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Jingxia Chen* , Chongdan Min, Changhao Wang, Zhezhe Tang, Yang Liu and Xiuwen Hu

School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi’an, China

In electroencephalograph (EEG) emotion recognition research, obtaining high-level
emotional features with more discriminative information has become the key to
improving the classification performance. This study proposes a new end-to-end
emotion recognition method based on brain connectivity (BC) features and domain
adaptive residual convolutional network (short for BC-DA-RCNN), which could effectively
extract the spatial connectivity information related to the emotional state of the human
brain and introduce domain adaptation to achieve accurate emotion recognition within
and across the subject’s EEG signals. The BC information is represented by the
global brain network connectivity matrix. The DA-RCNN is used to extract high-
level emotional features between different dimensions of EEG signals, reduce the
domain offset between different subjects, and strengthen the common features between
different subjects. The experimental results on the large public DEAP data set show
that the accuracy of the subject-dependent and subject-independent binary emotion
classification in valence reaches 95.15 and 88.28%, respectively, which outperforms
all the benchmark methods. The proposed method is proven to have lower complexity,
better generalization ability, and domain robustness that help to lay a solid foundation for
the development of high-performance affective brain-computer interface applications.

Keywords: EEG, brain connectivity, residual convolution, domain adaptative, emotion recognition

INTRODUCTION

Emotion is one of the most significant perceptual factors that affect our personal and social
behavior. Recognizing the user’s emotional state can better enhance the user’s experience in
human-computer interactions. Emotion recognition aims to detect and model human emotions
in the process of human-computer interactions. At present, the signals used to represent human
emotional states include facial expressions, voice signals, and some physiological signals (Calvo
and D’Mello, 2010). An electroencephalograph (EEG) is a kind of effective biological signal which
could reflect a human emotional state with high time resolution. It has obvious advantages such
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as not being easy to disguise, being more objective, and
containing more comprehensive context information (Peng et al.,
2021). At present, EEG-based emotion recognition has become
an important research topic in the field of emotion computing.

Recently, different EEG emotion recognition methods have
been proposed. Peng et al. (2021) proposed a graph regularized
least squares regression with feature importance learning (GFIL)
for joint feature importance learning and emotion recognition.
Mert and Akan (2018) used the time-frequency distribution
of the EEG signal obtained by the multiple synchronous
compression transformation to classify the valence and arousal
emotion. To better identify the potential complex features in
EEG signals, researchers turned their attention to deep learning
models to explore deep emotion-related features. Chen et al.
(2019b) proposed an emotional feature learning and classification
method based on time-frequency feature fusion and a deep
convolutional neural network, whose performance is 3.58 and
3.29% higher than that of the best traditional BT classifier in
valence and arousal, respectively. The author of this article also
proposed a hierarchical two-way gated recurrent unit (GRU)
network (Chen et al., 2019a), which introduces an attention
mechanism in the time point and time segment levels to learn
more discriminative feature expression through highlighting the
contributions of important time points and segments to emotion
prediction. Zheng and Lu (2015) used differential entropy (DE)
features as the input of the deep belief network (DBN) for three-
category emotion recognition. Li et al. (2018) input the 2D
topographic map of DE features in the spatial arrangement of
EEG electrodes into CNN to make positive, neutral, and negative
emotion classifications.

However, in the practical application of brain-computer
interface (BCI), the distribution of EEG data varies greatly among
different individuals and different tasks, so the model trained
on one subject’s or on one task’s EEG data is hardly used
to accurately predict the emotional types of other subjects or
other tasks. Xin et al. (2017) proposed an adaptive subspace
feature matching (ASFM) strategy to make three-type emotion
classification on the SEED data set and achieved average accuracy
and SD of 80.46 and 6.48%. Li R. et al. (2021) proposed a multi-
domain adaptive graph convolutional network (MD-AGCN)
to effectively extract complementary domain information and
channel relationships for EEG-based emotion recognition. Wang
et al. (2020) proposed a cross-subject emotion recognition
method based on a convolutional neural network and depth
domain confusion (DDC) algorithm to reduce the feature
distribution difference between the source domain and the target
domain and obtained an average accuracy of 82.16% and a
standard deviation of 4.43% for the cross-subject experiment
on SEED data set. Li et al. (2022) propose a novel method for
EEG-based emotion recognition, which can learn multiple tasks
simultaneously while exploiting commonalities and differences
across tasks and characterize the intrinsic relationship among
various EEG channels according to their weight learned by the
attention capsule network (CapsNet). Li C. et al. (2021) also
proposed a novel neural architecture search (NAS) framework
based on reinforcement learning (RL) for EEG-based emotion
recognition and the experimental results demonstrated that

their proposed NAS outperforms the state-of-the-art CNN-
based methods.

Recently, research (Costa et al., 2006; Lee and Hsieh,
2014) on brain science confirmed that there is unique gain
information related to brain cognition between different brain
regions, including emotional tendencies. Murias et al. (2007)
found that there is a strong EEG connection among patients
with autism spectrum disorder at rest. Whitton et al. (2018)
believe that the increase in high frequency bands based on
the functional connection of EEG signals may be a neural
model for the recurrence of major depression. Toll et al. (2020)
identified brain regions whose frequency-specific, orthogonalized
resting-state EEG power envelope connectivity differs between
combat veterans with posttraumatic stress disorder (PTSD) and
healthy combat-exposed veterans, and determined the behavioral
correlates of connectomic differences. Zhang et al. (2021)
reported the identification of two clinically relevant subtypes of
PTSD and major depressive disorder (MDD) based on robust and
distinct brain functional connectivity patterns from high-density
resting-state EEG. Yi et al. (2021) constructed the EEG large-
scale cortical dynamical functional network connectivity (dFNC)
based on a brain atlas to probe the subtle dynamic activities in
the brain and developed a novel wavelet coherence-S estimator
(WTCS) method to assess the dynamic couplings among
functional subnetworks with different spatial dimensions and
demonstrated the robustness and availability of dFNC through
a simulation study. Therefore, it is of great significance to explore
the features of functional brain networks based on EEG signals.
Wu et al. (2019) developed a key sub-network method that uses
topological features to identify emotional states based on EEG
signals. Zhong et al. (2020) proposed a regularized graph neural
network that uses frequency domain information from EEG
data and pre-calculated frequency features from EEG signals to
study the relationship between channels for emotion recognition.
Mauss and Robinson (2009) proposed that emotional processes
should be considered to involve spatial distribution features,
rather than limited to isolated specific brain regions. Although
the research on EEG-based emotion recognition has made great
progress, it is still difficult to obtain emotion-related brain
network features from the original EEG signal because the EEG
signal itself is relatively weak and easily interfered with by noise.
An increasing number of deep learning methods are applied to
emotion recognition. With the continuous improvement of the
depth and complexity of the model, there are higher requirements
for the computing power of the servers. These problems such as
high model complexity, gradient explosion, overfitting, and so
on, under the premise of ensuring high prediction performance,
need to be solved urgently.

To this end, this study proposes an end-to-end emotion
recognition method based on brain connectivity (BC) features
and domain adaptation residual convolution (BC-DA-RCNN).
At first, we rearrange the order of all electrodes according to
specific brain network standards and use three connectivity
measurement algorithms to calculate the connectivity value
between each channel, in which the electrode position is taken
as the node, and the connectivity value is taken as the weight
between the nodes to construct the feature matrix for integrating
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FIGURE 1 | EEG signal acquisition and connectivity feature representation.

global brain network information. Then, we build a residual
convolution model and introduce the domain discriminant loss
to constrain the invariant feature space, reduce data differences
between subjects and learn the consistent and deep features cross
subjects. At last, we carry out a lot of comparative experiments
on the DEAP data set to verify the effectiveness of the proposed
method. The rest of this article is arranged as follows: In section
“Materials and Methods,” we describe the overall framework of
the proposed method in detail. In section “Experiments and
Results,” we make experimental verification, display, and analyze
the experimental results. In section “Discussion,” we discuss and
analyze the key innovations and limitations of the proposed
method. Finally, the conclusion is presented.

MATERIALS AND METHODS

Construction of Connectivity Feature
Matrix
Electroencephalograph-based emotional brain-computer
interface systems usually use portable and wearable multi-
channel electrode caps to collect signals. When the subject
watched the stimulation video, the sensor on the electrode
cap can capture the fluctuation of the subjects’ brain scalp
current. The overall process of EEG signal acquisition and
feature conversion is shown in Figure 1, which shows the
electrode position distribution on a commonly used BCI
electrode cap. The number and distribution of the electrodes
or channels in different BCI systems are also different. The
sensor readings obtained by the EEG acquisition system
represent the time series of EEG signals at a certain sampling
frequency. Usually, the EEG sequences collected are expressed
as Sn = {s1

n, s2
n, ..., sT

n }
N×fs , where T represents the length

of the time series (the length of window), n represents the
electrode no., N represents the total number of electrodes,
and fs represents the sampling frequency, st

n represents the
reading value of the nth electrode at time point t. Based on the
EEG sequences of all adjacent channels, different connectivity
measurement algorithms are used to calculate the connectivity
characteristic value between channels, thereby constructing an
EEG connectivity feature matrix.

Four methods including Pearson correlation coefficient (PCC)
(Benesty et al., 2009), phase lock value (PLV) (Lachaux et al.,
1999), transfer entropy (TE) (Schreiber, 2000), and wavelet
coherence coefficient (WCC) (Grinsted et al., 2004) are selected
to calculate the connectivity feature of the original EEG signals
between different electrodes in the cerebral cortex, therefore four
types of connectivity feature matrices in time series dimension
are constructed, respectively. The connectivity features of all
electrode pairs are represented as a matrix, where element C (i,
j) represents the connectivity between the EEG signals obtained
from the i-th and j-th electrodes, as shown in the matrix on the
right side of Figure 1. This connectivity matrix is equivalent to an
adjacency matrix to a graph, where EEG electrodes are considered
nodes and connectivity values are considered edge weights. The
arrangement and driving mode of electrodes in the connectivity
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FIGURE 2 | Brain data-driven approach.
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matrix is very important for the evaluation of brain network
connectivity. EEG data extracted from different brain regions
contain a lot of spatial information. Thus, it is very important
to use the relationship between the electrodes to obtain the
emotion-related connectivity gain information. Literature (van
den Broek et al., 1998) found that the electrode position when
extracting EEG is determined according to the conductance effect
of the human body, and the EEG obtained from adjacent brain
regions tends to be similar.

In order to construct a smoothly connected matrix
carrying spatial information, we rearrange the order of
electrodes based on their distance. Specifically, starting
from the electrode in the left frontal area, the one closest to
the current electrode is selected as the next electrode. The
rearranged result of the 32 electrodes in the DEAP data set is
Fp1→AF3→F3→F7→FC5→T7→CP5→P7→P3→PO3→O1
→OZ→O2→PO4→P4→P8→CP6→T8→FC6→F8→F4→
AF4→Fp2→Fz→FC1→C3→CP1→Pz→CP2→C4→FC2→
Cz, as shown in Figure 2. Then, the following four connectivity
measurement algorithms are used to calculate the connectivity
value between adjacent channels of the rearranged EEG
electrodes sequence:

Pearson Correlation Coefficient
The Pearson correlation coefficient can express the linear
relationship between two signals as a continuous number from
−1 to 1, where −1 and 1, respectively, indicate a perfect
positive and negative linear relationship, and 0 indicates that two
signals are uncorrelated. The closer the correlation coefficient
is to 1 or −1, the stronger the correlation is. The closer the
correlation coefficient is to 0, the weaker the correlation is. Let
Si = {s1

i , s2
i , ..., sT

i } denote the EEG sequence of the i-th electrode,
where T denotes the time length of the signal. The value of the
PCC feature matrix for EEG between the i-th and j-th channel is
calculated as follows:

PCC(i, j) =
1
T
∑T

t=1(s
t
i − µi)(st

j − µj)

σi • σj
(1)

where, µi andσi represent the mean and variance of the EEG
sequence on the i-th channel, µj and σj represent the mean
and variance of the EEG sequence on the j-th channel, st

i and
st
j , respectively, represent the EEG readings on the i-th and j-th

channels at time t, and6 stands for the cumulative sum.

Phase Locking Value
Phase locking value is a statistic value used to estimate the
instantaneous phase relationship between EEG of different
electrodes and study the synchronous changes of task-induced
brain neural activity. First, the 4–45 hz bandpass filtering is
applied to the original EEG signals. The instantaneous phase
value of the EEG sequence on each electrode is calculated by
Hilbert transform, and then the PLV feature matrix is calculated
by averaging their absolute phase difference as follows:

PLV(i, j) =
1
T

∣∣∣∣∣
T∑

t=1

exp{u(ϕt
i − ϕ

t
j )}

∣∣∣∣∣ (2)

where T represents the time sequence length of the signal,
φt represents the instantaneous phase value of each electrode
at time t calculated by Hilbert transform, φt

i − φ
t
j represents

the phase difference of the i-th and j-th electrode at time t,
exp{u(ϕt

i − ϕ
t
j ) means to obtain the complex signal by Euler

formula on the phase difference, and then the amplitudes of these
complex signals at all-time points in an EEG sample window
are accumulated and averaged as the value of PLV(i, j) which is
between 0 to 1. The value of 1 means the two electrodes’ signals
are completely synchronized, and 0 means the two electrodes’
signals are completely independent. The closer to 1 the PLV is, the
smaller the phase difference. The closer to 0 the PLV is, the greater
the phase difference. PLV can better estimate brain functional
connectivity. If the PLV value on some electrodes rises or falls
together, the synchrony among these electrodes is enhanced;
otherwise, the synchrony among these electrodes decreases.

Transfer Entropy
The transfer entropy well describes the information flow between
two directional signals xi and xj . TE(i→ j) is a special
conditional mutual information, which takes st

j as the conditional
variable and then calculates the mutual information between st+1

j
and st

i with the following formula:

TE(i→ j) =
1

T− 1

T−1∑
t=1

P(st
i, st

j, st+1
j ) · log

P(st+1
j |s

t
i, st

j)

P(st+1
j |s

t
j)

(3)

It also represents the dependence degree of the j-th channel’s
EEG on the i-th channel’s EEG and the dynamic information
shared between channel i and channel j.

Wavelet Coherence Coefficient
The wavelet coherence coefficient calculates the time-frequency
coherence between two signals based on the wavelet transform,
which can highlight the similarity of the local features. As
EEG is a kind of non-stationary random signal, we use the
wavelet coherence method to study the localized correlation
in the time and frequency domain between EEG electrodes
corresponding to different emotional states and reflect the
time and frequency correlation intensity between electrodes
in different brain regions. The wavelet coherence coefficient
between different EEG electrodes is defined as:

WCC =

∣∣∣X(C∗i (a, b)C
∗

j (a, b))
∣∣∣2

X(
∣∣Ci(a, b)

∣∣2) · X(∣∣Cj(a, b)
∣∣2) (4)

Here, Ci(a, b) and Cj(a, b) represent the wavelet coefficients
of the continuous wavelet transform of two EEG signals on the
j-th electrode and the i-th electrode at the scale factor a and the
translation factor b, respectively, the superscript ∗ represents the
complex conjugate, and X represents the smoothing operator of
wavelet coefficients in time and scale. The WCC feature matrix
is obtained by averaging the WCC matrices at all-time points
of an EEG sample.

The above four connectivity measurement algorithms are
used to calculate four types of BC feature matrices of each
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EEG sample as the matrix on the right side of Figure 1.
These connectivity feature representations not only contain the
inherent timing and spatial information of the original EEG data
but also reflect the connectivity characteristics between different
electrodes, which include more emotional spatial-temporal gain
information and become the key to improving the performance
of emotion recognition.

Residual Convolutional Neural Network
and Optimization
Deep neural networks have achieved a series of breakthroughs
in image recognition. With the introduction of more complex
neural networks, two important problems need to be solved: one
is the increase in model complexity requires a large amount of
computing power, and the other is the network performance
degradation caused by hierarchical stacking and increased depth.
We apply the residual structure in ResNet (He et al., 2016) to solve
the problem of deep model performance degradation without

increasing the complexity of the model and to make the network
easier to optimize.

Residual Learning Module
Inspired by ResNet, we introduce a residual learning module to
optimize the convolutional neural network. Through the jump
connection in residual learning, the gradient is transmitted to
the lower layer, and the deeper features can be obtained in
a relatively simple model. Therefore, we propose to use the
residual convolutional neural network (RCNN) to replace the
complex models to achieve better prediction results. The shortcut
connection is the most prominent feature of ResNet. It only
needs to perform identity mapping, without increasing additional
parameters and computational complexity. The entire RCNN
network is still trained end-to-end with a stochastic gradient
descent (SGD) algorithm with back propagation. Specifically,
the required underlying mapping is expressed as H(x), where x
represents the input of the first layer. If multiple nonlinear layers
can approach a complex function asymptotically, so does the
residual function, and the input and output dimensions in H(x)-
x operation are the same. Let R(x) represent this approximate
function as R(x): = H(x)-x. The original mapping H(x) is recast as
R(x)+x, which can be realized by a feed forward neural network
with shortcut connections, shown in Figure 3.

Residual Convolutional Neural Network
The overall structure of the RCNN is shown in Figure 4.

The input in Figure 4 is three types of connectivity
feature matrices calculated by the above methods. In the first
convolutional layer, different sizes of filters (3 × 3 and 5 × 5)
are used to scan the input connectivity feature matrix to extract
the spatial features of the EEG data. The learned features are
then entered into the residual convolution module, in which a
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number of residual blocks and the kernel size will be discussed
and analyzed later. After several residual blocks, the output is
flattened and sent to a fully connected layer with a sigmoid
activation function. Finally, the final feature vector is input to a
SoftMax layer for emotion category prediction, and the output is
the accuracy of emotion recognition.

Figure 4A shows that the residual convolutional neural
network is composed of several residual layers, and the structure
of each residual block is shown in Figure 4B. The shortcut
connection is represented as a straight line in Figure 4B, and each
residual mapping can be expressed as:

y = F(x, {Wi})+ x (5)

where x and y represent the input and output of the residual
block, respectively, the function F =W2σ(W1 · x) represents the
residual mapping to be learned, σ is the ReLu activation function,
and W1 and W2 represent two weight layers in the residual
structure which has only two weight stack layers as shown in
Figure 3. Here, F + x indicates that the residual structure is
realized through shortcut connection and element-wise addition.
Figure 4B shows that each residual block is composed of two
layers of nonlinear transformations with a batch normalization
(BN) layer and activation layer, respectively, to solve the inherent
problem of performance degradation of the deep learning model.

In the residual convolution module, three different sizes of
kernels (3 × 3, 5 × 5, 7 × 7) and 4 different numbers of
residual blocks (r = 1, r = 3, r = 5, r = 7) are, respectively,
used to construct the RCNN models to evaluate the impact
of the kernel size and the number of residual blocks on the
classification performance of the model. Dropout with a rate of
0.2 is used after the fully connected layer to avoid the model
overfitting. The stochastic gradient descent method based on
the Adam update rule is used to minimize the cross-entropy
loss of the model. The learning rate is initialized to 0.0001. The
proposed RCNN neural networks are all implemented with the
TensorFlow framework and trained from scratch based on the
NVIDIA Titan X Pascal GPU in a fully supervised manner. The
detailed hyper parameters of the proposed RCNN model are
shown in Table 4.

Let the number of EEG feature Si(i = 1, ...,M) used for model
training is M, and the total number of label categories is C, the loss
function of the classifier is denoted by Ly, whose formula is:

Ly(Si; θf , θy) =

M∑
i=1

C∑
y=1

−φ(li, y)× log P(y|Si) (6)

where θf and θy represent the parameters of the feature extractor
and the label predictor, respectively. li represents the true label of
the sample Si , and φ(li, y) is expressed as,

ϕ
(
li, y

)
=

{
1, if li = y,
0, otherwise

(7)

By minimizing the loss function Ly(Si; θf , θy), the emotion
category of each training EEG sample can be predicted accurately
to the maximum extent. Let Stest denote the test set, and ltest

denote the probability of predicted labels on the test set which
can be calculated as the following formula:

ltest = arg max
c
{P(c|Stest)|c = 1, ...,C} (8)

Optimization of Residual Convolutional Neural
Network Model
When making EEG-based emotion recognition, it should be
noted that the EEG samples for training and testing may come
from different subjects or from different trails of the same subject,
which leads to poor adaptability and robustness of the model. To
solve this problem, we introduce a domain discriminator in the
RCNN model, which works jointly with the feature extractor and
the classifier to learn more emotionally discriminative domain
invariant features. This optimized domain adaption RCNN
model (DA-RCNN) is shown in Figure 5, which demonstrates the
domain adaptive optimization process of the whole model.

Specifically, assuming two EEG datasets DS
= {SS

1, ..., SS
M1
}

and DT
= {ST

1 , ..., ST
M2
} are obtained from the source domain

(training set) and the target domain (test set), where M1 and
M2 represent the number of samples in the source dataset and
target dataset, respectively. To alleviate the domain difference, the
discriminator loss function is defined as,

Ld(SS
i , ST

j ; θf , θd) = −

M1∑
i=1

log P(0|SS
i )−

M2∑
j=1

log P(1|ST
j ) (9)

Where P(0|SS
i ) represents the probability that the sample SS

i
belongs to the source domain, P(1|ST

j ) represents the probability
that the sample ST

j belongs to the target domain, and θd represents
the parameters of the domain discriminator. By maximizing the
loss function, the feature learning process will gradually generate
the domain invariant features between the training set and the
test set in emotion recognition.

As known, by minimizing the loss function (6) of the classifier,
the emotion category can be predicted on the test set with the
model trained on the training set. Through maximizing the
loss function (9) of the discriminator, better domain invariance
features can be learned so that the model has better adaptability
and robustness. Therefore, we define the loss function of the
whole DA-RCNN model as,

L(SS, ST
|θf , θc, θd) = Ly(SS

; θf , θy)− Ld(SS, ST
; θf , θd) (10)

Our goal is to find the best parameters that minimize
formula (10) by minimizing Ly(SS

; θf ; θy) and maximizing
Ld(SS, ST

; θf , θd) through synchronous iterations. To use a
stochastic gradient descent algorithm to find the optimal model
parameters, we introduce a gradient reverse layer (GRL) to
make the discriminator convert the maximization problem into a
minimization problem. The GRL performs consistent conversion
during the forward propagation process but performs gradient
sign inversion during the back propagation process. At this point,
the parameter updating process can be expressed as (Where α

represents the learning rate),

θd ← θd − α
∂Ld

∂θd
, θf ← θf + α

∂Ld

∂θf
(11)
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EXPERIMENTS AND RESULTS

In this part, we will make subject-dependent and subject-
independent emotion recognition experiments with the proposed
model on the DEAP dataset and show the experimental
results. The classification accuracy is used to evaluate the
performance of the models. Through making a lot of comparative
experiments, we systematically analyze and discuss the impact
of different components of the proposed model on the overall
recognition performance.

Dataset
The DEAP dataset (Koelstra et al., 2012) is currently the most
widely used large-scale public sentiment analysis database of
physiological signals. It records the physiological signals of
EEG, EOG, EMG, and other physiological signals induced by
32 subjects watching 40 music videos with different emotional
tendencies for about 1 min. Each subject evaluated the arousal,
valence, preference, dominance, and familiarity of each video
using a continuous numerical value of 1–9. We take 32-channel
EEG recordings of each subject for 63 s collected by the Bio-
Semi system from the DEAP data set as the research data. The
electrodes of 32-channel EEG data are positioned according to
the 10–20 system (Oostenveld and Praamstra, 2001), and the EEG
recordings are down sampled to 128 Hz. To eliminate DC noise
and other artifacts, a 4∼45 Hz band-pass filter is used for data
filtering, and the blind source separation technology is then used
to remove the electrooculogram interference.

Data Preprocessing and Feature
Extraction
In the DEAP data set, the original EEG signal is represented as
32(subs) × 40(trials) × 32(channel) × 8,064(samples), where
8064 = 128(time points/s) × 63(s), and the label is represented
as 40(trials) × 4. Due to the human visual response delay,
we take the EEG signals of the first 3 s as the benchmark,
and the subsequent 60 s of the EEG signals are used as
experimental data. Thus, the preprocessed data is formatted as
32(subs) × 40(trials) × 32(channels) × 7680(points). The first
two dimensions of valence and arousal evaluation values are used
to generate the emotional labels, whose size is 40(trials)× 2.

In the process of data preprocessing, we use the window length
of 1, 2, and 3 s to segment the EEG sequence and make the
experiment, and the experimental results have found that the
performance is better when the window length is 3 s. In order
to obtain more samples and complete BC information, we set
the window moving step as 0.5 s, that is, using the overlap
of 2.5 s to segment the EEG sequence across all 32 channels.
As a result, we get 115 segments and each segment contains
384 time points. Therefore, the EEG data of each subject is
formatted as 40 × 32 × 384 × 115. Then, the data format is
converted to 32 × 384 × 4,600, which means that each subject
contains 4,600 samples in the subject-dependent experiment. In
a subject-independent experiment, the total number of samples
is 1,47,200 (4600 × 32 subjects), and the size of each sample
is 32(channels) × 384(time points) × 1,47,200. Next, the labels
of EEG data are obtained based on the subjects’ emotional
evaluation values in the range of 1–9 in valence and arousal
dimensions. The median value of 5 is used as the threshold
to divide the evaluation values into two categories. The values
greater than 5 represent the high valence or arousal category and
are labeled by 1. The values less than or equal to 5 represent the
low valence or arousal category and are labeled by 0. Because the
number of trials corresponding to different labels is basically the
same, there is no need to perform sample balancing.

Then, the PSD feature of each EEG sample is extracted, based
on which the global brain network connectivity feature matrix
is constructed with four algorithms of PCC, PLV, TE, and WCC,
respectively. This process converts two-dimensional PSD features
into the connectivity feature matrix carrying spatiotemporal
features, and the feature size of each sample is converted from
32 × 384 to 32 × 32. In the process of feature extraction and
conversion, the label size is changed synchronously with the
number of samples. Table 1 demonstrates the EEG data and labels
the shape of different features in two scenarios.

Benchmark Models
To verify the effectiveness and advantages of the proposed model,
we apply 2 classical machine learning algorithms [BT (Chuang
et al., 2012) and SVM (Suykens and Vandewalle, 1999)] and
4 deep neural networks [LSTM (Alhagry et al., 2017), DBN
(Zheng and Lu, 2015), CNN (Chen et al., 2019b), BiLSTM]
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TABLE 1 | EEG data and label format.

Scenarios Feature type Window length EEG data shape Label shape

Subject-dependent PSD 3-s 32(channel) × 384(points) × 4600(epochs) 1 × 4,600

PLV/PCC/TE/WCC 3-s 32(channel) × 32(channel) × 4600(epochs) 1 × 4,600

Subject-independent PSD 3-s 32(channel) × 384(points) × 147200(epochs) 1 × 147,200

PLV/PCC/TE/WCC 3-s 32(channel) × 32(channel) × 147200(epochs) 1 × 147,200

TABLE 2 | Hyper parameters of the benchmark models on PLV feature.

Benchmark models Input data size Implementation details

SVM [32 × 32, sample_size] kernel = “rbf”, gamma = 8, c = 0.05

BT [32 × 32, sample_size] Method = bag, nLearn: 100, weak learner: Tree, Type: classification

CNN [batch_size, feature_size]: [60, 32 × 32] Hidden_layers = 2, hidden_size = 64, batch_size = 60, learning_rate = 0.005, dropout = 0.2,
epochs = 120

LSTM [batch_size, seq_len, channels]: [80, 32, 32] Hidden_layers = 2, hidden_size = 64, batch_size = 120, learning_rate = 0.004, dropout = 0.2,
epochs = 80, num_directions = 2

DBN [batch_size, feature_size]: [60, 32 × 32] Hidden_layers = 3, hidden_size = 64, batch_size = 60, learning_rate = 0.004, dropout = 0.2,
epochs = 140

BiLSTM [batch_size, seq_len, channels]: [60, 32, 32] Hidden_layers = 2, hidden_size = 64, learning_rate = 0.008, dropout = 0.2, num_directions = 2,
epochs = 200

as benchmark models. The subject-dependent and subject-
independent emotion recognition experiments are carried out on
the same DEAP data set. The best connectivity matrix feature
and the most widely used PSD feature are selected as the input of
the benchmark models to explore the advantages of the proposed
feature and model. We separately fine-tune the parameters of
different benchmark models to ensure they all work out their
best performance to make a fair comparison. Table 2 shows the
fine-tuned hyperparameters of each given benchmark model.

Experimental Results and Analysis
In the experiment, we verify the accuracy of the proposed method
in two-class emotion recognition in terms of valence and arousal
in both subject-dependent and subject-independent scenarios.
In the subject-dependent scenarios, both the training data and
the test data come from the different trials of the same subject.
That is, 4 (about 10%) trials that were randomly selected from
the EEG data of the same subject each time are used as the
test set, and the samples of the remaining 36 trials are used as
the training set. In this way, a 10-fold cross-validation set is
constructed for each subject. The average of the accuracy on the
10 test sets is taken as the recognition accuracy of each subject.
In the subject-independent scenario, we adopt the Leave-one-
subject-out (LOSO) cross-validation strategy to extract the EEG
data of one subject as the test set in each fold, and the rest of the
subjects’ EEG data is used as the training set. The classification
accuracy of 32 subjects in the two scenarios was averaged as the
final recognition result.

Experimental Results of the Proposed Method
This article uses the TensorFlow framework to train the
model from scratch in a fully supervised manner based on
NVIDIA Titan X Pascal GPUs. The choice of hyperparameters
is very important for deep learning models, as a good set of
hyperparameters can improve the prediction performance of

deep models. In order to obtain the optimal hyperparameters
of the proposed model, four different residual blocks (r = 1,
r = 3, r = 5, r = 7) and 2 residual convolution kernels of
different sizes (3 × 3, 5 × 5) are, respectively, used to build the
RCNN model to evaluate the effect of the number of residual
blocks and the size of the residual kernel on the performance.
For the convenience of comparison, the DA-RCNN model was
used to conduct subject-dependent binary valence and arousal
classification experiments on the PLV connectivity features.
Table 3 lists the classification results of the DA-RCNN model
configured with different hyperparameters, where Sp means
specificity, Sn means sensitivity, and Acc means accuracy. When
the residual block is 3 and the kernel size is 5 × 5, it has the
highest sensitivity and accuracy compared with other settings,
that is 98.42 and 95.15% in valence, and 98.90 and 94.84% in the
arousal, respectively. In this case, the classification performance

TABLE 3 | The classification results of the DA-RCNN model configured with
different hyperparameters.

Blocks Kernels_size Arousal (%) Valence (%)

Sp Sn Acc Sp Sn Acc

1 3 × 3 69.54 80.70 75.12 72.42 79.10 75.76

5 × 5 72.57 85.19 78.88 72.59 85.27 78.93

2 3 × 3 82.9 90.30 86.60 83.62 89.16 86.39

5 × 5 80.36 93.70 87.03 81.07 93.25 87.16

3 3 × 3 88.24 97.66 92.95 89.12 97.38 93.25

5 × 5 90.78 98.90 94.84 91.88 98.42 95.15

4 3 × 3 86.82 91.20 89.01 85.51 90.57 88.04

5 × 5 85.53 90.55 88.04 85.65 91.81 88.73

5 3 × 3 82.88 88.47 85.73 82.78 89.06 85.92

5 × 5 81.98 89.00 85.49 83.70 87.62 85.66

Bold values represent the best comparative results.
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TABLE 4 | The hyper parameters of the proposed BC-DA-RCNN model.

Layer type Size Stride Output shape

1 Input 32 × 32 – None

2 Convolution layer 32 filters size of (3 × 3
or 5 × 5 or 7 × 7)

1 32 × 32 × 32

3 Residual block 1 32 filters size of (3 × 3
or 5 × 5 or 7 × 7)

1 32 × 32 × 32

4 Residual block 2 64 filters size of (3 × 3
or 5 × 5 or 7 × 7)

1 32 × 32 × 64

5 Residual block 3 128 filters size of (3 × 3
or 5 × 5 or 7 × 7)

1 32 × 32 × 128

6 Dense layer 1 1,024 units with
dropout rate: 0.2

– 1024

7 Dense layer 2 512 units with dropout
rate: 0.2

– 512

8 SoftMax – – 4 or 2

TABLE 5 | Overall performance of the proposed DA-RCNN model on
different features.

Models Features Subject-dependent Subject-independent

Valence
acc (%)

Arousal
acc (%)

Valence
acc (%)

Arousal
acc (%)

DA-RCNN w = 3 × 3 PSD 87.12 86.90 79.20 78.40

w = 5 × 5 87.92 87.65 80.46 79.50

w = 7 × 7 85.40 84.10 78.50 78.95

w = 3 × 3 PCC 89.06 89.14 84.09 83.51

w = 5 × 5 92.37 92.05 85.42 84.05

w = 7 × 7 90.50 89.42 82.17 81.36

w = 3 × 3 PLV 93.25 92.95 86.05 85.15

w = 5 × 5 95.15 94.84 88.28 87.60

w = 7 × 7 92.37 92.05 85.73 84.98

w = 3 × 3 TE 88.14 88.73 80.08 80.14

w = 5 × 5 89.06 89.73 81.50 81.39

w = 7 × 7 87.17 87.82 79.44 79.47

w = 3 × 3 WCC 88.09 89.32 81.18 81.09

w = 5 × 5 89.40 89.90 83.74 82.20

w = 7 × 7 89.72 87.61 82.33 80.82

Bold values represent the best comparative results.

of the model is optimal. It is further found that with the increase
in the number of residual blocks, the overall performance of
the model is increasing. When the number of residual blocks is
3, the overall performance of the model reaches the optimum.
However, with the increase of the number of residual blocks, the
classification performance decreases, which may be because the
binary emotion classification task is relatively simple. If complex
classification problems are faced or the classification types reach
hundreds or even thousands, the classification performance may
be improved with the increase in residual blocks.

Therefore, the DA-RCNN model with 3 residual blocks and
different sizes of residual kernels (3 × 3, 5 × 5, 7 × 7) is,
respectively, used to make emotion classification experiments on
the five features of PSD, PCC, PLV, TE, and WCC to verify the
effectiveness and superiority of the brain network connectivity

features. The input, output, data format, and optimal hyper
parameters of each layer of the model are shown in Table 4.

The experimental results are shown in Table 5. As seen
in Table 5, in the subject-dependent scenario, the DA-RCNN
model with the residual kernel size of 5 × 5 gets the best
valence and arousal binary emotion classification accuracy of
95.15 and 94.84% on the PLV feature, which is 2.78 and 2.79%
higher than the accuracy on the suboptimal PCC feature, is
5.75 and 4.94% higher than that on the WCC feature and
is 7.23 and 7.19% higher than the accuracy on the common
PSD feature, respectively. In the subject-independent scenario,
the DA-RCNN model with a residual kernel size of 5 × 5
also gets the best valence and arousal emotion classification
accuracy of 88.28 and 87.66% on the PLV feature, which is 2.86
and 3.55% higher than that on the suboptimal PCC feature, is
4.54 and 5.1% higher than that on the WCC feature, and is
7.82 and 8.1% higher than that on the common PSD feature,
respectively. In conclusion, the classification performance of the
DA-RCNN model on the PLV connectivity feature is higher
than that on the PCC, TE, and WCC features, respectively. It
proves that the PLV connectivity feature can better estimate
the instantaneous phase-locked relationship between different
channels of EEG, and the spatial arrangement and phase
information of EEG electrodes help better predict the emotional
tone and achieve better emotion recognition accuracy. Moreover,
the classification performance on the three connectivity features
is all better than that of the common PSD feature, and this
advantage is more obvious in the subject-independent scenario,
which shows that when recognizing EEG signals with domain
heterogeneity, the PSD feature processed by the brain network
connectivity algorithms is more discriminative than the common
PSD feature. It also verifies the effectiveness of the proposed
domain adaptive residual convolutional network on BC features
for emotion classification.

It is also found that the model with the residual kernel of
5 × 5 performs better than the model with the kernel of 3 × 3.
For example, in a subject-independent scenario, the classification
performance is increased by 2.23 and 2.45% in valence and
arousal, respectively. It shows that convolution on a relatively
large area can capture more emotion-related information, but
the residual kernel of 7 × 7 does not further improve the
performance of the model, which is probably due to the increase
of model parameters and excessive smoothing caused by the
larger convolution kernel.

Comparison With Benchmark Methods
To show the superiority of the proposed method, the six
benchmark methods described in section “Benchmark Models”
are used for comparative experiments. The above experimental
results have shown that the DA-RCNN model with a residual
kernel of 5 × 5 performs better on the PLV feature. Therefore,
the standard PSD feature and the PLV connectivity feature
are selected as the input of various models for comparison.
Furthermore, we make paired t-tests against all the comparative
models to evaluate their statistical differences in emotion
classification performance on the same type of EEG features.
For all paired t-tests, p-value correction was performed for
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multiple hypothesis tests using the Bonferroni criterion and
implementation method to limit the error rate (FDR). p-values
represent corrected results of paired t-tests. p < 0.05 indicates
the difference is significant. The experimental and statistical test
results are shown in Table 6.

From the results of the subject-dependent experiment, in
the valence dimension, the classification performance of BT,
SVM, DBN, LSTM, CNN, BiLSTM, and DA-RCNN models
on the PLV feature is 1.48, 0.87, 1.62, 3.05, 4.57, 5.59, and
6.49% higher than that on standard PSD feature, respectively.
In the arousal dimension, the classification performance of BT,
SVM, DBN, LSTM, CNN, BiLSTM, and DA-RCNN models
on PLV feature is 2.32, 1.25, 1.46, 3.95, 3.25, 6.08, and 7.19%
higher than that on standard PSD features, respectively. It
shows that the proposed PLV connectivity feature accurately
carries more emotion-related information than the standard PSD
feature, and the spatial connectivity information of the brain
network is more effective for emotion recognition. Compared
with the benchmark models, in valence dimension, the proposed
DA-RCNN model outperforms the suboptimal deep learning
BiLSTM model by 2.8 and 4.44% on PSD and PLV features,
respectively, outperforms the better shallow SVM model by 8.42
and 14.53% on PSD and PLV features, respectively, and the

TABLE 6 | The emotion classification accuracy (%) comparison of
various methods.

Models Features Subject-dependent Subject-independent

Valence
acc

(p-value)

Arousal
acc

(p-value)

Valence
acc

(p-value)

Arousal
acc

(p-value)

BT PSD 78.65
(0.0061)

78.18
(0.0059)

70.67
(0.0052)

71.33
(0.0048)

PLV 80.13
(0.0027)

80.50
(0.0031)

73.98
(0.0040)

73.06
(0.0043)

SVM PSD 79.75
(0.0043)

78.90
(0.0040)

70.92
(0.0015)

71.20
(0.0016)

PLV 80.62
(0.0014)

80.15
(0.0021)

75.14
(0.0020)

74.90
(0.0029)

DBN PSD 81.50
(0.0006)

81.30
(0.0011)

75.37
(0.0049)

75.45
(0.0052)

PLV 83.12
(0.0007)

82.76
(0.0008)

77.10
(0.0050)

77.67
(0.0032)

LSTM PSD 82.61
(0.0033)

81.95
(0.0041)

76.80
(0.0014)

77.14
(0.0010)

PLV 85.66
(0.0009)

85.90
(0.0013)

80.85
(0.0010)

80.25
(0.0003)

CNN PSD 83.03
(0.0043)

83.25
(0.0039)

78.83
(0.0032)

78.95
(0.0039)

PLV 87.60
(0.0058)

86.50
(0.0062)

81.10
(0.0060)

80.60
(0.0049)

BILSTM PSD 85.12
(0.0010)

84.19
(0.0012)

79.75
(0.0073)

80.12
(0.0065)

PLV 90.71
(0.0006)

90.27
(0.0007)

83.89
(0.0045)

82.75
(0.0050)

DA-RCNN
(w = 5 × 5)

PSD 88.66 87.65 82.95 79.50

PLV 95.15 94.84 88.28 87.60

Bold values represent the best comparative results.

differences are all significant, indicating that the deep learning
model has stronger feature learning ability than the shallow
model, and the proposed model can more accurately extract
the emotion-related high-level information from EEG, especially
from the brain network connectivity features than the other
comparative models. Moreover, the classification accuracy of the
proposed DA-RCNN model on the PLV feature is 12.03, 9.49,
7.55, and 4.44%, respectively, higher than that of the DBN,
LSTM, CNN, and BiLSTM models in valence and is, respectively,
12.08, 8.94, 8.34, and 4.57% higher than that of the DBN, LSTM,
CNN, and BiLSTM models in arousal, and the differences are
all significant, which verifies the effectiveness and superiority of
the proposed model.

From the results of the subject-independent experiment, we
can show that the classification accuracy of the proposed DA-
RCNN model on the PLV feature is, respectively, 11.18, 7.43, 7.18,
and 4.39% higher than that of DBN, LSTM, CNN, and BiLSTM
models in valence and is, respectively, 9.93, 7.35, 7, and 4.85%
higher in arousal, and the differences are all significant, which
further verifies the effectiveness and superiority of the proposed
DA-RCNN model in emotion recognition.

We calculate the parameters of several comparative models
to discuss the size and the computational efficiency of the
proposed model. The total number of parameters of the proposed
model is 67,088, while under the same experimental settings,
the parameters of the benchmark models CNN, LSTM, DBN,
and BiLSTM are 31,042, 30,866, 40,282, and 50,156, respectively.
Although the number of parameters and the training time of the
proposed model is larger and longer than that of the comparative
model, the classification accuracy is significantly improved.

Model Training Process
In the valence dimension, the training process of the proposed
DA-RCNN model on the PLV feature in the subject-dependent
and subject-independent scenarios are shown in Figures 6, 7,
respectively. In both figures, the green line represents the average
training loss, the red line represents the average training accuracy
(acc), the horizontal axis represents the number of iterations, the
training loss value refers to the left vertical axis, and the training
accuracy value refers to the right vertical axis.

It can be seen from Figure 6 that in the subject-dependent
experiment, the average loss of the model during the training
process is gradually decreasing and converging, and the training
accuracy rate is also gradually converging to 1. During the
iterations from 0 to 3,000 rounds, the loss value declines in a
spiral gradient downward trend, and the accuracy increases from
about 0.5–0.93 in a spiral gradient upward trend. Subsequently,
both the loss value and the accuracy rate oscillate to a certain
extent, but after 9,000 rounds of iterations, the amplitude became
significantly smaller, and finally, the training loss converged to 0
and the accuracy rate converged to 1. In this training process, the
learning rate of the model is finally selected as 0.001, the batch
size is 40, and the epochs are 200.

It can be seen from Figure 7 that in the subject-independent
experiment, during the training process, the training loss of the
model gradually converges to 0, while the training acc spirals
upward and converges to 1. When the iterations are around 3,500,
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FIGURE 6 | The training process curve in the subject-dependent experiment in the valence.

FIGURE 7 | The training process curve in the subject-independent experiment in the valence.

there is a large fluctuation but then a stable trend in the loss. In
this area, the accuracy also has a large change in the same trend.
It may be because the gradient falls into the local optimal solution
and keeps swaying during two ends of the correct gradient.
As the training data is updated, the Adam optimizer continues
to correct the parameters by bias. In this training process, the

learning rate is finally selected as 0.005, the batch size is 128, and
the epochs is 150.

During the fine-tuning process, it is found that when the initial
learning rate is too large, the gradient continuously sways at
the left and right ends of the correct gradient, which will cause
local oscillations and make the model fail to converge. When the
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FIGURE 8 | The training process curve in the subject-dependent experiment in arousal.

FIGURE 9 | The training process curve in the subject-independent experiment in arousal.

learning rate is set too small, the model will be more complex,
and more parameters need to be updated in each iteration. If
the input data is insufficient, the loss function will oscillate and
not converge. Therefore, only when the learning rate is within a
reasonable range, the learning of the model and the updating of
the parameters can be carried out effectively.

In the arousal dimension, the training process of
the BC-DA-RCNN model on the PLV BC features in

subject-dependent and subject-independent scenarios is
shown in Figures 8, 9, respectively.

As seen from Figure 8, during the training process of
the proposed model in a subject-dependent experiment in
arousal, the average error of the model is gradually decreasing
and converging, and the training accuracy rate is gradually
converging to 1. During the period from 0 to 5,000 iterations, the
error value shows a downward spiral gradient, and the decline
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rate is fast and stable. The accuracy during this period increases
from about 0.48% to around 0.97% in a spiral gradient upward
trend. In the subsequent training process, the error value and the
accuracy rate both fluctuate to a certain extent, but after 10,000
rounds, the fluctuation becomes significantly smaller, and then
there are two sharp upward trends, and then quickly decrease, but
it is believed to be a normal phenomenon due to the fact that the
gradient during the learning process is not the optimal direction
of the objective function. As the iteration continues, eventually
the training error converges to 0 and the accuracy converges to 1.

It can be seen from Figure 9 that during the training process
of the proposed model in a subject-independent experiment
in arousal, the training loss decreases gradually and finally
converges to 0, the parameters are updated toward better
performance and the training accuracy spirals upward and
converges to 1. Compared with the process in valence, the
training process in arousal is gentler, which may be related to
the data distribution differences. When the number of iterations
reaches 14,000, there is a large oscillation, probably because the
local optimum is reached, but as the learning continues and the
parameters are updated and optimized, the gradient drops in the
correct direction.

DISCUSSION

Performance Analysis of Different
Variants of the Proposed Model
It has been proven that the proposed DA-RCNN model achieves
the best performance in both subject-dependent and subject-
independent experiments. It largely attributes to our method that
not only applies the spatial connectivity information of the brain
network but also uses the domain-adaptive residual convolution
neural network to extract the highly discriminative high-level
features from that. To verify this point, we obtain the following
3 simplified variants by removing the BC feature and the domain
adaptation layer:

(1) RCNN: Both the brain network connectivity feature
and the domain adaptation layer are removed, leaving
only the RCNN model to learn from the input of the
standard PSD feature.

(2) DA-RCNN: Only the brain network connectivity feature is
removed, and the standard PSD feature is used as the input
to the model;

(3) BC-RCNN: Only the domain adaptation layer is removed,
that is the domain transfer of features between subjects is
neglected, and the optimal PLV connectivity feature is used
as the input to the model.

The performance comparison of these three variants in
subject-dependent and subject-independent binary valence
classification experiments is shown in Table 7, and the overall
performance comparison relationship is as follows:

RCNN < DA− RCNN < BC − RCNN

< BC − DA− RCNN (12)

It can be seen from Table 7, that in two scenarios, the
classification accuracy of the RCNN model is 0.35 and 0.82%
higher in valence and 0.92 and 0.58% higher in arousal than the
best benchmark BiLSTM model in Table 6, which indicates that
skip connections and cascaded residual convolutions operations
in RCNN playing a very important role in feature learning
and outperforming other models. Compared with DA-RCNN,
the classification accuracy of the proposed model is 6.49
and 5.33% higher in valence, and 7.81 and 4.83% higher
in arousal, indicating that the brain network connectivity
information contains richer emotion-related features, and the
connectivity measurement algorithms, such as PLV, PCC,
WCC, and TE, can effectively represent the brain network
connectivity gain information, thereby helping to improve the
performance of emotion recognition. Compared with BC-RCNN,
the classification accuracy of the proposed model is 4.56 and
2.68% higher in valence, and 4.79 and 2.25% higher in arousal,
respectively, indicating that the DA layer does help to extract
more emotion-discriminative and subject-independent EEG
features and improve the adaptability of the model. Compared
with the DA-RCNN model, the classification accuracy of the BC-
RCNN model in the two experiments is 1.93 and 2.65% higher
in valence, and 3.02 and 2.58% higher in arousal, respectively,
indicating that the BC feature is more critical to the overall
performance of the proposed method. All in a word, the proposed
BC-DA-RCNN method outperforms the existing other methods
and achieves better EEG-based emotion recognition performance
with less signal processing and a simpler model structure.

Discussion of Electrode Arrangement
Mode
The order of EEG electrodes plays an important part in
constructing the connectivity matrix and affecting the
performance of the feature. Furthermore, the connectivity feature
matrix must be robust to the task-independent fluctuation of
EEG signals. We use the physical distance between EEG
electrodes to determine the alignment order of the electrodes,
whose mode is denoted by “dist-mode” and is not necessarily
optimal. To test the influence of the EEG electrode arrangement
mode on the classification performance, we cite the algorithm
mentioned in the literature (Chen and Wang, 2019), which
uses a one-dimensional scaling (UDS) algorithm to determine
the electrode driving mode with global and local features. The

TABLE 7 | The experimental results of three variants of the proposed model.

Methods Subject-dependent Subject-independent

Valence
acc (%)

Arousal
acc (%)

Valence
acc (%)

Arousal
acc (%)

RCNN 85.50 85.11 80.98 80.70

DA-RCNN 88.66 87.03 82.95 82.55

BC-RCNN 90.59 90.05 85.60 85.13

BC-DA-RCNN 95.15 94.84 88.28 87.38

Bold values represent the best comparative results.
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UDS algorithm can project the given multidimensional data
into a one-dimensional mapping space while preserving the
relative distance between channels as much as possible. This
distance is defined by the disparity function. The resulted global
and local electrode arrangement mode is called “global-mode”
and “local-mode,” respectively. The global mode can obtain the
electrode driving order that enhances the global feature, and its
disparity function is defined as formula (13):

δ(i, j) = 2(1− ci,j) (13)

where ci,j represents the connectivity measure between the i-th
and j-th electrodes. This disparity function is inserted into the
objective function of UDS, which was called the normalized stress
function (De Leeuw, 1977) and written as:

stress(l1, ..., lNe) =

∑
i<j(|li − lj| − δ(i, j))2∑

i<j δ(i, j)2
(14)

where |li − lj| represents the Euclidean distance between the
i-th and j-th electrodes in the projected space. The continuous
solution value l1, ..., lNe is obtained by minimizing the objective
function so that the value of the disparity function is as similar as
the distance in the one-dimensional projected space on average.
Then we discard the distance information and only keep the
order of the solutions, in which the EEG electrodes are arranged
in horizontal and vertical directions of the connection matrix.

The local mode can obtain the electrode driving order that
enhances the local feature, and its disparity function is defined
as formula (15):

δ(i, j) = c2
i,j (15)

Again, the normalized stress function (14) using this disparity
function is minimized and the order information of the solution
is obtained. In the connectivity matrix arranged in this order,
the brain regions with strong positive or negative connectivity
are separated as much as possible, and the regions with zero
correlation are arranged as close as possible, thereby enhancing
the local characteristics of the brain network.

Table 8 shows the valence classification results of the proposed
model on PCC and PLV connectivity features expressed with
different connectivity modes (the TE feature is not included

TABLE 8 | The classification results using different connectivity mode.

Experiment
type

Connectivity
mode

PCC (Accuracy %) PLV (Accuracy %)

w = 3 × 3 w = 5 × 5 w = 3 × 3 w = 5 × 5

Subject-
dependent

Dist-mode 92.05 92.37 93.25 95.15

Global-mode 90.56 91.28 93.15 94.31

Local-mode 84.41 84.79 86.95 87.56

Subject-
independent

Dist-mode 86.42 86.05 87.60 88.28

Global-mode 85.64 86.70 86.64 87.22

Local-mode 81.07 82.19 81.27 82.68

Bold values represent the best comparative results.

here). It can be seen that in two experiments, when the residual
kernel of the proposed model is 5 × 5 and on the PLV
feature, the classification accuracy, respectively, achieves 94.31
and 87.22% with global connectivity mode, which is very close
to the performance with the proposed global dist-mode but is,
respectively, 6.75 and 4.54% higher than the performance with
the local connectivity mode. It shows that the global driving
mode is better than the local mode to obtain the brain network
features, and the connectivity features generated with the global
arrangement contain more emotion-related context information
that is exactly extracted by a deep residual convolutional neural
network. Meanwhile, it also proves the effectiveness of our global
connectivity feature based on the proposed physical distance
arrangement. The reason why the global mode is better than the
local mode may be that the local mode fails to fully consider
the spatial connectivity gain information of all EEG electrodes.
It further confirms that human emotion is the result of the
interaction of different areas of the whole brain, and the global
brain network feature is more comprehensive and effective. In
addition, the result in Table 8 also shows that the proposed
model has better classification performance on the PCC and PLV
features when the residual kernel is 5 × 5, which is consistent
with the experimental results in section “Experimental Results of
the Proposed Method.”

Discussion on Electroencephalograph
Connectivity Features
From the experimental results in section “Performance Analysis
of Different Variants of the Proposed Model,” it is concluded
that the brain network connectivity information is the key to
improving the final classification performance of the model. In
this section, the connectivity values of all subjects related to each
type of emotion are averaged and visualized to interpret what
connections are more important for emotion recognition and
how the connectivity patterns are associated with the emotional
processing function of the brain. Due to the poor performance
of the TE feature, only the visualization of PCC and PLV
connectivity features are presented here. The horizontal and
vertical axes both represent the electrodes, and the electrode
sequence here is obtained by the proposed data driving method as
shown in Figure 2. The average PCC connectivity matrix values
are between−1 and 1, and its average connectivity patterns under
positive and negative emotions are shown in Figures 10A,B,
respectively. The average PLV connectivity matrix values are
between 0 and 1, and its connectivity patterns under positive and
negative emotions are shown in Figures 11A,B, respectively.

It can be seen from Figure 10 that the bright region represents
an area with a large Pearson coefficient, and the dark region
represents an area with a small Pearson coefficient. Comparing
the electrode positions in Figure 2, we can see that each electrode
has strong connectivity with the three electrodes before and
after its own position, which proves the effectiveness of the
proposed electrode driving method. It was also observed that
the Pearson correlation coefficient between the 20th and 25th
electrodes (belonging to the right frontal lobe) and the 1st and 4th
electrodes (belonging to the left frontal lobe) was larger for both

Frontiers in Neuroscience | www.frontiersin.org 14 June 2022 | Volume 16 | Article 878146

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-878146 June 21, 2022 Time: 8:38 # 15

Chen et al. EEG Based Emotion Recognition

positive emotion

A B

FIGURE 10 | Visualization of PCC connectivity features. (A,B) Respectively shows the average PCC connectivity pattern under the positive and negative emotion.

positive emotion

A B

FIGURE 11 | Visualization of PLV connectivity features. (A,B) Respectively shows the average PLV connectivity pattern under the positive and negative emotion.

positive and negative emotions, indicating there are a stronger
correlation and more significant neuronal activity between the
left and right frontal areas of the brain, and the connectivity of the
frontal lobe area is helpful for emotion recognition. In addition,
there is a strong correlation between the 26th and 29th electrodes
(belonging to the parietal lobe region) and the 10th and 15th
electrodes (belonging to the occipital lobe region), indicating
that the parietal and occipital regions are more sensitive to the
emotional activity of the brain, and it is easy to extract emotional-
related connectivity information from this area. The brightness
between electrodes 31th and 32th (belonging to the parietal lobe
region) and 1st and 3rd (belonging to the left frontal region) and
electrodes between 21th and 25th (belonging to the right frontal
region) was also higher, which further verified the above analysis.

Figure 11 shows that the bright region represents an area
with a larger phase-lock value, and the dark region represents

an area with a smaller phase-lock value. Compared with the
electrode positions in Figure 2, we can that each electrode has
strong connectivity with its adjacent two electrodes before and
after its own position, which verifies the effectiveness of the
proposed electrode driving method. It was further found that
the phase synchronization index between electrodes 1st and 5th
(belonging to the left frontal region) and between electrodes 10th
and 15th (belonging to the occipital lobe region) was larger,
indicating that when evoking positive and negative emotions,
the synergy between the left frontal and occipital regions of the
brain is enhanced, resulting in synchronous oscillations. Through
the contrast of the light and dark in the regions where other
electrodes are located, it is found that the phase consistency of
evoked emotional tendency information in the frontal, parietal
and occipital regions is relatively strong, whereas the phase
consistency in other regions is poor.
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Limitation Discussion
The paper for the first time proposes to combine the brain
network connectivity features with the RCNN to construct
a high-performance and low-complexity emotion recognition
model and additionally introduces a DA module to enhance the
model’s adaptive ability. The proposed method has achieved good
performance in the binary emotion classification task, but there
are still the following limitations that need to be addressed in our
future work:

Insufficient Exploration of the Features of Brain
Network Connectivity
Existing research have proposed a variety of methods to
explore brain network connectivity. Although we apply three
connectivity measurement algorithms (PCC, PLV, and TE) and
prove they are effective and better, it does not fully prove which
method is best. Taking the TE feature as an example, we directly
use the first-order TE feature without considering the time delay.
It is expected to further improve the performance of the TE
feature if more freedom of parameter selection can be provided.
Moreover, the judgment of connectivity not only depends on the
choice of different connectivity measurements but also depends
on the dimension of thinking. For example, a recent study (Li
R. et al., 2021) utilizes the topology of EEG channels to measure
the BC and applies an adaptive graph convolution network
(MD-AGCN) to learn the deeply fused intra-channel and inter-
channel time-frequency information. In the future, we will deeply
study the cognitive mechanism of the brain network and explore
the best representation of BC features to further improve the
performance of EEG-based emotion recognition.

Deficiencies of Fully Supervised Training Mode
Another problem is that the proposed model adopts a fully
supervised training mode, which solves the global optimization
problem facing neural networks through backpropagation but is
difficult to meet the complex real-time application requirements.
On the contrary, the self-supervised method does not rely on
many hand-annotated labels and can use information from the
dataset itself to fake labels and has more convincing learning
potential than a completely unsupervised method. Starting from
the nature of human learning, the self-supervised method can
make self-learning with a small amount of annotated data to
realize spontaneous learning from unmarked data sets. In the
future, we will study to build a self-supervised model to make
EEG-based emotion recognition and meet the needs of real-time
applications of affective brain-computer interfaces.

CONCLUSION

The study proposes an end-to-end emotion recognition method
based on EEG connectivity features and a domain adaptive
residual convolution neural network. Four classical connectivity
metric algorithms are used to measure the brain network

connectivity between different EEG electrodes and construct
the connectivity feature matrix. The proposed adaptive residual
convolution model is optimized by introducing the residual
blocks and the domain adaptation module to a CNN model.
Various comparative experiments are carried out to prove
the effectiveness and advantages of the proposed method.
The experimental results show that the PLV and PCC
connectivity features contain rich emotion-related information
that is not obvious in original EEG signals. It further
confirms that the brain network connectivity matrix can
reflect the human’s emotional dynamics to a certain extent,
which provides a new and effective way for EEG feature
representation. It also proves that the DA-RCNN can learn
more emotion-discriminative and subject-independent high-
level information from PLV and PCC connectivity features,
which help further improve the accuracy and stability of
EEG emotion recognition. Meanwhile, the complexity of the
model is greatly reduced through the residual block structure,
which is beneficial for real-time applications in affective brain-
computer interfaces.
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