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Abstract

Listeria monocytogenes is a Gram-positive, food-borne pathogen that lives a biphasic life-

style, cycling between the environment and as a facultative intracellular pathogen of mam-

mals. Upon entry into host cells, L. monocytogenes upregulates expression of glutathione

synthase (GshF) and its product, glutathione (GSH), which is an allosteric activator of the

master virulence regulator PrfA. Although gshF mutants are highly attenuated for virulence

in mice and form very small plaques in host cell monolayers, these virulence defects can be

fully rescued by mutations that lock PrfA in its active conformation, referred to as PrfA*.

While PrfA activation can be recapitulated in vitro by the addition of reducing agents, the pre-

cise biological cue(s) experienced by L. monocytogenes that lead to PrfA activation are not

known. Here we performed a genetic screen to identify additional small-plaque mutants that

were rescued by PrfA* and identified gloA, which encodes glyoxalase A, a component of a

GSH-dependent methylglyoxal (MG) detoxification system. MG is a toxic byproduct of

metabolism produced by both the host and pathogen, which if accumulated, causes DNA

damage and protein glycation. As a facultative intracellular pathogen, L. monocytogenes

must protect itself from MG produced by its own metabolic processes and that of its host.

We report that gloA mutants grow normally in broth, are sensitive to exogenous MG and

severely attenuated upon IV infection in mice, but are fully rescued for virulence in a PrfA*
background. We demonstrate that transcriptional activation of gshF increased upon MG

challenge in vitro, and while this resulted in higher levels of GSH for wild-type L. monocyto-

genes, the glyoxalase mutants had decreased levels of GSH, presumably due to the accu-

mulation of the GSH-MG hemithioacetal adduct. These data suggest that MG acts as a host

cue that leads to GSH production and activation of PrfA.
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Author summary

Listeria monocytogenes is a facultative intracellular pathogen that dramatically changes

gene expression upon infection of host cells by activating its major virulence regulator

PrfA. The allosteric activator of PrfA is glutathione (GSH) that is produced by the bacte-

rial glutathione synthase GshF. The requirement for GshF can be bypassed by PrfA muta-

tions (PrfA�) that are locked in their active form. In this study we screened for additional

mutations that prevented virulence gene expression but were rescued by PrfA�. One of

these mutations was in gloA, which encodes glyoxylase A, which detoxifies methylglyoxal

(MG) in a glutathione-dependent fashion. In response to MG, gloA mutants up-regulated

gshF mRNA but have lower levels of available GSH. These and other data suggest that MG

production by the host activates gshF expression leading to elevated GSH levels and

increased virulence gene expression.

Introduction

Listeria monocytogenes is a Gram-positive facultative intracellular pathogen and a significant

cause of human disease, but is also an excellent model system to study basic aspects of host-

pathogen interactions [1]. L. monocytogenes is an ubiquitous saprophyte found in soil, water

and vegetation, and can contaminate a variety of food products leading to periodic outbreaks

of disease [1,2]. Following ingestion by susceptible mammalian hosts, L. monocytogenes transi-

tions into an intracellular pathogen largely by the transcriptional up-regulation of virulence

gene expression [2,3].

In order to access its replicative niche in the host cytosol, L. monocytogenes secretes listerio-

lysin O (LLO), a pore-forming, cholesterol-dependent cytolysin that mediates disruption of

the phagosome [3]. In the cytosol, L. monocytogenes up-regulates the expression and synthesis

of the master virulence regulator PrfA, that directly regulates the transcription of nine viru-

lence genes including ActA, a surface protein that mediates host actin polymerization and pro-

motes movement and dissemination into neighboring cells [4]. PrfA is a member of the cAMP

receptor protein (Crp) family of transcription factors that are allosterically regulated by small-

molecule activators. Transcriptional activation of PrfA requires allosteric binding to glutathi-

one (GSH) that is produced by L. monocytogenes glutathione synthase (GshF) [5]. L. monocyto-
genes strains that lack gshF are attenuated for virulence, but the requirement for glutathione

can be bypassed by mutations that lock PrfA on its active conformation and are referred to as

PrfA� [5].

Although there is a comprehensive understanding of the intracellular life cycle of L. mono-
cytogenes, less is known about the exact biological cue(s) sensed by this pathogen that drive the

transition from extracellular to intracellular gene expression. Previous studies have shown

PrfA activation in vitro by the addition of reducing agents [6], however, what L. monocytogenes
senses in vivo remains unknown. Nonetheless, since GSH serves as an antioxidant and gshF is

upregulated in vivo, we speculate that reactive oxygen species (ROS), reactive electrophilic spe-

cies (RES) and/or reactive nitrogen species (RNS) may be inflicting redox stress leading to

upregulation of GshF.

Methylglyoxal (MG) is a RES that is an ubiquitous byproduct of cellular metabolism and is

produced by both bacteria and host cells [7,8]. MG reacts with arginine, lysine, and cysteine

residues in proteins, resulting in the formation of advanced glycation end products (AGEs),

which often leads to protein inactivation [7,9]. Additionally, MG modifies guanine bases,

resulting in DNA damage and increased mutation rates [10,11]. This toxic metabolite can be
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synthesized through enzymatic (methylglyoxal synthase) and non-enzymatic reactions [12].

While MG production can result from protein and lipid metabolism (Fig 1B), glycolysis is the

most important source of endogenous MG (Fig 1A) [7]. Of note, Mycobacterium tuberculosis
infected macrophages secrete up to 1.6 mM MG into culture media [13]. As a facultative intra-

cellular pathogen, L. monocytogenes must protect itself from both endogenously produced MG

and that produced by its host.

The major mechanism of protection from MG is mediated by the glyoxalase system (Fig

1C). Briefly, MG detoxification is initiated by the non-enzymatic reaction of this toxic metabo-

lite with a low-molecular-weight thiol such as reduced glutathione (GSH) or bacillithiol, form-

ing a hemithioacetal. This molecule is then transformed to S-lactoylglutathione by glyoxalase

A (GloA). In E. coli and B. subtilis, the intermediate generated by GloA activates potassium

efflux pumps that acidify the cytoplasm and confer protection against MG-induced DNA dam-

age [10,14]. S-lactoylglutathione is converted to D-lactate by glyoxalase B (GloB), recycling

GSH in the process [15].

In order to better understand the biological cues sensed by L. monocytogenes upon entry

into the host cytosol, we screened for small-plaque mutants that were rescued in a PrfA� back-

ground. This screen identified glyoxalase A, the first enzyme in the glyoxalase system (Fig 1C).

L. monocytogenes gloA mutants were attenuated for plaque formation and in an IV mice model

Fig 1. Methylglyoxal production and detoxification pathways. (A) MG is formed mainly as a byproduct of glycolysis. In most organisms it is transformed from

dihydroxyacetone phosphate (DHAP) by methylglyoxal synthase (MGS). (B) MG production can also result from the metabolism of lipids and proteins. (C) MG

detoxification occurs mainly through the glyoxalase system that consists of two enzymes glyoxalase A (GloA) and glyoxalase B (GloB). MG can react non-enzymatically

with reduced glutathione (GSH) to form a hemithioacetal which is transformed to S-lactoylglutathione by GloA. S-lactoylglutathione activates potassium efflux pumps

that acidify the cytoplasm and confer protection against MG. GloB then transforms S-lactoylglutathione to D-lactate, recycling GSH in the process. Adapted from

Allaman et al, 2015 [7].

https://doi.org/10.1371/journal.ppat.1009819.g001
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of infection. Virulence defects were fully rescued in a PrfA� background. The presence of MG

increased gshF mRNA and GSH levels in vitro, resulting in the activation of actA transcription.

These data suggest that MG acts as a biological cue that leads to PrfA activation.

Results

A genetic screen identifies gloA as a small-plaque mutant rescued by PrfA�

We sought to identify genes other than gshF involved in L. monocytogenes virulence activation.

L. monocytogenes is capable of spreading to neighboring cells, which is evidenced by its capac-

ity to form plaques in tissue culture cell monolayers. The plaque assay is a straightforward and

efficient method to screen for mutants defective in intracellular growth or cell-to-cell spread

[16]. A himar-1 transposon library was used to screen for transposon insertions that caused a

small-plaque phenotype in the L2 murine fibroblast cell line after 3 days of infection. A total of

approximately 100,000 plaques were screened, 300 were initially picked, and 132 were further

selected after the purification cycles, representing 34 genes. The selected small-plaque mutants

had at least a 20% decrease in plaque size compared to wild-type L. monocytogenes. Transpo-

son insertions were transduced into wild-type and PrfA� backgrounds and compared using

the plaque assay (Table 1). As the goal of the genetic screen was to better understand the cyto-

solic biological cues leading to PrfA activation, we were primarily interested in transposon

mutations that could be rescued by PrfA�, which would suggest a role in L. monocytogenes vir-

ulence activation. As expected, insertions in gshF fulfilled this criteria [5], but we also identified

an insertion in lmo2168 that was rescued in a PrfA� background to within 10% of the plaque

size of wild-type PrfA� (Table 1). GloA (lmo2168) encodes glyoxalase A, also known as lactoyl-

glutathione lyase, an enzyme required for MG detoxification (Fig 1).

Attenuated virulence of a gloA deletion mutant is fully rescued by PrfA�

To study the role of GloA-dependent MG detoxification in L. monocytogenes virulence activa-

tion, we generated an in-frame deletion of gloA in wild-type (ΔgloA) and PrfA� (PrfA�/ΔgloA)

genetic backgrounds and characterized the mutants for growth and infection dynamics (Figs 2

and 3). The gloA deletion mutant had a 55% plaque size relative to wild-type that, similar to

the gloA transposon mutant, was fully rescued in a PrfA� background. The plaque phenotype

was also restored by complementation using an integration plasmid containing the gloA gene

expressed from a pHyper promoter (ΔgloA + gloA; Fig 2A). Interestingly, the ΔgloA mutant

had a negligible defect when cultured in broth and a small but significant difference at 5

hours-post infection of bone marrow-derived macrophage (BMM) when compared to wild-

type L. monocytogenes (Fig 2B and 2C).

MG production is increased in toll-like receptor (TLR)-stimulated and IFN-γ activated

macrophages [13,17]. We hypothesized that overnight treatment with PAM3CSK4, a TLR2

agonist, would stimulate BMMs and increase MG levels, affecting infection dynamics of

ΔgloA L. monocytogenes that are impaired for MG detoxification. An intracellular growth

defect was observed in the ΔgloA strain under these infection conditions, that was most evi-

dent at 8 hours post-infection and fully rescued by PrfA� (Fig 2D), suggesting that exogenous

MG (i.e. produced by stimulated host cells) represented the primary source of this toxic

metabolite during L. monocytogenes infection. To further assess the relevance of MG detoxi-

fication in L. monocytogenes virulence, CD-1 mice were infected intravenously with 105 CFU

of each strain and CFUs were determined in the spleens and livers harvested 48 hours post-

infection. The ΔgloA mutant presented a 3-log virulence attenuation compared to wild-type

L. monocytogenes. The virulence defect was fully rescued in a PrfA� background and
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complemented by insertion of an integrative plasmid containing the gloA gene expressed

using a pHyper promoter (Fig 3).

Bacteria mainly use the glyoxalase system to detoxify MG, but may use alternative pathways

as well [7,11]. To determine the relative contribution of the glyoxalase system in MG detoxifi-

cation, we assessed L. monocytogenes strains for sensitivity against this toxic metabolite using a

disk diffusion assay. The ΔgloA mutant was significantly more sensitive to MG than wild-type

Table 1. Genes identified in small-plaque screen.

Lmo number LMRG number # Hitsa Annotation Background Plaque sizeb Background Plaque sizeb

10403S wt 100 ± 1.20 PrfA� 109 ± 1.46

0201 02623 4 plcA wt 24 ± 0.58 PrfA� 38 ± 0.84

0202 02624 2 hly wt 36 ± 1.56 PrfA� 34 ± 0.69

0203 02625 6 mpl wt 23 ± 0.78 PrfA� 48 ±1.31

0205 02627 6 plcB wt 42 ± 1.21 PrfA� 27 ± 1.12

0402 00095 1 hypothetical protein wt 81 ± 1.27 PrfA� 90 ± 1.04

0898 02322 1 hypothetical protein wt 74 ± 0.90 PrfA� 78 ± 1.27

0930 02029 1 yhfI wt 50 ± 1.43 PrfA� 37 ± 1.51

0931 02030 16 lplA wt 28 ± 0.98 PrfA� 66 ± 0.92

0964 02063 1 yjbH wt 56 ± 0.91 PrfA� 72 ± 1.19

0980 02080 1 yadH wt 64 ± 1.61 PrfA� 73 ± 1.41

1360 00810 20 folD wt 26 ± 1.15 PrfA� 32 ± 0.74

1372 00822 1 acoA wt 51 ± 0.80 PrfA� 54 ± 0.85

1490 00943 4 aroD wt 40 ± 1.41 PrfA� 37 ± 0.79

1523 01447 2 relA wt 36 ± 0.89 PrfA� 42 ± 0.97

1945 01092 2 ribU wt 54 ± 0.89 PrfA� 45 ± 1.19

2049 01199 1 hypothetical protein wt 44 ± 0.85 PrfA� 39 ± 1.26

2157 01675 1 sepA wt 76 ± 1.75 PrfA� 69 ± 1.39

2168 01664 2 gloA wt 57 ± 0.73 PrfA� 104 ± 0.61

2194 01638 8 oppC wt 18 ± 0.36 PrfA� 22 ± 0.57

2195 01637 2 oppB wt 30 ± 1.22 PrfA� 39 ± 0.75

2196 01636 5 oppA wt 29 ± 0.68 PrfA� 33 ± 1.41

2215 01617 1 ABC transporter ATP-binding protein wt 70 ± 1.52 PrfA� 57 ± 1.05

2250 01581 1 arpJ wt 33 ± 1.16 PrfA� 56 ± 0.77

2386 02731 1 yuiD wt 51 ± 0.85 PrfA� 48 ± 0.90

2448 01800 1 SsrA-binding protein wt 68 ± 1.07 PrfA� 74 ± 1.24

2473 01775 1 hypothetical protein wt 52 ± 1.04 PrfA� 54 ± 1.06

2474 01774 1 hypothetical protein wt 59 ± 1.54 PrfA� 54 ± 1.29

2510 01738 1 secAc wt 42 ± 1.17 PrfA� 47 ± 0.95

2545 01702 2 thrB wt 42 ± 1.08 PrfA� 42 ± 1.47

2546 01701 1 thrC wt 39 ± 1.29 PrfA� 37 ± 0.63

2748 01948 2 ydaGd wt 42 ± 0.92 PrfA� 36 ± 1.03

2770 01925 26 gshF wt 39 ± 0.93 PrfA� 107 ± 1.91

2843 01855 1 hypothetical protein wt 65 ± 1.31 PrfA� 61 ± 1.05

0201–0202 02623–02624 1 intergenic space wt 42 ± 1.00 PrfA� 39 ± 0.85

a Number of independent hits
b Plaque size is an average of three independent replicates ± SEM (n = 40).
c Transposon insertion was upstream secA gene.
d Transposon insertion was upstream of the ydaG gene.

https://doi.org/10.1371/journal.ppat.1009819.t001
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Fig 2. In vitro phenotypes of glyoxalase mutants. (A) Plaque area measured 3 days post-infection as a percentage of wild-type. Mean and standard error of the

mean (SEM) pooled from three independent experiments is shown (n = 30). (B) Broth growth curve of indicated L. monocytogenes strains grown in BHI medium at

37˚C with shaking. Mean and standard deviation of three independent experiments is shown. BMM’s were infected at an MOI of 0.25 with L. monocytogenes without

treatment (C) or treated with PAM3CSK4 (D) and intracellular CFU were enumerated at different time points. Data are mean and SEM of three technical replicates

of three independent experiments. For both panels, statistical significance is shown for ΔgloA compared to wild-type L. monocytogenes. (E) Sensitivity to MG (20% v/

v) as measured by growth inhibition in a disk diffusion assay as percentage of wild-type. Data are mean and SEM of at least three independent experiments. For all
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and PrfA� L. monocytogenes (Fig 2E). It is noteworthy that the PrfA� mutation did not rescue

the ΔgloA strain to MG sensitivity, suggesting that the virulence defect could not be entirely

attributed to MG toxicity. Sensitivity to MG in ΔgloA was fully complemented by insertion of

the gloA gene expressed from a phyper promoter.

Deletion of gloB results in attenuated virulence but to a lesser extent than

gloA
The glyoxalase system is the major pathway used by cells for MG detoxification and is com-

posed of two enzymes: glyoxalase A and B (Fig 1). A ΔgloA mutant was highly attenuated for

virulence (Figs 2 and 3). To understand whether GloB was also critical for L. monocytogenes
infection, we generated an in-frame deletion of the gloB gene and a double mutant that lacked

both gloA and gloB. The ΔgloB mutant displayed a less attenuated virulence phenotype than

ΔgloA, whereas the double mutant showed similar virulence defects (Figs 2 and 3). The plaque

size of a ΔgloB mutant was approximately 80% relative to wild-type, while the ΔgloAΔgloB dou-

ble mutant was 65% of wild-type (Fig 2A). Both L. monocytogenes strains grew similar to wild-

type in BMMs, but only the ΔgloAΔgloB double mutant had a measurable defect for intracellu-

lar growth in PAM3CSK4-treated BMMs as observed for the ΔgloA mutant (Fig 2C–2D). The

ΔgloB mutant had a 1-log virulence attenuation in murine infection and ΔgloAΔgloB presented

the same 3-log attenuation observed for the gloA single mutant (Fig 3). An increased sensitivity

to MG when compared to wild-type L. monocytogenes was observed for all the glyoxalase

mutants, but was less pronounced for ΔgloB (Fig 2E). Plaque size and mice attenuation of the

ΔgloB mutant were fully rescued in a PrfA� background (Figs 2 and 3).

experiments p values were calculated comparing to the wild-type bacteria using an unpaired Student’s t- test; �P< 0.05, ��P< 0.01, ���P< 0.001, ���� indicates P

<0.0001.

https://doi.org/10.1371/journal.ppat.1009819.g002

Fig 3. Virulence of glyoxalase mutants in vivo. (A and B) Female CD-1 mice were infected with 105 CFU L. monocytogenes. Spleens (A) and livers (B) were

harvested 48 hours post-infection and CFU were counted. Data and median represent three pooled experiments (n = 15). Data area mean and SEM of at least

three independent experiments. For all experiments p values were calculated comparing to the wild-type bacteria using an unpaired Student’s t- test; �P< 0.05,
��P< 0.01, ���P< 0.001, ���� indicates P<0.0001.

https://doi.org/10.1371/journal.ppat.1009819.g003
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Cytoplasmic acidification protects bacteria from methylglyoxal-induced

mutagenesis

MG is a highly reactive electrophile that interacts with DNA and has mutagenic effects

[9,18,19]. To evaluate mutation rates as a result of MG exposure, we challenged L. monocyto-
genes strains with 1.2 mM MG in rich (BHI) and defined media (cLSM) and determined the

frequency of rifampicin resistance. Mutation frequency consistently increased upon MG expo-

sure compared to the non-treated groups in both growth conditions, but was more pro-

nounced in defined media (Fig 4A and 4B). In defined media, mutants lacking gloA had at

least an 8-fold increase in mutation frequency, that was also observed for the ΔgshF mutant

but not for wild-type, PrfA� or ΔgloB L. monocytogenes. The PrfA� ΔgloA mutant had a lower

mutation frequency compared to the ΔgloA mutant alone. Based on previous research [14], the

ΔgloB mutant, unlike ΔgloA, should retain the capacity to activate potassium efflux pumps and

acidify the bacterial cytoplasm leading to activation of a DNA damage response (Fig 1), and

predictably, the gloB mutant had a lower mutation frequency.

Cytoplasmic acidification is sufficient for protection against MG in B. subtilis and E. coli
most likely through the activation of a DNA damage response [10,13,14]. To assess if cyto-

plasmic acidification was sufficient to protect L. monocytogenes from MG-induced DNA dam-

age, we determined rifampicin resistant derivatives upon MG exposure in media containing

sodium benzoate, which decreases the pH of the bacterial cytoplasm by approximately 0.4

units and protects from MG-induced DNA damage [10,19]. Treatment with sodium benzoate

decreased mutation frequency upon MG exposure to levels similar to the non-treated groups

in both rich and defined media (Fig 4A and 4B), indicating that cytoplasmic acidification is

protective against MG induced mutagenesis in L. monocytogenes.

Fig 4. Mutation rates in L. monocytogenes glyoxalase mutants. Rifampicin mutation frequencies were determined in response to MG exposure and

sodium benzoate. L. monocytogenes were grown overnight in BHI broth (A) or defined medium (cLSM) (B) and plated on BHI agar containing 5ug/mL of

rifampicin. Mutation frequency was calculated as the ratio between the number CFU enumerated on the rifampicin plates and the total number of bacteria

plated. Mean and SEM of two technical replicates from three independent experiments are shown. For all experiments p values were calculated comparing

to the untreated bacteria using an unpaired Student’s t-test; �P< 0.05, ��P< 0.01, ���P< 0.001, ���� indicates P<0.0001.

https://doi.org/10.1371/journal.ppat.1009819.g004
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Methylglyoxal increases gshF mRNA but lowers glutathione availability in

glyoxalase mutants

The glyoxalase system detoxifies MG through two sequential enzymatic reactions. First, GSH

and MG spontaneously form a hemithioacetal (Fig 1). Previous studies have shown that

impairment in MG detoxification leads to decreased GSH availability in both mammalian and

bacterial cells [7,10,14]. Since PrfA activation is dependent on the intracellular GSH levels,

maintaining elevated concentrations is critical for L. monocytogenes to activate expression of

virulence genes. We hypothesized that the glyoxalase mutants would have lower available

intracellular levels of GSH, therefore, attenuated virulence. To test this hypothesis, we mea-

sured L. monocytogenes GSH concentration in wild-type, ΔgloA and ΔgloB strains at different

time points post-MG exposure. We observed significantly lower available intracellular GSH at

15 minutes post-MG exposure in all strains (Fig 5A), however, by 30 minutes an increase in

intracellular glutathione was observed. While the glyoxalase mutants reached GSH levels simi-

lar to the untreated wild-type L. monocytogenes at 30- and 60-minutes post-challenge, a signifi-

cant increase was observed for the wild-type bacteria challenged with high amounts of MG

(Fig 5A). These data indicated that although MG exposure immediately lowers available intra-

cellular GSH in L. monocytogenes, it results in higher GSH concentration at later time points

in the wild-type bacteria, but not in the glyoxalase mutants.

The capacity of bacteria to respond to redox stress is central for many cellular processes and

survival. Antioxidants such as GSH are crucial for maintaining redox homeostasis. Previous

studies have shown that upon oxidative stress, transcriptional regulators such as Spx in B. sub-
tilis and CodY in S. thermophilus are induced and lead to upregulation of several genes includ-

ing gshF and its analogue bshA, B and C [11,20,21]. We hypothesized that MG-induced

oxidative stress functions as a metabolic cue that leads to upregulation of gshF expression in L.

monocytogenes. To assess the expression of gshF, we performed real time-quantitative PCR to

measure gshF mRNA levels upon MG exposure in defined media and during BMM infection.

In defined media, gshF mRNA levels increased upon treatment with MG in all the L. monocy-
togenes strains tested, but was elevated in the gloA and gloB mutants (Fig 5B). During BMMs

infection, gshF mRNA levels were also increased in the glyoxalase mutants compared to wild-

type (Fig 5D). Consistent with the previous observations of increased gshF mRNA levels and

higher intracellular GSH levels, we observed higher mRNA levels of actA upon MG challenge

in vitro in wild-type L. monocytogenes, but not in the glyoxalase mutants (Fig 5C). Taken

together, these data strongly suggest that MG toxicity induces expression of L. monocytogenes
glutathione synthase and increases intracellular GSH as well.

Discussion

The results of this study showed that L. monocytogenes gloA mutants are hyper-sensitive to

exogenous MG toxicity in vitro and highly attenuated for virulence in vivo. Importantly the in
vivo defect was fully rescued by a mutation in the master virulence regulator that locks it in its

active conformation (PrfA�). These data suggest that the virulence defect of gloA mutants is at

least partially due to lack of PrfA activation. Since PrfA is allosterically activated by GSH and

GloA mediates MG detoxification by conjugation with glutathione, the results of this study

suggest that gloA mutants are avirulent because of glutathione depletion and the consequent

lack of PrfA activation. However, the PrfA� mutation did not rescue L. monocytogenes from

MG lethality in vitro and the gloB deficient bacteria had less virulence attenuation than gloA
mutants. These data suggest that some of the attenuation may be due to MG sensitivity. We

also showed that MG initially depletes bacterial GSH levels and activates gshF gene expression,

resulting in higher GSH levels for the wild-type bacteria but not for the glyoxalase mutants
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that are unable to recycle GSH used for MG detoxification. This suggests that MG is among

the biological cues leading to glutathione production, PrfA activation and virulence.

The glyoxalase system is composed of two enzymes (GloA and GloB) that act sequentially

to detoxify MG. The glyoxalase system is crucial for MG detoxification in L. monocytogenes as

was evident by the significant increase in sensitivity to this toxic metabolite when either or

both glyoxalase enzymes were missing. However, while the ΔgloA mutant was 3-logs less viru-

lent in mice, the ΔgloB mutant was only 1-log less virulent. Analysis of mutation frequencies of

the glyoxalase mutants revealed elevated mutation frequency in response to MG for ΔgloA but

not for ΔgloB. Mutation rates were restored to wild-type levels in the ΔgloA mutant upon cyto-

plasmic acidification by addition of sodium benzoate a method used in previous studies

[11,14]. Acidification of the cytosol is mediated by the enzymatic product of GloA, S-lactoyl-

glutathione, which activates potassium efflux pumps and results in the exchange of protons

that decrease cytoplasmic pH (see Fig 1). Acidification of the bacterial cytosol results in activa-

tion of DNA damage responses and probably has other protective effects as well [11,14,19]. In

ΔgloB mutants, the formation of S-lactoylglutathione by GloA still occurs, leading to lower

cytoplasmic pH and less DNA damage [14,15]. It is likely that the ΔgloB mutant was more tol-

erant to MG due to the functional activation of potassium efflux pumps and protective cyto-

plasmic acidification. Unlike the ΔgloA strain, which was probably killed by MG damage,

protection by potassium efflux pumps allowed the ΔgloB strain to endure MG and activate

alternative detoxification pathways [7,20,22]. However, since GloB converts S-lactoylglu-

tathione to glutathione and D-lactate, the ΔgloB mutant also had less available glutathione (Fig

5A) which likely leads to less PrfA activation and attenuated virulence.

It is hard to reconcile why a PrfA� background fully rescued the ΔgloA mutant given that

the ΔgloB mutant had the same GSH levels, at least in vitro, suggesting that virulence attenua-

tion is not entirely due to GSH depletion. Notably, while the PrfA� ΔgloA mutant had the same

sensitivity to MG as the ΔgloA strain by disk diffusion, it had a lower MG-induced mutation

frequency than the ΔgloA mutant. We hypothesize that PrfA activation protects the ΔgloA
mutant from MG-induced DNA damage, although the mechanism and genes involved await

further exploration. If our hypothesis is correct, it suggests that MG leads to PrfA activation

and that activated PrfA not only mediates expression of the known virulence genes, but also

mediates the bacterial response to MG toxicity and perhaps other host-derived stressors. Our

lab continues to explore MG-induced DNA-damage and the possible roles played by PrfA

activation.

MG is a RES that causes oxidative stress through increased generation of ROS and protein

glycation [23–25]. L. monocytogenes produces this toxic byproduct of metabolism; thus, it

must protect itself from MG produced by its cellular processes and that of its host. The fact

that the glyoxalase mutants grew normally in broth but had a defect for growth in TLR-acti-

vated macrophages and in mice, suggests that host-derived MG imposes the major threat to

bacteria during its intracellular growth, although we cannot rule out that changes in L. mono-
cytogenes metabolism may also play a role. TLRs are pattern recognition receptors that upon

stimulation, orchestrate an immune response by activating multiple signaling pathways that

Fig 5. Glutathione, gshF mRNA and actA mRNA levels in glyoxalase mutants. (A) L. monocytogenes strains were grown to mid-log

in defined media and challenged with 0.4 or 1.2 mM MG. Intracellular glutathione concentration was measured relative to wild-type at

different time points post-challenge. Mean and SEM are shown of two technical replicates from two independent experiments. (B-C)

Gene expression determined 15 minutes after MG exposure measured by RT-PCR. (D) Gene expression determined during BMMs

infection measured by RT-PCR. Data are mean and SEM of two technical replicates from two independent experiments. For all

experiments p values were calculated comparing to the wild-type bacteria using an unpaired Student’s t-test; �P< 0.05, ��P< 0.01,
���P< 0.001, ���� indicates P<0.0001.

https://doi.org/10.1371/journal.ppat.1009819.g005
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result in a variety of genetic and metabolic changes [25], including increased glycolysis leading

to increases in MG [17,26,27]. Activated macrophages not only increase MG production, they

also down-regulate expression of their own glyoxalase enzymes, which may contribute to the

inflammatory response [28] and may suggest a role for MG as an antimicrobial strategy.

Upon infection, L. monocytogenes faces numerous stressors. The most striking finding of

our study is that upon MG stress in vitro, gshF transcription is activated, suggesting that MG is

one of the metabolic and redox cues sensed by this pathogen in vivo. Accordingly, glyoxalase

mutants had higher levels of gshF mRNA upon infection compared to wild-type L. monocyto-
genes. Our working model is that L. monocytogenes encounters MG in high quantities in the

host cytosol and that stress caused by MG, and probably other ROS and RES, activates tran-

scriptional regulators such as Spx that induce gshF transcription [11,21]. Indeed, a recent

study reported that in L. monocytogenes, SpxA1 activated gshF transcription [27]. The results

reported in this study suggest that RES and ROS encountered in the cytosol might be the host

cues recognized by this pathogen to sense their entry into the host cell. Whether MG is the

most prevalent RES and redox stress experienced in the cytosol of mammalian cells remains to

be determined. Further studies on redox cues by which intracellular bacteria sense their host

will help better understand how bacteria sense their environment and regulate virulence genes

in response.

Methods

Ethics statement

All animal work was done in strict accordance with the recommendations in the Guide for the

Care and Use of Laboratory Animals of the National Institutes of Health and university regula-

tions. Protocols were reviewed and approved by the Animal Care and Use Committee at the

University of California, Berkeley AUP 2016-05-8811.

Bacterial cultures and strains

The parental strain for all L. monocytogenes strains used in this study (S1 Table) is 10403S. Bac-

teria were cultivated overnight at 37˚C shaking in Brain-Heart Infusion (BHI; BD) with strep-

tomycin (GoldBio) unless otherwise stated. All E. coli strains (S2 Table) were grown in Luria

broth (LB) at 37˚C shaking. Antibiotics were used at the following concentrations: streptomy-

cin (200 μg/mL), erythromycin (1 μg/mL), carbenicillin (100 μg/mL) and chloramphenicol

(7.5 μg/mL for L. monocytogenes; 10 μg/mL for E. coli). For broth growth curves, overnight cul-

tures were diluted in 35 mL of fresh BHI to an initial optical density at 600 nm (OD600) of 0.05.

Bacteria were cultured at 37˚C with shaking and growth was measured spectrophotometrically

every hour [29].

For the generation of transposon libraries, electro-competent L. monocytogenes were pre-

pared, and himar-1 transposon mutagenesis was performed as described previously [30].

Transposon insertion sites were identified [30] and mapped to the 10403S genome. Transpo-

sons in L. monocytogenes were introduced into a wild-type and PrfA� background by transduc-

tion using the phage U153 as described previously [31]. Himar-1 transposon transduction was

selected on erythromycin (Sigma-Aldrich) after two days. Single colonies were sequenced for

verification.

Cloning and plasmid construction

Deletions of genes were performed by allelic exchange using primers listed in S3 Table and the

pKSV7 plasmid [32]. Briefly, constructed pKSV7 plasmids were transformed into XL1 Blue
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and SM10 E. coli, recovered on LB agar plates containing carbenicillin (Sigma-Aldrich) and

conjugated into L. monocytogenes on non-selective BHI agar. L. monocytogenes carrying the

knock-out plasmid were selected on BHI containing streptomycin and chloramphenicol at

30˚C and re-streaked at 42˚C three consecutive times on BHI containing the same antibiotics

to select for chromosomal integration. This selected strain was serially passaged at 30˚C shak-

ing to facilitate loss of pKSV7. Mutants that lost the plasmid were identified by patch-plating

methods and confirmed by PCR and Sanger sequencing [33]. The gloA complementation vec-

tor was constructed as previously described [34] in a pPL2 plasmid using a Phyper promoter.

The plasmid was transformed into XL-Blue and SM10 E. coli. Following confirmation by

Sanger sequencing, it was conjugated into wild-type and ΔgloA L. monocytogenes.

Plaque screen and assay

The mouse L2 fibroblast cell line was cultured in Dulbecco’s Modified Eagle Medium

(DMEM; Gibco) supplemented with 10% Fetal Bovine Serum (FBS; Seradigm), 1% sodium

pyruvate, 1% L- glutamine and 1% penicillin-streptomycin (Corning). L2 cells were grown in

T75 flasks at 37˚C and split once cells were confluent (every 3–4 days). In all experiments, L2

cells were plated overnight so that they were confluent the day of the infection. A himar-1
transposon library composed of approximately 10,000 L. monocytogenes mutants [30] was

used to screen for transposon insertions that caused a small-plaque phenotype. For the initial

screening for small-plaque mutants, 4 x 106 L2 cells were seeded in 100-mm petri dishes and

infected at an MOI of 0.1. The plaque assay was performed as previously described [16]. L2

cells are commonly used to perform this particular assay because they generate highly homoge-

nous and reproducible plaques [16]. Plaques were imaged 72 hours post-infection and small

plaques were selected. Selected small plaque mutants were purified by repeating the plaque-

formation assay until the plaque phenotype was completely homogenous. Transposon mutants

were sequenced and transduced intro different genetic backgrounds. For routine plaque

assays, six-well plates were seeded with 1.2 x 106 L2 cells per well and infected at an MOI of

0.1. The plaque assay was performed as described previously [16]. Plaques were imaged 72

hours post-infection and plaque area was quantified using ImageJ software. Each experiment

represents an average of the area of ten plaques per strain as a percentage of wild-type L. mono-
cytogenes. Groups were statistically compared using an unpaired Student’s t-test.

Intracellular growth curves

Macrophage growth curves were performed as previously described [35]. Bone marrow

derived macrophages (BMMs) were derived from bone marrow of C57BL/6 mice (Jackson

Laboratory) and cultivated in DMEM medium containing 10% CSF (from M-CSF-producing

3T3 cells), 20% FBS, 1% L-glutamine, 1% sodium pyruvate and 14 mM 2-mercaptoethanol

(Gibco). A total of 3 x 106 BMMs were plated in 60 mm petri dishes containing 14 12 mm glass

coverslips in each dish. For indicated experiments, BMMs were seeded overnight with medium

containing PAM3CSK4 (Invivogen) at a final concentration of 100ng/mL. These dishes were

infected the next day at an MOI of 0.25 for 30 minutes, washed twice with sterile PBS and

50 μg/mL gentamicin (Sigma-Aldrich) was added 1-hour post-infection. Three coverslips were

removed at each time point, rigorously mixed in sterile water and plated on LB agar with strep-

tomycin. Each experiment represents the average of three coverslips per time point per strain.

Virulence in mice

Eight-week-old female CD-1 mice (Charles River Laboratories) were infected intravenously

via the tail vein with 1 x 105 CFU of L. monocytogenes strains in 200 μL of sterile PBS as
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described [31]. Forty-eight hours post-infection, mice were euthanized, and spleens and livers

were harvested, homogenized in 0.1% NP-40 (Sigma-Aldrich) in water, and plated on LB agar

with streptomycin. Groups were statistically compared using an unpaired Student’s t-test.

Disk-diffusion assay

Disk-diffusion assays were performed similarly to methods described previously [31,33]. 1 x

106 CFUs from overnight cultures grown at 37˚C shaking were mixed in 4 mL of top agar

(0.8% NaCl and 0.8% bacto-agar) and spread evenly on BHI plates containing streptomycin.

Whatman paper disks containing 20 μL of 20% MG (Sigma-Aldrich) were placed on top of the

cooled agar. The zone of inhibition was measured 18–24 hours after incubation at 37˚C. Total

inhibition area as percentage of wild-type L. monocytogenes is presented from at least three

independent experiments. Statistical significance was determined using an unpaired Student’s

t-test.

Rifampicin mutagenesis assay

Mutation frequency in rifampicin was determined using similar previously described methods

[36]. L. monocytogenes strains were grown at 37˚C shaking in fresh BHI or defined media

(cLSM) [37], containing 1.2 mM MG or 1. 2mM MG plus 30 mM Sodium benzoate (Sigma-

Aldrich). The next day, OD600 was measured for each strain and 100 μL of overnight cultures

were plated in LB agar plates containing 5 μg/mL of rifampicin (Sigma-Aldrich). CFUs were

counted after a 24-hour incubation at 37˚C. Mutation frequency was calculated as the ratio

between CFUs enumerated in the LB agar plates containing rifampicin and the total number

of L. monocytogenes plated. Data represents the average of two technical replicates from three

independent experiments.

Glutathione assay

Reduced glutathione (GSH) concentrations were measured by using a commercial kit supplied

by Sigma-Aldrich (CS0260) according to the manufacturer’s specifications. Briefly, overnight

L. monocytogenes cultures were diluted to an OD600 of 0.1 in 35 mL of fresh defined media and

grown at 37˚C shaking. After two hours, 10 OD600 were transferred to 15 mL Falcon tube and

0.4 or 1.2 mM of MG was added to the indicated cultures. The media was supplemented with

cysteine doubling the amount of MG added (0.8 mM or 2.2 mM) 15 minutes after the addition

of MG. For the untreated cultures a total of 0.8 mM cysteine was added. Bacteria in the Falcon

tube were washed twice in sterile PBS and resuspended in 200 μL of 5% 5-Sulfosalicylic Acid.

Bacteria were lysed 0.1 mm-diameter silica-zirconium beads and 10 μL were used for the kit’s

working reaction. Samples were taken at 15, 30 and 60 minutes post-challenge with MG.

Absorbance at 412 nm was measured using a plate reader (Infinite M1000 PRO, TECAN).

GSH concentrations as a percentage of wild-type without MG challenge are an average of two

technical replicates from three independent experiments.

Quantitative RT-PCR of bacterial transcripts

Transcript analysis in defined media was performed as described previously [38]. Overnight

cultures were diluted 1:10 in 5 mL of fresh cLSM. When the culture reached mid-log growth,

0.4 mM or 1.2 mM MG were added to the cultures. L. monocytogenes strains were harvested 15

minutes post-MG addition at an OD600 of 0.5. Transcript analysis during infection was per-

formed as previously described [5]. Briefly, 3x107 BMMs were plated in 150 mm TC-treated

dishes and infected with an MOI of 10. One-hour post-infection the cells were washed with
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PBS and media containing gentamicin (50 μg/mL) was added. Four hours post-infection the

cells were washed with PBS and lysed in 5 mL of 0.1% NP-40. RNAprotect Bacteria Reagent

(Qiagen) was used to rinse the dishes, which was combined with the lysate. Bacteria were col-

lected by centrifugation. RNA from bacteria harvested from either cLSM or BMMs was

obtained using Quick RNA fungal/bacterial Miniprep from Zymo Research (R2014). Obtained

nucleic acids were treated with TURBO DNase (Invitrogen) and concentrated with the RNA

clean and concentrator kit from Zymo Research (R2017). RNA was reverse transcribed with

iScript (Bio-RAD) and quantitative PCR (qPCR) was performed using SYBR FAST (Kapa Bio-

systems). Primers used for qPCR are listed in S3 Table.

Statistical analysis

Data were analyzed using GraphPad Prism 8. � indicates P<0.05; �� indicates P <0.01, ���

indicates P<0.001, ���� indicates P<0.0001.
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