laboratories, Inc. (Elkhart, IN) was added at I>25 mU/ml and the samples 
were incubated for 16-18 h at 37°C. The proteins were then precipitated with 
10% TCA, and the precipitates were analyzed by SDS PAGE. 

The TCA-soluble oligosaceharides were neutralized with 5 N NaOH and 
the free radioactive label ([32p]_ or [3H]marmose) was eliminated by gel 
filtration on Sephadex 1325 (PD10 column, Pharmacia Fine Chemical, Upp- 
sala, Sweden) in 0.1 M pyridine-acetic acid, pH 5.0. Samples were then sub- 
jected to high-voltage paper electrophoresis for 15-20 rain at 40 V/cm in 
a Desaga Desaphor electrophorator (Heidelberg, Federal Republic of Ger- 
many) on Whatman 3MM paper (Whatman, Inc., Clifton, NJ) saturated 
with 30 mM NI-I4H CO3 (Sahagian and Gottesman, 1982). The electro- 
pherograms were exposed to X.Omat S films to detect 32p or cut into 1-cm 
strips for 3H-radioactivity counting. 

Sugar Analysis 
Endo H-released oligosaccharides labeled with D-[U-~C]glucose were 
hydrolyzed with 1 N HCI at 100°C for 2 h. The carbohydrates were then 
analyzed by descending chromatography for 22 h on Whatman 3MM paper 
in N-butanol/pyridine/O.1 N HC1 (5:3:2). Radioactivity was counted as 
above for 3H and sugar standards (Sigma Chemical Co., St. Louis, MO) 
were detected with aniline oxalate (Broquet et al., 1982). 

Identification of Mannose-6-phosphate 
The oligosaccharides were lyophylized and hydrolyzed in 2 M trifluoro- 
acetic acid (TFA) in sealed tubes for 2 h at 110 ° as described elsewhere 
(Sahagian and Gottesman, 1982). The acid hydrolysates were then dried un- 
der nitrogen to eliminate TFA, and the residues were dissolved in 5 mM 
Tris-HC1, pH 9.0. Aliquots were counted for radioactivity and samples were 
submitted to high-voltage paper electrophoresis as above. Authentic man- 
nose-6-phosphate was run as external and internal controls (20-50 I.tg) and 
revealed by the ammoniaeal silver stain reagent (Trevelyan et al., 1950). 

Portions of N-glycosylated chains or acid hydrolysates containing 
200-500 cpm 32p were treated for 2 h at 37°C with or without 0.12 U of 
Escherichia coli alkaline phosphatase (Sigma Chemical Co., type II N) in 
20 I~l of Tris buffer, pH 9.0. The alkaline phosphatase activity was tested 
in parallel on 50 gg of authentic mannose-6-phosphate. 

QAE-Sephadex Fractionation and Mild Acid Hydrolysis 
Endo H-released oligosaccharides were first separated from the polypep- 
tides by chromatography on a Biogel P30 column (Bio-Rad Laboratories, 

1. Abbreviations used in this paper: Endo H, endo-13-N-acetylglucosamini- 
dase H; TFA, trifluoroacetic acid. 
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Figure 1. Phosphorylation of 
the secreted and cellular 52- 
kD proteins in MCF7 cells. 
Estrogen-treated MCF7 cells 
were labeled with either [3~S]- 
methionine or [32p]H3PO4 as 
indicated. Media and cell ex- 
tracts were immunoprecipi- 
tated with the M1G8 antibody 
to the 52-kD protein and ana- 
lyzed by SDS PAGE as de- 
scribed in Materials and 
Methods. (A) Proteins of me- 
dia (M) (lanes a and c) and 
cell extracts (C) (lanes e and 
g), labeled by 3ss and 32p and 
analyzed before (M, C) and 
after (Igl) immunoprecipita- 
tion with the anti-52-kD pro- 
tein antibody (lanes b, d, f, 
and h). (B) The immunopre- 
cipitated 52-kD proteins were 
digested (+)  or not ( - )  with 
Endo H and the TCA-precipi- 
tated proteins were electro- 
phoresed and revealed by au- 
toradiography (32p) or silver 
stained. Lanes a and b: secret- 
ed 52-kD protein. Lanes c-f: 
cellular related proteins. The 
three immunoreactive pro- 
teins are arrowed. 

Richmond, CA) (1 x 1(30 cm) in 1 M pyridine acetic acid, pH 5.0, 0.2% 
SDS. QAE-sephadex chromatography and mild acid hydrolysis were then 
performed as described by Tabas and Kornfeld (1980). 

Ultrastructural Localization by 
Immunoperoxidase Staining 
MCF7 cells stimulated by estradiol (10 nM) for 3 d were fixed in 3% 
paraformaldehyde and 0.05% glutaraldehyde and treated for 30 min with 
PBS containing 0.05 % saponin for membrane permeation. Indirect immu- 
noperoxidase staining was performed as described elsewhere (Garcia et al., 
1984). Enzyme activity was revealed using diaminobenzidine (Graham and 
Karnovsky, 1966). After 1 h of postfixation with osmium tetroxide (1.33 %) 
in collidine buffer, cells were embedded in Epon. The sections were stained 
with uranyl acetate and examined with a Philips EM 301 microscope (Eind- 
hoven, The Netherlands) at 60 kV. 

Proteolytic Activity Assays 

Both the secreted and cellular 52-kD related proteins were purified. The fi- 
nal elution was either with citrate buffer, pH 3, followed by dialysis in a 50 
mM acetate buffer, pH 5, with 0.0025 % Tween 80 (E. Merck, Darmstadt, 
Federal Republic of Germany) or with lysine buffer, pH U, without dialysis. 
The reaction mixture contained routinely 10,000 cpm of [14C]methemoglo- 
bin (New England Nuclear, Boston, MA), 100 I.tg of unlabeled methemo- 
globin, 10-90 ng of purified enzyme, and reaction buffer at appropriate pH 
in a final volume of 100 ~tl. The reaction was initiated by the addition of 
the enzyme and terminated by adding "IUA (final concentration 10%). TCA- 
soluble material in 25-~tl aliquots was counted for radioactivity. Blanks run 
with dialysis buffer in place of the enzyme were subtracted. At 37°C, the 
reaction was linear up to 15 min (purification at pH 3) or 60 min (purifica- 
tion at pH U), and incubation times of 10 min and 30 min were chosen, 
respectively. 

Double-labeled proteoglycans (kindly given by Dr. Mitrovic, INSERM 
U18, H6pital Lariboisi~re, Paris) were also tested as substrate. Briefly, hu- 
man chondrocyte proteoglycans were labeled in culture with [3H]glycine 

and 3sSO4, and purified as described (Mitrovic et al., 1981). 20,000 cpm of 
35SO4 and 87,000 cpm of 3H-labeled proteoglycans were digested by 80 ng 
of purified secreted 52-kD protein at different pH in 110 ltl of buffer for 45 
min at 370C. After TCA precipitation (10% final) in the presence of 25% 
FCS, the TCA-soluble material was decanted and counted for 3H and 3sS 
radioactivity using a double-channel program. 

Bovine spleen cathepsin D (EC 3.4.23.5) was from Sigma Chemical Co., 
the human liver cathepsin D (form 34 kD) was prepared according to Barrett 
(1970). The sheep antiserum to human cathepsin D (SA237) was prepared 
as described by Dingle et al. (1971). 

Other Methods 

SDS PAGE was performed by the method of Laemmii (1970) with a 15 % 
acrylamide gel. Samples were prepared as described by Westley and 
Rocbefort (1980). Gels containing 3H and 3sS material were processed for 
fluorography; those containing 32p were autoradiographed. Unlabeled pro- 
teins were stained with the Bio-Rad Laboratories silver-stain kit. The 
molecular mass of proteins was estimated by their mobilities relative to 
molecular mass protein standards for SDS PAGE (Bio-Rad Laboratories). 

Radioactive samples were counted in 4 ml of scintillator emulsifier 299 
(United Technologies, Packard Instrument Co., Inc., Zurich, Switzerland) 
in an SL30 Intertechnique liquid scintillation spectrometer (Intertechnique, 
Plaisir, France). 

Results 

Biosynthetic Phosphorylation on 
N-glycosylated Chains 

When confluent MCF7 cells grown in the presence of  es- 
tradiol were exposed to [32p]HaPO4 for 7 h, in a serum-free 
medium, several phosphorylated proteins were released into 
the culture medium. A protein with a molecular  mass of 
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Figure 2. Higla-voltage paper  e lectrophoresis  of  (A) [2-3H]man - 
nose- or (B) 32p-labeled oligosaccharides. The secreted 52-kD 
protein was immunoprecipitated and digested with Endo H. The 
cleaved oligosaccharide chains were analyzed before and after hy- 
drolysis with TFA by high-voltage paper electrophoresis with 
authentic mannose-6-phosphate (M6P), [3H]mannose (Man), and 
[32p]H3PO 4 (321)). (A) [3H]mannose labeling. (Panel a) intact N-gly- 
cosylated chains; (panel b) TFA hydrolyzed sugars. Radioactivity 
was detected as described in Materials and Methods. (B) 32p_ 
labeling. Intact N-glycosylated chains (panels a and b) and TFA- 
hydrolyzed sugars (panels c and d) were digested with alkaline 
phosphatase (panels b-d) or not digested (panels a-c) before analy- 
sis. The 32p-labeled material was autoradiographed and scanned 
using a Vernon scanning densitometer. 

52,0(0) daltons was one of the most phosphorylated proteins. 
It was identified as the estrogen-regulated 52-kD protein by 
specific immunoprecipitation (Fig. 1 A, lanes c and d). The 
52-kD protein immunoprecipitated after [35S]methionine 
labeling was analyzed in parallel (Fig. 1 A, lanes a and b). 
No other proteins were recognized by the monoclonal anti- 
bodies. Cells deprived of estrogens do not secrete the 52-kD 
protein and therefore no 32p_ or 35S-labeled 52-kD proteins 
were observed in the medium (results not shown). The cell 
extract was analyzed similarly. After [35S]methionine label- 
ing, three bands migrating as proteins with molecular mass 
of 52,000, 48,0(0), and 34,000 daltons were immunoprecipi- 
tated (Fig. 1 A, lanes e and f ) .  The 48- and 34-kD proteins 

are processed products of the 52-kD protein as shown by 
pulse-chase experiments (Morisset et al., 1986a). The 34-kD 
protein is the most abundant and stable of these three pro- 
teins. The immunoreactive cellular proteins were labeled by 
32p mostly on the 52- and 48-kD forms (Fig. 1 A, lanes g and 
h). The 34-kD protein was labeled weakly by [35S]methio- 
nine and very weakly by 32p (not detected in Fig. 1 A). 

We conclude that the 52-kD protein is phosphorylated in 
vivo in the cellular compartment and remains phosphory- 
lated when secreted into the medium under estrogen stimu- 
lation. 

The phosphorylation site(s) of the secreted purified 52-kD 
protein labeled biosynthetically by [32p]H3PO4, was  (were) 
then identified. After acid hydrolysis of peptide honds 
(Cooper et al., 1983), the phosphoamino acids were sepa- 
rated on an amino acid analyzer and revealed by autoradiog- 
raphy (Capony and DemaiUe, 1983). Only 3%-5% of the to- 

32p radioactivity hound to the protein was recovered. It 
migrated mostly with serine (90%) and to a lesser extent with 
threonine (9%), and tyrosine was hardly detectable. Because 
the proportion of 32p incorporated into the 52-kD glycopro- 
tein and recovered into amino acids was low, we suspected 
that the oligosaccharide moiety was also phosphorylated. In 
fact, treatment by Endo H, which removes the two N-glyco- 
sylated chains of the secreted 52-kD protein and displaces 
the 35S-labeled protein to lower molecular mass of 50- and 
48-kD (Touitou et al., 1985), also removed 94% of the 32p 
from the 52-kD protein (Fig. 1 B, lanes a and b). This indi- 
cated that the majority of the 32p label of the 52-kD protein 
was incorporated into the high-mannose N-glycosylated 
chains. Endo H had the same effect on the three immuno- 
related cellular proteins (Fig. 1 B, lanes c-f). This was 
confirmed by analyzing the 32p or [3H]mannose-labeled 
N-glycosylated chains released by Endo H treatment. When 
the N-glycosylated chains of the secreted 52-kD protein were 
labeled by [3H]mannose and analyzed at pH 8 by high- 
voltage paper electrophoresis, half of them migrated as an 
acidic component and half as a neutral component (Fig. 2 A, 
panel a). When labeled by [32p]H3PO4 (Fig. 2 B, panel a), 
the cleaved oligosaccharide chains migrated as the acidic 
compound labeled with [3H]mannose. The bulk of the 32p 
was removed by alkaline phosphatase and migrated as free 
H3PO4, indicating that most of the phosphate was linl~ed to 
the N-glycosylated chain by a monoester bond and not pro- 
tected by a terminal sugar (Fig. 2 B, panel b). 

Mannose-6-phosphate Signal and 
Lysosomal Localization 
The [3H]mannose- or [32p]H3PO4-1abeled oligosaccharides 
were hydrolyzed with TFA, and the monosaccharides were 
electrophoresed on paper. 20% of the incorporated 3H ra- 
dioactivity migrated with the mobility of authentic mannose- 
6-phosphate run in parallel (Fig. 2 A, panel b), while most 
of the 3H radioactivity migrated as [3H]mannose. The 32p 
incorporated into monosaccharides migrated as authentic 
mannose-6-phosphate. It was totally liberated as free [32p]_ 
phosphate after alkaline phosphatase treatment (Fig. 2 B, 
panels c and d). 

The N-glycosylated chains of the three immunopurified 
cellular-related 52-kD proteins are also Endo H-sensitive 
and most of their phosphorylation is removed by this en- 
zymatic digestion (Fig. 1 B). After biosynthetic labeling by 
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Figure 3. Inhibition by man- 
nose 6-phosphate of the up- 
take and processing of the 52- 
kD protein by MCF7 cells. 
Confluent MCF7 cells (1 × 
106 cells) maintained in FI2/ 
DME containing 1% FCS/ 
dextran-coated charcoal were 
rinsed twice in FI2/DME plus 
0.1% BSA. They were then in- 
cubated with 400 ttl of con- 
ditioned media containing 
[35S]methionine-labeled pro- 
teins secreted by MCF7 cells 
(300,000 TCA-precipitable 
counts) for 24 h in F12/DME 

with (lane a) 0.1% BSA alone (0), or (lane b) 10 mM man- 
nose-6-phosphate (M6P), or (lane c) 10 mM glucose-6-phosphate 
(G6P), or (lane d) 10 mM mannose-l-phosphate (MIP), or (lane 
e) 10 mM mannose (Man). The labeled ceils were then washed 
three times in F12/DME plus 0.1% BSA, and the cell lysate proteins 
were immunoprecipitated with the M1G8 anti-52-kD monoclonal 
antibody. The immunoprecipitates of each series were analyzed by 
SDS PAGE and revealed by fluorography. 

[3H]mannose and by [32p]H3PO4, the N-glycosylated chains 
recovered after Endo H digestion showed both neutral and 
acidic components in electrophoresis. A 32p-labeled com- 
pound migrating as mannose-6-phosphate was recovered 
after acid hydrolysis. However, alkaline phosphatase only 
partially removed the 32p incorporated into the cellular N-gly- 
cosylated chains, suggesting that some phosphomannose 
residues were covered. The behavior of the cellular 52-kD 
oligosaccharide chains on the QAE-Sephadex column was 
studied according to Tahas and Kornfeld (1980). Five peaks 
were eluted by increasing concentrations of NaC1 from O to 
100 mM indicating a large heterogeneity of these N-glyco- 
sylated chains (not shown). Approximately 20% were neu- 
tral whereas the rest had a variable number of negative 
charges. 80% of the two major peaks (30% each) eluted at 
70 and 100 mM were sensitive to alkaline phosphatase, sug- 
gesting that they contained accessible mannose-6-phosphate. 
Sugar analysis after total acid hydrolysis of the secreted and 
cellular oligosaccharide chains biosynthetically labeled with 
I)-[U-~4C]glucose revealed mannose and N-acetylglucosamine 
in an approximate molar ratio of 5:2. No other radiolabeled 
sugars could be detected. 

The presence of mannose-6-phosphate signals on the se- 
creted 52-kD protein was also indirectly demonstrated by in- 
cubating the 35S-labeled secreted proteins containing 1 nM 
concentration of 52-kD protein with unlabeled recipient 
MCF7 cells as described by Vignon et al. (1986). Under 
these conditions, 4% of the 52-kD protein was taken up and 
processed into 34-kD protein (Fig. 3, lane a). When man- 
nose-6-phosphate was added as a competitor to the labeled 
incubation medium, the uptake and processing of 35S-la- 
beled 52-kD protein was negligible (Fig. 3, lane b). In con- 
trast, incubation with glucose 6-phosphate, mannose 1-phos- 
phate, or mannose did not prevent the uptake and processing 
into a 34-kD protein (Fig. 3, lanes c-e). This result indicates 
that the breast cancer cells have mannose-6-phosphate recep- 
tors located on their plasma membrane, and that these recep- 
tors facilitate the cellular binding and uptake of the 52-kD 

protein, as described for other lysosomal enzymes (Creek 
and Sly, 1984). After incubation, the 52-kD protein remain- 
ing in the medium was not processed into the 48- and 34-kD 
forms, suggesting that the enzyme(s) responsible for this 
processing is (are) intracellular. 

We then used an anti-52-kD monoclonal antibody, which 
also recognizes the processed cellular 34-kD protein, to 
localize these proteins in MCF7 cells, using indirect immu- 
noperoxidase staining and electron-microscopic analysis 
(Fig. 4). The immunoreactive proteins were exclusively 
found in the cytoplasm and mostly concentrated in multi- 
vesicular bodies and lysosomal vesicles, identified as lyso- 
somes by acid phosphatase activity. Most of the lysosomes 
containing these proteins were located close to mitochondria 
and microfilaments. By contrast, only weak staining was ob- 
served in Golgi complexes, and no staining was observed 
with control monoclonal IgG1 mouse antibody (not shown). 
The ultrastructural localization of the protein was in total 
agreement with the biochemical characterization of man- 
nose-6-phosphate signals and indicated that the 52-kD pro- 
tein is the precursor of a lysosomal protein, partly secreted 
after estrogen stimulation and targeted to lysosomes via 
mannose-6-phosphate receptors. 

Aspartic Proteinase Activity of  the Secreted and 
Cellular Forms of  the 52-kD Protein 

Our first unsuccessful attempts to find an enzymatic activity 
of the purified secreted 52-kD protein at neutral pH (our un- 
published results) were markedly reoriented on the basis of 
its lysosomal localization. When the secreted 52-kD protein 
and the related cellular proteins (52, 48, 34, and 17-kD) were 
purified to apparent homogeneity by Con A-Sepharose chro- 
matography followed by immunoaflinity chromatography 
(Vignon et al., 1986; Capony et al., 1986), they displayed a 
strong proteolytic activity on [t4C]methemoglobin, with a 
maximum at pH 3.5 (Fig. 5 a). The substrate was degraded 
into small peptides, indicating that the enzyme was an endo- 
peptidase. The optimal pH was, however, found to vary ac- 
cording to the substrate tested. For instance, when double- 
labeled ([3H]glycine and 35SO4) human proteoglycans were 
used as substrates instead of methemoglobin, the purified 
secreted 52-kD protein displayed a maximal activity at pH 
5.5 and was slightly active at pH higher than 6, suggesting 
that this secreted protease may act extracellularly in vivo 
(Fig. 5 a). 

Casein, albumin, and basement membranes were also sub- 
strates for this protease (Morisset, unpublished experi- 
ments). The initial rate of the reaction was dependent on the 
amount of the secreted and cellular 52-kD protein, with a lin- 
ear relationship from 20 to 90 ng of protein (Fig. 5 b). The 
specific activity of the secreted 52 kD protein was identical 
to that of the related cellular proteins consisting mostly of the 
34- and 17-kD enzyme. Pepstatin was the most effective in- 
hibitor, leupeptin and EDTA had some activity at high con- 
centrations, and PMSF was inactive (Fig. 5 c). These results 
indicate that this proteinase is an aspartic proteinase similar 
to the previously described cathepsin D (Barrett, 1977). The 
proteinase activity is intrinsic to the 52-kD and related cellu- 
lar proteins in that its specific activity progressively in- 
creased up to 200-fold during purification (Table I). The fi- 
nal specific activity (300-360 cpm solubilized per nanograrn 
of protein in 30 min) was similar whether the protein had 
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Table L Purification of  the Secreted Proteinase Activity 

Total 
Total enzyme Specific Purifi- 

Step protein activity activity Yield cation 

/gg 

1. Start medium 6,220 
2. Con A eluate 258 
3. Ig G eluate 5 

cpm per  ng 
cpm x 10 -6 protein % -fold 

9.6 1.5 100 1 
6.6 26.4 69 17 
1.6 318 16.6 208 

The secreted 52 K protein was purified from 80 ml of culture medium condi- 
tioned by MCF~ ceils cultured with 10% FCS, as described in Materials and 
Methods. The final elution of the immunoaflinity column (IgG) was at pH 11. 
Protein concentrations in the medium and the Con A eluate were determined 
by the Bradford technique and by scanning the traces of the silver-stained gel 
in the IgG eluate. Proteinase activity was assayed as described in Materials and 
Methods and expressed in counts per minute of [a4C]methemoglobin solubi- 
lized at pH 4.0 for 30 min. 

been eluted at acidic or alkaline pH. The purity of the final 
preparation used for enzymatic studies was shown by finding 
single silver-stained bands of overloaded SDS polyacryl- 
amide gel (Capony et al., 1986; Morisset et al., 1986b) and 

Figure 4. Cellular localization of the 52-kD 
protein. MCF7 ceils cultured with estradiol 
were fixed, permeabilized, and incubated 
with the D7E3 anti-52-kD monoclonal anti- 
body (10 l~g/ml). They were immunostalned 
using the indirect peroxidase-antiperoxi- 
dase technique as described in Materials 
and Methods. Staining was mostly observed 
in lysosomes. (Ly) lysosomes; (N) nucleus; 
(M) mitochondria; (mi) microfilaments. 
Bars, 1 lain. 

a single NH2-terminal amino acid (Leu) of the purified 
secreted 52-kD protein (Ferrara et al., unpublished results). 
When the conditioned medium was passed through an im- 
munoaflinity column to remove the 52-kD protein, 96% of 
the proteolytic activity was retained on the column and re- 
covered after elution of the 52-kD protein. 

The first enzymatic assays were performed with a 52-kD 
secreted proteinase purified under conditions (final elution 
step at pH 3.0) which could autoactivate an inactive pro- 
enzyme. To see whether the precursor 52-kD protein was se- 
creted in an active or inactive form, we then purified it with 
a final elution step at pH 11 and tested its proteolytic activity 
at pH 4.0. The enzymatic activity was very low in the first 
8 min of incubation at pH 4.0, and increased thereafter (Fig. 
6 a). The molecular weight of the secreted 52-kD protein 
(Fig. 6 a, inset 1) was slightly decreased to 51 kD under 
these conditions (inset 2), but no 48- and 34-kD proteins 
were formed. The activation into the 51-kD protein was in- 
hibited by pepstatin (inset 3), indicating that the inactive 52- 
kD precursor undergoes an acid-dependent autoactivation, 
probably by removal of a short propeptide at the NH2-ter- 
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Figure 5. Proteolytic activity of the secreted and cellular related 52- 
kD proteins and of cathepsin D. Proteolytic activities of purified 
52-kD proteins and bovine cathepsin D (see Fig. 6 A) were assayed 
as described in Materials and Methods (10 min at 37°C) using 
10,000 cpm of [14C]methemoglobin (Met Hb) or 3H- and 35S- 
labeled proteoglycans (PGs) as substrates. TCA-solubilized mate- 
rial was directly counted for radioactivity. Three enzyme prepara- 
tions were used: secreted 52-kD protein (open circles), cellular 
related protein (34 K) (closed circles) and bovine cathepsin D (open 
triangles). (a) Effect of pH. The reaction buffers are citrate buffer 
(pH 2.5--4.5), acetate buffer (pH 5-6.5), phosphate buffer (pn 7.2), 
and Tris buffer (pH 8.4). 90 ng of each enzyme was used. (b) Effect 
of enzyme concentration. Stock solutions (pH 5.0) of cellular- 
related 52-kD protein containing mostly the 34-kD protein, se- 
creted 52-kD and bovine cathepsin D were diluted in a pH 5.0 ace- 
tate buffer and finally assayed for proteolytic activities at a final pH 
of 4.0. (c) Effect of proteinase inhibitors. The proteolytic activity 
of 80 ng of purified cellular related 52-kD proteins was assayed at 
pH 4.0 without and with increasing concentrations of the indicated 
inhibitors. The 100% value corresponded to the noninhibited pro- 
teolysis (4,000 cpm released in 10 min). 
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Figure 6. Time-dependent acid activation of proteinase activity. (a) 
The secreted and cellular related 52-kD proteins were purified 
(final elution at pH 11). 80 ng of each was then incubated at pH 4.0 
with [aC]methemoglobin as substrate. The reaction was stopped 
by adding TCA at the indicated times. 80-ng samples of purified 
secreted 52-kD protein were incubated for 30 min at 37°C either 
at pH U.0 (1), or at pH 3.0 without (2) or with 1 IJ.M (3) pepstatin. 
They were then compared on an SDS polyacrylamide gel and silver 
stained. (b) Conditioned media from MCF7 cells treated for 4 d 
with estradiol (E2CM) (solid symbols) or without estradiol (C- 
CM) (empty symbols) were prepared as described (Vignon et al., 
1983). They contained proteins released for the last 18 h under 
serum-free conditions in Ham's FI2-DME medium. Protein con- 
centration was made equal in Ea-CM and C-CM (105 ltg per 700 
gl of final volume) by adding Ham's F12-DME medium. Proteinase 
activity was assayed by adding at time 0 the substrate mixture con- 
taining 70,000 cpm of [~C]methemoglobin, 700 I~g of unlabeled 
methemoglobin in citrate buffer (final pH 4.0). 100-gl aliquots were 
taken from the same batches at different times of incubation and 
proteolysis was stopped by adding TCA. 30-min samples were also 
assayed with 10 nM pepstatin (triangles). 

minal moiety of the molecule. Similar autoactivation has 
been described for cathepsin D of  human fibroblasts (Hasilik 
et al., 1982) and of bovine spleen (Puizdar and Turk, 1981). 
By contrast, both the secreted precursor prepared under 
acidic conditions and the related cellular 52-kD proteins dis- 
played no lag in enzymatic activity (Fig. 6 a) and no change 
in their molecular mass, suggesting that they are fully active 
in acidic cellular organelles (endosomes, lysosomes). A sim- 
ilar time-dependent activation of  the secreted proteinase was 
observed at acidic pH in the conditioned media containing 
proteins released by estradiol-treated MCF7 cells, and was 
also observed but at a much lower level in conditioned media 
from control MCF7 cells (Fig. 6 b). Inhibition of  the pro- 
teolytic activity by pepstatin suggests that this activity is due 
to the 52-kD protein. This result indicates that the 52-kD 
protein is active before any purification and that MCF7 cells 

Capony et al. Estrogen-induced Lysosomal Proteinase 2 5 9  



Figure 7. Purity and immunoreactivities of the 52-kD proteins and 
cathepsin D. (A) Purity of the enzymes. (a) The secreted and the 
(b) cellular related 52-kD proteins were purified by two chromatog- 
raphy steps with final elution at pH 3.0 (Capony et al., 1986). 200 
ng of each preparation and (c) of bovine spleen cathepsin D were 
subjected to SDS PAGE and silver stained. (B) Immunoreactivities. 
(Lanes a-c) Immunoprecipitation of the secreted and cellular 52- 
kD protein by antibodies to human liver cathepsin D. Media (M) 
and cell extracts (C) were prepared from MCF7 cells labeled with 
[3~S]methionine and incubated with an antiserum anti-human liver 
cathepsin D (Dingle et al., 1971) (lanes a and b, lgi) or an unrelated 
antiserum (lane c, Ign). The immunoprecipitates were isolated by 
protein-A Sepharose as described (Capony et al., 1982), analyzed 
by SDS PAGE and revealed by fluorography. (Lanes d-f) Elec- 
trophoretic transfer and immunologic detection of 400 ng each of 
purified cathepsin D (Cat D) and cellular related 52-kD proteins 
(C) were performed with the M1G8 monoclonal antibody to the 
52 kD protein (IgO or an unrelated mouse antibody (Ign), as de- 
scribed (Garcia et al., 1985). 

secrete little if any proteinase inhibitor(s) for this enzyme. 
Moreover, it shows that the 52-kD protein secreted by human 
breast cancer cells can act in vitro as a proteinase after its 
autoactivation at acidic pH, but without being processed into 
its smaller molecular forms generally present in lysosomes. 

Comparison with Cathepsin D from Normal Tissues 

We found similarities, but also differences, between the 52- 
kD protein of MCF7 cells and other cathepsin D(s) from 
bovine and normal human tissues. The specific activity of the 
secreted and related cellular 52-kD proteins were in the same 
range (55 %-80 %) as that of cathepsin D, as evaluated on the 
same substrate under zero-order kinetics (Fig. 5, a and b; Ta- 
ble I). The molecular mass of the secreted 52-kD protein and 
of its cellular forms was similar to those of bovine liver (Fig. 
7 A) and human fibroblast cathepsin D (Gieselmann et al., 
1985). These cathepsin D(s), like the mammary 52-kD pro- 
tein, are processed into active lysosomal 48-kD and 34-kD 
17-kD proteinases. 

Moreover, polyclonal antibodies to human liver cathepsin 
D (Dingle et al., 1971) specifically immunoprecipitated the 
35S-labeled secreted 52-kD protein and the related cellular 
proteins of MCF7 cells (Fig. 7 B, lanes a-c). In addition, 
human 34-kD cathepsin D was detected by Western immuno- 
blot using the M1G8 monoclonal antibody to the 52-kD pro- 

tein (Fig. 7 B, lanes d-f). Bovine cathepsin D was not de- 
tected by our antibodies, confirming their specificity for the 
human species (Garcia et al., 1985). These results show that 
the 52-kD-related proteins are antigenically closely related 
to cathepsin D and very similar to this proteinase. The amino 
acid composition of the purified 52-kD secreted protein 
(Capony et al., 1986) and human liver cathepsin D (Barrett, 
1977) were found to be similar. 

Moreover, the cathepsin D-like enzyme of MCF7 cells 
has several characteristics that have not been previously de- 
scribed for normal human cathepsin D: (a) it is specifically 
induced by estrogens but not progesterone (Westley and 
Rochefort, 1980); (b) the secreted 52-kD precursor is mito- 
genic in MCF7 cells (Vignon et al., 1986); (c) its intracellu- 
lar concentration, as detected by our monoclonal antibodies, 
appears to be much higher in proliferative epithelial mam- 
mary cells and sweat glands than in other tissues, and is low 
in fibroblasts and endometrium (Garcia et al., 1986), where- 
as the distribution of the previously characterized cathepsin 
D appears more ubiquitous (Barrett, 1977). 

Recently, we compared the Endo H sensitivity of the 52- 
kD-related cellular proteins of MCF7 cells with that of cel- 
lular cathepsin D(s) prepared from several normal tissues 
and found marked differences. After purification using anti- 
bodies to the 52-kD protein, we found that the 34-kD cellular 
cathepsin D from placenta was different from that of breast 
cancer tissue or MCF7 cells in its partial Endo H resistance 
(Fig. 8 A). The three forms in MCF7 cells (52, 48, 34 kD) 
and the 34-kD protein of breast cancer, which is the most 
abundant immunoreactive cellular protein, were totally dis- 
placed by Endo H treatment (Fig. 8 A, lanes a-d), whereas 
in placenta, the 34-kD and a 28-kD protein, probably corre- 
sponding to a proteolytic product, were only partially dis- 
placed by this enzymatic treatment (Fig. 8 A, lanes e-f). 
Moreover, authentic cathepsin D(s) prepared classically 
from human liver (Barrett, 1970) or from bovine spleen, 
were also both partly resistant to Endo H digestion (Fig. 8 
B). Increasing the concentration of Endo H did not modify 
the proportion (~40%) of Endo H-resistant chains. These 
results clearly indicate a difference in glycosylation between 
the cathepsin D-like enzymes of human breast cancer and 
those of different normal tissues. Similar partial resistance 
to Endo H has been described for the human fibroblast ca- 
thepsin D (Hasilik and Von Figura, 1981). One possible con- 
sequence of the complete Endo H sensitivity of the 52-kD 
cathepsin in breast cancer cells is the high proportion (up to 
50%) of the secretion of its precursor in breast cancer cells 
(Morisset et al., 1986a) compared with normal cells (unpub- 
lished results). This difference suggests a defect in the matu- 
ration of N-glycosylated chains in cancer cells, which may 
be explained at the level of the structure of the protein, or 
at another level, such as enzymes involved in the posttransla- 
tional modifications of this protease. The sequencing of the 
MCF7 52-kD protein from its cloned cDNA and its com- 
parison with the sequence of normal human cathepsin D 
(Faust et al., 1985) will specify the degree of homology be- 
tween these proteases. 

Discuss ion  

We have shown that the estrogen regulated 52-kD protein 
secreted by human breast cancer cells is the proenzyme of 
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Figure 8. Differences in endo 
H sensitivity of cellular ca- 
thepsin D-like enzymes from 
breast cancers and normal tis- 
sues. (A) A pool of six pri- 
mary breast cancers (HBK) 
and a human placenta were 
dissected immediately after 
surgery or delivery and frozen 
at -80°C. Both tissues were 
dipped into liquid nitrogen 
and powdered. The powders 
were then homogenized at 
0-4°C using an Ultraturrax in 
NP-40 lysis buffer (Capony et 
al., 1986). The homogenates 
were centrifuged at 100,000 g 
for 30 min and the superna- 
tants were subjected to the pu- 
rification protocol used for cel- 
lular 52-kD proteins (Capony 
et al., 1986). Elutions from 
the 52-kD antibody immuno- 

affinity columns were carried out at pH 11.0. (B) Human liver (lanes a-c) and bovine spleen (lanes d-f) cathepsin D were obtained as 
indicated in Materials and Methods. The purified enzymes (6-10 ~tg/ml) were treated with Endo H as described in Materials and Methods 
using 50 mU/ml (4,) or 200 mU/ml (4-4-) Endo H and an incubation period of 20-24 h at 37°C in the presence of pepstatin. The samples 
were then run on SDS PAGE and revealed by silver staining as in Fig. 1 B. 

a lysosomal acid proteinase similar to cathepsin D. The cel- 
lular processing of the 52-kD protein was separately shown 
using pulse chase experiments (Morisset et al., 1986a). The 
protein is partly (40%) secreted into the medium and partly 
processed intracellularly into 48- and 34-kD proteins. The 
34-kD protein is more stable than the other forms and 
represents 65 % of the total immunoreactive 52-kD-related 
proteins in cells. Lysosomotropic agents (NI-hC1, monen- 
sin) inhibit markedly this intracellular processing in smaller 
proteins. The secretion of precursor of lysosomal hydrolase 
first described for I-cell disease (Hickman and Neufeld, 
1972) has also recently been reported in mouse transformed 
fibroblasts (Gal and Gottesman, 1985). In the human MCF7 
cells, estrogens increase both the synthesis of the cellular 52- 
kD precursor (Morisset et al., 1986a), and to a larger extent, 
its secretion into the medium (Westley and Rochefort, 1980). 

Both the 52-kD precursor and the mature 48- and 34-kD 
proteins are aspartic proteinases similar to the lysosomal 
cathepsin D on the basis of their molecular mass, inhibitor 
and substrate specificities, and immunoreactivities. How- 
ever, there are several differences in the tissue distribution, 
hormonal regulation, glycosylation, and degree of secretion 
when compared with the cathepsin D from normal tissue. 
These differences as well as the mitogenic activity of the 
protein and its possible action on basement membrane and 
proteoglycans suggest a role of this secreted protein in the 
process of tumor growth and/or invasion. 

Other proteinases have also been reported to be secreted 
specifically from transformed cells. The major excreted pro- 
tein is an activatible acid-proteinase secreted by transformed 
mouse fibroblasts (Gal and Gottesman, 1985). The MEP and 
the 52-kD protein have similar optimal pH activity but are 
clearly different, in that the major excreted protein is a 39-kD 
mouse cysteine proteinase. Another proteinase "transin" se- 
creted by transformed mouse fibroblasts is analogous to a 
collagenase (Matrisian et al., 1985). These proteinases may 
have important functions in the process of cancer cell migra- 

tion and metastasis. Another characteristic of the 52-kD ca- 
thepsin D-like proteinase is its autocrine mitogenic activity 
on MCF7 cells (Vignon et al., 1986) by an unknown mecha- 
nism. The 52-kD protein is able to bind plasma membrane 
of MCF7 cells via mannose-6-phosphate receptors but ad- 
ditional receptors and/or its proteolytic activity may be 
required to trigger its mitogenic activity as previously dis- 
cussed for thrombin (Carney and Cunningham, 1978), an- 
other mitogenic proteinase. The autocrine mitogenic activity 
of conditioned media prepared from estrogen-stimulated 
MCF7 cells (Vignon et al., 1983) is now confirmed by sev- 
eral groups (Manni et al., 1986; Dickson et al., 1986). The 
nature of the estrogen-induced proteins or factors primarily 
responsible for this mitogenic activity in these conditioned 
media is, however, debated. Classical growth factors activat- 
ing transmembrane receptors have been detected by their bi- 
ological and binding activities (Dickson et al., 1986; Salo- 
mone t  al., 1984). The estrogen-induced lysosomal 52-kD 
proteinase is another class of autocrine mitogen which may 
be involved in the production of some of these growth factors 
from their inactive precursors. Plasminogen activator is also 
secreted from MCF7 cells and has been reported to be es- 
trogen stimulated (Butler et al., 1979; Ryan et al., 1984). 
This serine proteinase is also induced by progestins, its 
amount appears to be less than the 52-kD cathepsin D-like 
enzyme and, however, it may act indirectly by activating 
other proteinases such as collagenase (Liotta, 1986). More- 
over, estradiol also induces serine proteinase inhibitors such 
as the ~tl antichymotrypsin (Massot et al., 1985). 

In addition to the classical function of cathepsins in intra- 
cellular protein degradation, it has been proposed that these 
proteinases might play a role in the process of tumor invasion 
(Barrett, 1970; Poole, 1979) by helping cancer cells to mi- 
grate, invade adjacent tissue, and metastasize. Our results 
strongly support this hypothesis. Cloning of the cDNA of 
this proteinase is in progress to determine the structure of the 
protein and its possible function in carcinogenesis. 

Capony et al. Estrogen-induced Lysosomal Proteinase 261 



We thank E. Barri6 and M. Eg6a for typing the manuscript, and C. Rougeot 
for his excellent technical assistance. We are indebted to Dr. Mitrovic for 
providing the labeled proteoglycans, to Prof. J. Demaille and Prof. P. Rous- 
sel and to Drs. A. and M. A. Previero for helpful discussions and facilities, 
and to Dr. B. Pau (SANOFI) for monoclonal antibodies. 

The research was funded by Institut National de la Sant6 et de la Re- 
cherche M6dicale, Centre National de la Recherche Scientifique, Fondntion 
pour la Recherche M~icale, Association pour la Recherche sur le Cancer, 
and Minist~re de la Recherche et de l'Industrie (grant for M. Morisset). 

Received for publication 21 July 1986, and in revised form 3 October 1986. 

References 

Barrett, A. J. 1970. Cathepsin D: purification of isoenzymes from human 
and chicken liver. Biochem. J. 117:601-607. 

Barrett, A. J. 1977. In Proteinases in Mammalian Cells and Tissues. A. L 
Barrett, editor. Elsevier North-Holland Biomedical Press, New York. 209- 
248. 

Bishop, J. M. 1983. Cancer genes come of age. Cell. 32:1018-1020. 
Broquet, P., M. L6on, and M. Louisot. 1982. Substrate specificity of cere- 

bral GDP-Fucose: glycoprotein fucosyl transferase. Eur. J. Biochem. 123:9- 
13. 

Buffer, W. B., W. L. Kirland, and T. L. Jorgensen. 1979. Induction ofplas- 
minogen activator by estrogen in a human breast cancer cell line (MCFT). Bio- 
chem. Biophys. Res. Commun. 90:1328-1334. 

Capony, F., M. Garcia, F. Veith, and H. Rochefort. 1982. Antibodies to 
the estrogen-induced 52 K protein released by human breast cancer cells. Bio- 
chem. Biophys. Res. Commun. 108:8-15. 

Capony, F., M. Garcia, and H. Rochefort. 1986. Purification and frst char- 
acterization of the secreted and cellular 52-kDa proteins regulated by estrogens 
in human breast cancer cells. Ear. J. Biochem. 161:505-512. 

Capony, J. P., and J. G. Demaille. 1983. A rapid microdetermination of 
phosphoserine, phosphothreenine and phosphotyrosine in proteins by automatic 
cation exchange on a conventional amino acid analyzer. Anal. Biochem. 128: 
206-212. 

Carney, D. H., and D. D. Cunningham. 1978. Role of specific cell surface 
receptors in thrombin-stimulated cell division. Cell. 15:1341-1349. 

Cooper, J. A., B. M. Sefton, and T. Hunter. 1983. Detection and quantifica- 
tion of phosphotyrosine in proteins. Methods Enzymol. 99:387-402. 

Creek, K. E., and W. S. Sly. 1984. The role of the phosphomannosyl recep- 
tor in the transport of acid hydrolases to lysosomes. In Lysosomes in Biology 
and Pathology. J. T. Dingle, R. T. Dean, and W. Sly, editors. Elsevier Science 
Publishers B. V., Amsterdam. 63-82. 

Dickson, R. B., K. K. Huff, E. M. Spencer, and M. E. Lippman. 1986. In- 
duction of epidermal growth factor-related polypeptides by 1713 estradiol in 
MCF 7 human breast cancer cells. Endocrinology. 118:138-142. 

Dingle, J. T., A. J. Barrett, and P. D. Weston. 1971. Cathepsin D: charac- 
teristics of immunoinhibition and the confirmation of a role in cartilage break- 
down. Biochem. J. 123:1-13. 

Faust, P. L., S. Kornfels, and J. M. Chirgwin. 1985. Cloning and sequence 
analysis of cDNA for human cathepsin D. Proc. Natl. Acad. Sci. USA. 82: 
4910-4914. 

Gal, S., and M. Gottesman. 1986. The major excreted protein of trans- 
formed fibroblasts is an activable acid-protease. J. Biol. Chem. 261:1760- 
1765. 

Garcia, M., G. Salazar-Retana, G. Richer, J. Domergue, F. Capony, 
H. PUjol, F.Laffargue, B. Pan, and H. Rochefort. 1984. Immunohistochemical 
detection of the estrogen-regulated Mr 52,000 protein in primary breast can- 
cers but not in normal breast and uterus. J. Clin. Endocrinol. Metab. 59:564- 
566. 

Garcia, M., F. Capony, D. Derocq, D. Simon, B. Pan, and H. Rochefort. 
1985. Monoclonal antibodies to the estrogen-regulated Mr 52,000 glycopro- 
tein: characterization and immunodetection in MCF 7 cells. Cancer Res. 45: 
709-716. 

Garcia, M., G. Salazar-Retana, A. Pages, G. Richer, J. Domergue, A. M. 
Pages, G. Cavalie, J. M. Martin, J. L. Lamarque, B. Pau, H. Pujol, and 
H. Rochefort. 1986. Distribution of the Mr 52,000 estrogen-regulated protein 
in benign breast diseases and other tissues by i mmunohismchemistry. Cancer 
Res. 46:3734-3738. 

Gieselmaun, V., A. Hasilik, and K. von Figura. 1985. Processing of human 
eathepsin D in lysosomes in vitro. J. Biol. Chem. 260:3215-3220. 

Graham, M. J., and R. C. Karnovsky. 1966. The early stages of absorption 
of injected horse radish peroxidase in the proximal tubules of mouse kidney: 
ultrastructural cytochemistry by a new technique. J. Histochem. Cytochem. 
14:291-302. 

Hasilik, A., and K. yon Figura. 1981. Oligosaccharides in lysosomal en- 
zymes. Fur. J. Biochem. 121:125-129. 

Hasilik, A., K. yon Figura, E. Conzelmann, H. Nehrkorn, and K. Sandhoff. 
1982. Activation of cathepsin D precursor in vitro and activity of [3-hexos- 
aminidase a precursor towards ganglioside GM2. Fur. J. Biochem. 125:317- 
321. 

Heidin, C. H., and B. Westermark. 1984. Growth factors: mechanism of ac- 

tion and relation to oncogenes. Cell. 37:9-20. 
Hickman, S., and E. F. Neufeld. 1972. A hypothesis for I-cell disease: 

defective hydrolases that do not enter lysosomes. Biochem. Biophys. Res. Corn- 
man. 49:992-999. 

Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly 
of the head of bacteriophage T4. Nature (Lond.). 227:680-685. 

Liotta, L. A. 1986. Tumor invasion and metastases: role of the extracellular 
matrix. Rhoads Memorial Award Lecture. Cancer Res. 46:1-7. 

Lippman, M., G. Bolan, and K. Huff. 1976. The effects of estrogens and 
antiestrogens on hormone responsive human breast cancer in long-term tissue 
culture. Cancer Res. 36:4595-4601. 

Manni, A., C. Wright, P. Fell, L. Baranao, M. Garcia, and H. Rochefort. 
1986. Autocrine stimulation by estradiol of experimental hormone-responsive 
breast cancer growth in culture: interactions with the polyamine pathway. Can- 
cer Res. 46:1594-1598. 

Massot, O., P. P. Baskevitch, F. Capony, M. Garcia, and H. Rochefort. 
1985. Estradiol increases the production of l-antichymotrypsin in MCF 7 and 
T47D human breast cancer cell lines. Mol. Cell. Endocrinol. 42:207-214. 

Matrisian, L., N. Glaichenhans, M. C. Gesnel, and R. Breathnach. 1985. 
Epidermal growth factor and oncogenes induce transcription of the same cellu- 
lar mRNA in rat fibroblasts. EMBO (Fur. Mol. Biol. Organ.) J. 4:1435-1440. 

Mitrovic, D. R., M. Gruson, and A. Rickewaert. 1981. Local hyperthermia 
and cartilage breakdown: histochemical and metabolic studies on rabbit articu- 
lar cartilage in vitro. J. Rheum. 8:193-203. 

Morisset, M., F. Capony, and H. Rochefort. 1986a. Processing and estro- 
gen regulation of the 52 K protein inside MCF 7 breast cancer cells. Endocrinol- 
ogy. In press. 

Morisset, M., F. Capony, and H. Rochefort. 1986b. The 52-kDa estrogen- 
induced protein secreted by MCF 7 cells is a lysosomal acidic protease. Bio- 
chem. Biophys. Res. Comrmm. 138:102-109. 

Poole, A. R. 1979. Tumor lysosomal enzymes and invasive growth. In Lyso- 
somes in Biology and Pathology. J. T. Dingle and H. B. Fell, editors. American 
Elsevier Publishing Co., New York. 304-337. 

Puizdar, V., and V. Turk. 1981. Cathepsinogen D: characterization and acti- 
vation to cathepsin D and inhibitory peptides. FEB$ (Fed. Fur. Biochem. Soc.) 
Lett. 132:299-304. 

Rochefort, H., D. Chalbos, F. Capony, M. Garcia, F. Veith, F. Vignon, 
and B. Westley. 1984. Effect of estrogen in breast cancer cells in culture: 
released proteins and control of cell proliferation. In Hormones and Cancer, 
Prog. Clin. Biol. Res. 142:37-51. 

Rochefort, H., F. Capony, G. Cavali6-Barthez, M. Chambon, M. Garcia, 
O. Massot, M. Morisset, I. TouRou, F. Viguon, and B. Wesffey. 1986. 
Estrogen-regulated proteins and autocrine control of cell growth in breast can- 
cer. In Breast Cancer: Origins, Detection and Treatment. Proceedings of the 
International Breast Cancer Research Conference. M. A. Rich, J. C. Hager, 
and L Taylor-Papadimitriou, editors. Martinus Nijboff Publishing Co., Boston, 
MA. 57-68. 

Ryan, T. L, J. I. Seeger, S. A. Kumar, and H. W. Dickerman. 1984. Es- 
tradiol preferentially enhances extracellular tissue plasminogen activators of 
MCF-7 breast cancer cells. J. Biol. Chem. 259:14324-14327. 

Sahagian, G. G., and M. M. Gottesman. 1982. The predominant secreted 
protein of transformed murine fibroblasts carries the lysosomal marmose-6- 
phosphate recognition marker. J. Biol. Chem. 257:11145-11150. 

Salomon, D. S., J. A. Zwiebel, M. Bano, I. Losonczy, P. Fehnel, and 
W. R. Kidwell. 1984. Presence of transforming growth factors in human breast 
cancer cells. Cancer Res. 44:4069-4077. 

Soule, H. D., J. Vasquez, A. Lang, S. Alberts, and M. A. Brennan. 1973. 
A human cell line from a pleural effusion derived from a breast carcinoma. J. 
Natl. Cancer Inst. 51:1409-1413. 

Sporn, M. B., and G. L Todaro. 1980. Autocrine secretion and malignant 
transformation of cells. N. Engl. J. Med. 303:878-880. 

Tahas, I., and S. Kornfeld. 1980. Biosynthetic intermediates of [3-glucuroni- 
dase containing high mannose oligosaccharides with blocked phosphate 
residues. J. Biol. Chem. 255:6633-6639. 

Tou'itou, L, M. Garcia, B. Westiey, F. Capony, and H. Rochefort. 1985. 
Effect of tunicamycin and endoglycosidase H and F on the estrogen-regulated 
52000-Mr protein secreted by breast cancer cells. Biochimie (Paris). 67:1257- 
1266. 

Trevelyan, W. E., D. P. Practer, and J. S. Harrison. 1950. Detection of sug- 
ars on paper chromatograms. Nature (Lond.). 166:444-445. 

Vignon, F., D. Derocq, M. Chambon, and H. Rochefort. 1983. Les pro- 
t6ines oestrog6no-induites s6cr6t6es par les cellules canc6reuses mammalres hu- 
maines MCF 7 stimulent leur prolif6ration. C. R. Hebd. S~ances Acad. Sci. 
Paris IIl. Ser. 296:151-156. 

Vignon, F., F. Capony, M. Chambon, G. Freiss, M. Garcia, and H. Roche- 
fort. 1986. Autocrine growth stimulation of the MCF7 breast cancer cells by 
the estrogen-regulated 52 K protein. Endocrinology. 118:1537-1545. 

Waterfield, M. D. 1985. Subversion of growth factor signal transduction by 
oncogenes. In Molecular Biology of Tumor Cells. B. Wahren, G. Holm, P. 
Perlmann, and S. Hammarstrom, editors. Raven Press, New York. 71-85. 

Wesffey, B., and H. Rochefort. 1980. A secreted glycoprotein induced by 
estrogen in human breast cancer cell lines. Cell. 20:353-362. 

Wesffey, B., F. E. B. May, A. M. C. Brown, A. Krust, P. Chambon, 
M. E. Lippman, and H. Rochefort. 1984. Effects of antiestrogens on the estro- 
gen regulated pS2 RNA, 52-kDa and 160-kDa proteins in MCF7 cells and two 
tamoxifen resistant sublines. J. Biol. Chem. 259:10030-10035. 

The Journal of Cell Biology, Volume 104, 1987 262 


