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Abstract

Background

Type-II diabetes mellitus (T2DM) is a major risk factor for cognitive impairment. Protecting

the brain environment against inflammation, and neurodegeneration, as well as preserva-

tion of the BBB veracity through modulating the crosstalk between insulin/AKT/GSK-3β and

Wnt/β-catenin signaling, might introduce novel therapeutic targets.

Purpose

This study aimed at exploring the possible neuroprotective potential of vitamin D3 (VitD)

and/or rosuvastatin (RSV) in T2DM-induced cognitive deficits.

Methods

T2DM was induced by a high-fat sucrose diet and a single streptozotocin (STZ) dose. Dia-

betic rats were allocated into a diabetic control and three groups treated with RSV (15 mg/

kg/day, PO), VitD (500 IU/kg/day, PO), or their combination.

Results

Administration of VitD and/or RSV mitigated T2DM-induced metabolic abnormalities and

restored the balance between the anti-inflammatory, IL 27 and the proinflammatory, IL 23

levels in the hippocampus. In addition, they markedly activated both the canonical and non-

canonical Wnt/β-catenin cassettes with stimulation of their downstream molecular targets.

VitD and/or RSV upregulated insulin and α7 nicotinic acetylcholine (α7nACh) receptors

gene expression, as well as blood-brain barrier integrity markers including Annexin A1, clau-

din 3, and VE-cadherin. Also, they obliterated hippocampal ApoE-4 content, Tau hyperpho-

sphorylation, and Aβ deposition. These biochemical changes were reflected as improved
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behavioral performance in Morris water maze and novel object recognition tests and

restored hippocampal histological profile.

Conclusion

The current findings have accentuated the neuroprotective potential of VitD and RSV and

provide new incentives to expand their use in T2DM-induced cognitive and memory decline.

This study also suggests a superior benefit of combining both treatments over either drug

alone.

1. Introduction

Type-II diabetes mellitus (T2DM) is a major risk factor for cognitive impairment [1–3]. Insu-

lin receptors are widely distributed in the brain [4, 5] with similar kinetics and pharmacologi-

cal properties to those present in peripheral tissues [6–8] and ultimately insulin plays a critical

role in modulating cognitive performance [9, 10].

At the molecular level, impaired insulin signaling may promote amyloid-β (Aβ) deposition

and Tau hyperphosphorylation via brain insulin resistance, which disturbs insulin signaling at

the blood-brain barrier (BBB) level [11, 12] through the Wingless-related integration site

(Wnt)/glycogen synthase kinase-3 β (GSK-3β)/β-catenin signaling pathway. This leads to neu-

ronal death and behavioral deficits possibly by promoting β-catenin degradation [13]. Studies

have shown that both canonical and noncanonical Wnt/β-catenin pathways play a significant

role in learning and memory [14, 15], as well as synaptic plasticity and cell survival [13].

The canonical pathway is activated when the Wnt-5a ligand binds to its receptor thus phos-

phorylating β-catenin at serine (S) 675. As a consequence, β-catenin accumulates in the cytosol

and subsequently translocates to the nucleus where it promotes Wnt target genes expression

[14]. Conversely, studies have shown that GSK-3β activation promotes β-catenin phosphoryla-

tion at S37 in the absence of Wnt ligands thus facilitating β-catenin degradation [16, 17].

Hence, contributes to neuronal pathology, and cognitive and memory shortage [15]. In the

non-canonical Wnt pathway, activation of homolog family member A (RhoA) and rac family

small GTPase 1 (Rac1) increase the phosphorylation of (protein kinase-B) AKT and subse-

quently GSK-3β [18]. This phosphorylation process decreases Aβ aggregation, and Tau deposi-

tion and leads to translocation of β-catenin into the nucleus, and consequently improves

cognitive deficits [17].

Emerging evidence also suggests that blood-brain barrier (BBB) integrity is crucial in the

pathology of neurodegeneration and cognitive impairment. BBB disruption resulting from

multiple neuroinflammatory events that interrupt tight junctions is a marked feature of cogni-

tive defects [19]. Thus, protecting the brain environment against inflammation, and neurode-

generation, as well as preservation of the BBB veracity through modulating Wnt/β-catenin

signaling, might introduce novel therapeutic targets for T2DM-associated cognitive decline.

Rosuvastatin (RSV) is an HMG-CoA reductase inhibitor used in the management of dysli-

pidemia [20]. Lowering cholesterol levels in experimental animal models has been proven to

slow down the progression of learning and memory deficits [21]. Regarding the role of statins

in both cognitive impairment and protection against dementia, data in the literature are con-

tradictory, ranging from the evidence of a reversible cognitive impairing effect in some

patients to a protective effect; some authors do not suggest an effect of statins on cognition

[22–25]. The widespread use of statins heightens the importance of careful consideration of

this effect. Moreover, it has been reported that statins could reduce the risk of dementia and
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cognitive decline directly by promoting the Wnt/β-catenin signaling pathway [13, 26]. Accord-

ingly, further studies are required to characterize the intracellular signaling transduction that

derives its protective effect against cognitive deterioration in T2DM.

Vitamin D3 (VitD), a well-known secosteroid hormone, exerts both genomic and non-

genomic actions; these actions cooperate by crosstalk between several signaling pathways. It

has been increasingly implicated in the pathophysiology and the progression of many neuro-

logical diseases [27] including Alzheimer’s disease (AD) [28] and ischemic stroke [29]. Current

evidence suggests that VitD may be an interesting candidate for T2DM pathogenesis and

development [30] and that it could maintain cognitive function because of its neuroprotective,

anti-inflammatory, and antioxidant properties [31, 32]. In the brain, VitD was shown to affect

neurite growth, differentiation, synaptic plasticity, as well as neuroprotection [31, 33, 34].

However, the possible therapeutic contribution of VitD in cognitive disorders in T2DM is still

questioned.

To this end, the present study aims at investigating the possible benefits of VitD and/or

RSV in rats in T2DM-induced cognitive and memory loss. Additionally, this work addresses

the potential modulatory role of the crosstalk between insulin and Wnt/β-Catenin cassettes,

and their downstream targets in the observed beneficial outcomes.

2. Materials and methods

2.1. Animals

Adult male Sprague Dawley rats (150–180 g) were purchased from the breeding colony of the

National Institute of Research (Giza, Egypt). Rats were kept under standardized laboratory

conditions with food and water ad libitum. They were exposed for 12 h light/dark cycle and

controlled temperature (25±5˚C). The study protocol was approved by the Research Ethics

Committee of the Faculty of Pharmacy, Cairo University, Cairo, Egypt (PT-2310) and the Fac-

ulty of Pharmacy (Future University in Egypt, Cairo, Egypt) along the lines of the Guide for

the Care and Use of Laboratory Animals (ILAR, 2001) [35].

2.2. Drugs and chemicals

Streptozotocin (STZ) and RSV were purchased from Sigma-Aldrich Co., St. Louis, MO, USA;

VitD was obtained from Medical Union Pharmaceuticals Co., Cairo, Egypt; cholesterol and

long-acting human insulin (Monotard) were obtained from Middle East Co., Cairo, Egypt,

and Eli Lilly Co., USA, respectively. Sucrose and lard were obtained from commercial sources

and were of the highest analytical grade.

2.3. Induction of T2DM-induced cognitive impairment and experimental

design

Forty rats (approximately 5–6 weeks in age) were fed a high-fat sucrose diet (HFSD) for 11

weeks, according to the method of Cai et al [36], with slight modification. The diet was com-

posed of 20% sucrose, 25% lard, 2.5% cholesterol, and 52.5% standard chow [composed of fat

(5%), protein (26%), carbohydrate as starch (60%), fibers (8%), and vitamins/minerals mixture

(1%)]. At the beginning of the 5th week, a single sub-diabetogenic dose of STZ (35 mg/kg; IP)

dissolved in 0.09 M citrate buffer solution (pH 4.8), was given after an overnight fast. Animals

were then maintained on a 5% glucose solution for 24 h. A normal-control (NC; n = 10) group

was kept on a conventional pellet diet and water ad libitum was run concomitantly. The

T2DM model was considered successful when the random blood sugar level was above 200

mg/dl at the beginning of the 7th week [36].
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After establishing the model (week 7), HFSD-fed animals were randomly allocated into

four groups (10 rats/ each); T2DM, T2DM + VitD, T2DM + RSV, and T2DM + VitD + RSV.

Then, the rats were treated daily for 5 weeks (weeks 7–11) with the drugs along with HFSD.

The dose of VitD was 500 IU/kg/day; PO [37], while that for RSV was 15mg/kg/day; PO [38].

2.4. Behavioral studies

At the beginning of the 11th week, all animals were subjected to the novel object recognition

and Morris water maze tests to assess learning ability, and cognitive and memory impairment.

2.4.1. Novel Object Recognition Test (NORT). NORT is used to assess long-term mem-

ory and cognition [39]. It consists of habituation, familiarization, and test sessions. In habitua-

tion, animals were placed in a wooden box of 30 × 70 × 70 cm dimensions and allowed to

discover it for 10 min for two consequent days. On the third day, each rat was placed in the

same apparatus, which contained two identical objects (A + A) placed side by side, for 10 min

(familiarization). Twenty-four hours thereafter, animals were subjected to the testing session

where one of the previously explored objects was replaced by a novel one (A + B). Animals

were then put back in the middle of the box with two objects (A + B) for 10 min. The objects

used in this experimentation were mostly small toys (8–12 cm) with a variety of textures, struc-

tures, colors, and sizes, which were fixed on the floor with removable adhesive tape with their

edges at 15 cm from the walls. Rats’ behavior during the test was recorded using a camera [40].

For each animal, the percentage of time spent exploring the novel object (novel object/[novel

object + old object] ×100) and the old object (the % of novel object—100) during the test ses-

sion was calculated [39]. A discrimination index was determined using this formula (novel

object − old object)/ (novel object + old object) [40].

2.4.2. Morris Water Maze Test (MWMT). MWMT assesses spatial learning [41]. It is a

large open circular pool (160 cm in diameter, 50 cm in height) half-filled with water at a tem-

perature of 22˚C ± 1. The water surface was divided into four quadrants. To render the plat-

form invisible, non-toxic white latex paint was added and a white escape platform (11 cm in

diameter) was submerged 1 cm beneath the water level. The procedure was performed on five

consecutive days. Rats were submitted to four trials each day and started from randomly set

positions. In each trial, rats were allowed to swim for 120 s. If the rat was unable to locate the

platform during this period, it was guided to the platform and left for 30 s. The platform was

always in the same position during all training trials. The mean escape latency (MEL) to reach

the platform, and the time spent in the target quadrant was measured on day 5 whereby the

platform was removed [40].

2.5. Collection of blood samples

After the last dose of the drugs, animals were fasted for 12 h, anesthetized with thiopental (60

mg/kg, IP) and blood samples were collected from the heart following chest opening. Serum

was separated by centrifugation at 3000 rpm for the estimation of glucose, total cholesterol

(TC), triglycerides (TGs), and high-density lipoprotein cholesterol (HDL-C) using colorimet-

ric assay kits (SPECTRUM1, Egypt). Low-density lipoprotein cholesterol (LDL-C) was calcu-

lated according to the Friedewald equation: TC−(HDL cholesterol+1/5 TGs) [42]. Free fatty

acids (FFAs) and insulin were measured by ELISA kits (MyBioSource1, USA) and (RayBio-

tech1, GA, USA; #ELR-Insulin), respectively. Homeostasis model assessment for insulin resis-

tance (HOMA-IR) was estimated according to the following equation:

HOMA-IR ¼ Glucose mg=dlð Þ � fasting insulin mIU=mlð Þ=405

[43].
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2.6. Tissue Preparation and biochemical investigations

Following the collection of blood samples, brains (n = 4) were dissected and preserved in 10%

formalin in saline for histopathological and immunohistochemical studies. Hippocampi from

the remaining rats (n = 6) were excised and stored at -80˚C. The left hippocampus was homog-

enized in ice-cold saline to prepare 10% homogenate to be assayed using the ELISA technique.

While the right hippocampi were divided into two subsets. One subset (3 rats) was homoge-

nized in a radioimmunoprecipitation assay (RIPA) buffer with protease and phosphatase

inhibitors and was divided into aliquots for Western blotting analysis and the other one (3

rats) was submerged overnight in RNA lysis solution for the qRT-PCR assay.

The Bradford assay was used for the estimation of the protein content of the homogenized

samples [44].

2.6.1. ELISA technique. Interleukin-23 (IL-23), interleukin-27 (IL-27), apolipoprotein E

type-4 allele (ApoE-4), claudin-3 and vascular endothelial cadherin (VE-cadherin) contents

were determined using ELISA kits (MyBioSource1, USA); with catalog numbers: MBS704680,

CSB-E08465r, MBS263133, MBS451608 and MBS2703236, respectively. All procedures were

performed according to the manufacturers’ instructions. The results are presented as ng/mg

protein for ApoE-4, VE-cadherin and pg/mg protein for Claudin-3, IL-23, IL-27.

2.6.2. Western blot analysis. Following protein quantification of hippocampal tissue

(Bio-Rad Protein Assay Kit, CA, USA), protein extracts were separated by SDS gel electropho-

resis and then transferred to nitrocellulose membrane. The blots were probed with antibodies

(ThermoFisher Scientific, MA, USA) specific for Wnt-5a (1:1000; cat#: MA5-14946), p-tau

(Ser396; 1:1000, #44-752G), pGSK-3β (Ser9; 1:1000, cat#: MA5-14873), p-AKT (Ser473; 1:500–

1:3000, cat#: PA5-85513), RhoA (1:500–1:2000; cat#: MA1-134), Rac1 (1:500–1:1000; cat#:

MA5-32928), pS675 β–catenin (1:1000–1:3000; cat#: PA5-105840) and pS37 β–catenin (1:500–

1:2000; cat#:PA5-104871) Horseradish peroxidase-conjugated goat anti-rat immunoglobulin

(Dianova, Hamburg, Germany) was used as the secondary antibody, which is a Horseradish

peroxidase-conjugate (cat#: NBP1-75304). Immunoreactivity was detected by CCD camera-

based imager and band intensities of the target proteins were normalized against the control

sample (β-actin) (cat#: MA1115) using Chemi Doc MP Imager. Results are expressed as arbi-

trary units against β-actin.

2.6.3. Quantitative RT-PCR technique. Total RNA was extracted from hippocampal

sections using SV total RNA isolation system (Promega, Madison, WI, USA) and the purity

of RNA was verified at 260 nm by spectrophotometer. The extracted RNA was conversely

transcribed into cDNA using RT-PCR kit (Stratagene, Santa Clara, CA) according to the

manufacturer’s guidelines. Gene expression levels were assessed by SYBR Green-based Real

Time Quantitative PCR method. Table 1 demonstrate PCR primers designed with Gene

Table 1. Primer sequences for quantitative PCR of the studied genes.

Studied gene Primer sequence Gene bank accession number

Insulin receptor Forward: 50-TTCATTCAGGAAGACCTTCGA-30 XM_039089098.1

Reverse: 50-AGGCCAGAGATGACAAGTGAC-30

α7nAch receptor Forward: 50CTGGTGCCAGCAGTGTTGAC3’ NM 133420.1

Reverse: 50GATTGTAGCCTCCAAACAGGTGT3

Annexin A1 Forward: 50- GCCCCTACCCTTCCTTCAAT-30 NM_012904.2

Reverse: 50- GAGTGTCTTCATCTGTTCCA-30

β-actin Forward: 50-AGGCATCCTCACCCTGAAGTA-30 NM_031144.3

Reverse: 50-CACACGCAGCTCATTGTAGA-30

https://doi.org/10.1371/journal.pone.0277457.t001
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Runner Software (Hasting Software, Inc., Hasting, New York) from RNA sequences from

GenBank. All primer sets had a calculated annealing temperature of 60˚C. Amplification con-

ditions were 2 minutes at 50˚C, 10 minutes at 95˚C and 40 cycles of denaturation for 15 sec-

onds and annealing/extension at 60˚C for 10 minutes. For quantification of mRNA,

comparative Ct method (ΔCt value) was used, where the quantity of target transcript was

normalized according to the level of beta actin gene using StepOne Applied Biosystems Soft-

ware (Foster City).

2.6.4. Histopathological and immunohistochemical investigations. Hippocampi were

fixed in 10% phosphate-buffered formalin for 72 h. Tissue specimens were embedded in paraf-

fin wax and sectioned at 5 μm thickness and stained with hematoxylin and eosin. Stained sec-

tions were blindly examined under a light electric microscope (Olympus CX21, Tokyo, Japan)

and photographed with a CCD camera-based imager. Coronally cut sections (4 μm) were also

prepared for immunohistochemical staining of Amyloid-β (Aβ) using polyclonal Aβ antibody

4702 (1:1500) and monoclonal Aβ antibodies 6E10 (1:2000–4000; Senetek, Maryland Heights,

MO) and 4G8 (1:20,000; Senetek). Diaminobenzidine was used for staining plaque-associated

immunoreactivity. The severity of the injury was semi-quantitatively scored as 0 (no staining),

1+ (<10 plaques), 2+ (>10 scattered plaques), 3+ (most of the hippocampus stained), or 4+

(almost confluent staining).

2.7. Statistical analysis

Data are expressed as means ± SD. For parametric analysis, multiple comparisons were per-

formed using a one-way analysis of variance (ANOVA) test followed by Tukey’s Multiple

Comparison Test. For non-parametric data, Kruskal–Wallis followed by Dunn’s multiple com-

parisons tests was used. GraphPad Prism software package, version 7 (GraphPad Software

Inc., CA, USA) was used to carry out all statistical tests. The level of significance was fixed at

p< 0.05 for all statistical tests.

3. Results

3.1. VitD, RSV, and their combination improved T2DM-induced cognitive

impairment

As revealed in Fig 1, diabetic rats showed marked cognitive deficits in both NORT and MWM

tests. In the NORT, diseased rats showed a 32% decrement in the discrimination index (A)

and 67% in the percentage of time spent exploring the new object (B), indicating long-term

memory deterioration. Treatment with either VitD or RSV improved the discrimination index

and shortened the time spent exploring the familiar object compared to the T2DM group. The

combination group significantly restored the abovementioned parameters to near normal

values.

In the MWMT, the mean escape latency (MEL) was increased by 2.5 folds compared to the

NC group (C). Additionally, in the probe test, T2DM rats spent 54% less time in the target

quadrant (D) searching for the missing platform. Treatment with VitD, RSV, and their combi-

nation significantly decreased the mean escape latency, and the time spent in the target quad-

rant compared to T2DM, indicating improved spatial learning and memory tasks.

3.2. VitD, RSV, and their combination improved T2DM-induced

histopathological alterations and Aβ deposition

As shown in Fig 2, moderate neurofibrillary tangles and Aβ formation were exhibited in the

diabetic group (B) compared to the NC group (A). Hirano bodies which are a main feature
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of neurodegeneration were also detected. Additionally, immunostaining of the hippocampal

area (F-J) revealed a huge deposition of Aβ (>10-stained scattered plaques; (G) compared to

normal rats (F). The VitD-treated group displayed fewer Aβ plaques (H) with a moderate

Aβ expression (<10 stained scattered plaques; H), while in the RSV-treated group, there

were only a few numbers of plaques (I) with faint staining of Aβ (<10 stained plaques; I).

Interestingly, the combined treatment (E) showed the normal structure of glial cells and

pyramidal cells with no expression of Aβ (J). The observed Aβ staining score is portrayed in

panel K.

3.3. VitD, RSV, and their combination improved T2DM-induced metabolic

dysfunction

As cleared in Fig 3, diabetic rats showed a threefold elevation in the level of serum insulin (A),

a twofold rise in serum glucose level (B), and a threefold increase in free fatty acids (C) as com-

pared to the NC group. Conversely, administration of either VitD or RSV resulted in a

Fig 1. Effect of VitD and/or RSV on T2DM-induced cognitive impairment in the NORT and the MWMT. (A) discrimination index (NORT); (B) a

percentage of time spent exploring the novel and the familiar objects (NORT); (C) mean escape latency (MWMT); (D) time spent in the target quadrant

(MWMT). Data are represented as mean ± SD (n = 10). � vs control, # vs T2DM, @ vs VitD, $ vs RSV using one-way ANOVA followed by Tukey

multiple comparison test at p<0.05. NC: normal-control, RSV: rosuvastatin, T2DM: type-II diabetes mellitus, VitD: vitamin D3.

https://doi.org/10.1371/journal.pone.0277457.g001
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significant reduction in glucose and FFAs levels, compared to T2DM. However, serum insulin

level was significantly reduced by RSV treatment only. In the combination treatment, a more

pronounced attenuation of the abovementioned parameters was reached as compared to either

drug alone. HOMA-IR values in diabetic rats were drastically elevated to 9.7 times the NC

group (D), while combined VitD and RSV therapy changed it to 3.4 times.

3.4. VitD, RSV, and their combination improved T2DM-accompanied

dyslipidemia

Fig 4 showed that diabetic rats demonstrated an obvious twofold elevation in the serum levels

of TGs (A), threefold elevation in LDL-C (B), and a twofold increase in TC (C) accompanied

by a marked 53.5% reduction in HDL-C (D) in comparison to the NC group. Notably, treat-

ment with VitD significantly decreased TGs, LDL-C, and TC together with a profound boost

in HDL-C levels. In parallel, administration of RSV markedly reduced TGs, LDL-C, and TC

levels, but failed to raise the level of HDL-C to any significant extent. Again, combined treat-

ment with VitD and RSV resulted in a more favorable effect on the previous parameters.

Fig 2. Effect of VitD and/or RSV on T2DM-induced histological changes. A-E Specimens stained with H&E (400 x); (A) Control group showing

normal histological structure with normal granular cell layers (arrow), (B) T2DM group with relatively few numbers of neurofibrillary tangles and Aβ
formation appeared as flame-shaped structures (arrowhead) and rod-shaped, crystal-like, eosinophilic intra-neural structures known as Hirano bodies

(arrow), (C) VitD group showing Aβ formation (arrow), (D) RSV group representing few numbers of faint Aβ (arrow) and (E) combination group

demonstrating the normal structure of glial and pyramidal cells (arrow). F-J immunostaining of the hippocampal area (400 x); (F) Control group

showing no expression of Aβ (arrow), (G) T2DM group revealing a huge expression of Aβ (>10 stained scattered plaques) (arrow), (H) VitD group

showing a moderate expression of Aβ (<10 stained scattered plaques) (arrow), (I) RSV group representing a slight expression of Aβ (<10 stained

plaques) (arrow), and (J) combination group showing no expression of Aβ (arrow). (K) Aβ staining score. Data are represented as a scattering dotted

plot of the median of 4 sections of 4 animals. � vs control, # vs T2DM. Statistical analysis was performed by Kruskal-Wallis followed by Dunn’s multiple

comparison test at p<0.05. Aβ: amyloid-β, NC: normal-control, RSV: rosuvastatin, T2DM: type-II diabetes mellitus, VitD: vitamin D3.

https://doi.org/10.1371/journal.pone.0277457.g002
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3.5. VitD, RSV, and their combination improved hippocampal T2DM-

induced alterations in the canonical Wnt/β-catenin signaling pathway

As expressed in Fig 5, T2DM markedly inactivated the canonical Wnt/β-catenin signaling

pathway as indicated by a twofold rise in ApoE-4 content (A), a fall of nearly 63% of Wnt5a

(B), 68% of pS9 GSK-3β (C) and a 73% of pS675 β-catenin (D). This was paralleled by a six-

fold upregulation of pS37 β-catenin (E) as compared to the NC group. Treatment with either

VitD or RSV significantly decreased ApoE-4 content and upregulated Wnt5a, pS9GSK-3β, and

pS675 β-catenin together with a downregulation in pS37 β-catenin as compared to T2DM

group. Notably, the combined therapy showed more prominent improvement over either

drug alone.

Fig 3. Effect of VitD and/or RSV on T2DM-induced metabolic disturbance in the serum. (A) Insulin, (B) Glucose, and (C) FFAs levels, as well as (D)

The pattern of the HOMA-IR index. Data are expressed as mean ± SD. � vs control, # vs T2DM, @ vs VitD, $ vs RSV using one-way ANOVA followed by

Tukey multiple comparison test at p<0.05. FFAs: free fatty acids, HOMA-IR: homeostasis model assessment for insulin resistance, NC: normal-control,

RSV: rosuvastatin, T2DM: type-II diabetes mellitus, VitD: vitamin D3.

https://doi.org/10.1371/journal.pone.0277457.g003
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3.6. VitD, RSV, and their combination attenuated T2DM-induced

inhibition of the non-canonical Wnt/β-catenin signaling pathway

Diabetic rats presented an obvious 52.3% and 60.5% reduction in RhoA (Fig 6A) and Rac1

(Fig 6B) relative protein expression, respectively as compared to the NC group. Additionally, a

significant 81.8% decrease in the phosphorylation of Akt at S473 was observed (Fig 6C). In

comparison with the T2DM group, treatment with either VitD and/or RSV significantly

reversed the previous effects.

3.7. VitD, RSV, and their combination increased hippocampal claudin 3,

VE-cadherin contents, and Annexin A1 gene expression

T2DM rats manifested a 45.7%, 73%, and 69.8% decline in the hippocampal claudin 3 (Fig

7A), VE-cadherin (Fig 7B) contents, and Annexin A1 relative gene expression (Fig 7C), respec-

tively as compared to the NC group. Administration of either VitD or RSV significantly ele-

vated VE-cadherin content and upgraded Annexin A1 relative gene expression, compared to

Fig 4. Effect of VitD and/or RSV on T2DM-induced disturbance in lipid profile: (A) TGs, (B) LDL-C, (C) TC, and (D) HDL- C levels. Data are

expressed as mean ± SD. � vs control, # vs T2DM, @ vs VitD, $ vs RSV using one-way ANOVA followed by Tukey multiple comparison test at p<0.05.

HDL-C: high-density lipoprotein cholesterol, LDL-C: low-density lipoprotein-density cholesterol, NC: normal-control, RSV: rosuvastatin, TC: total

cholesterol, TGs: triglycerides, T2DM: type-II diabetes mellitus, VitD: vitamin D3.

https://doi.org/10.1371/journal.pone.0277457.g004
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the diseased group. However, only RSV treatment significantly increased claudin 3 content

compared to the T2DM group. The combination of both drugs displayed a more significant

amelioration for both VE-cadherin and Annexin A1 as compared to monotherapy.

3.8. VitD, RSV, and their combination mitigated hippocampal

neuroinflammation

Fig 8 showed that T2DM was associated with marked inflammatory events as evidenced by a

4.7-fold increment in the pro-inflammatory cytokine, IL-23 (A), and a 63.3% reduction in the

anti-inflammatory cytokine, IL-27 (B) as compared to the NC group. Treatment with VitD,

RSV, or their combination showed significant anti-inflammatory effects through reducing IL-

23 and elevating IL-27 levels, compared to the T2DM group.

3.9. VitD, RSV, and their combination hampered hippocampal Tau

hyperphosphorylation and upregulated insulin and α7nACh receptors

relative gene expression

As shown in Fig 9, diabetic rats showed five times more phosphorylation of Tau protein (A),

accompanied by a 79% and 69% decline in the gene expression of insulin (B) and α7nACh (C)

receptors as compared to the NC group. Treatment with either VitD or RSV alone lowered the

level of p-tau and elevated the expression of both receptors, compared to T2DM. Again, the

combined treatment was superior to either drug alone.

Fig 5. Effect of VitD and/or RSV on the canonical Wnt/β-catenin signaling pathway. (A) ApoE-4 content, protein expression of (B) Wnt5a, (C)

pS9GSK-3β, (D) pS675 β-catenin and (E) pS37 β-catenin. Data are expressed as mean ± SD. � vs control, # vs T2DM, @ vs VitD, $ vs RSV using one-way

ANOVA followed by Tukey multiple comparison test at p<0.05. ApoE-4: apolipoprotein E type 4 allele, pGSK-3β: phosphorylated glycogen synthase

kinase-3 β, NC: normal-control, RSV: rosuvastatin, T2DM: type-II diabetes mellitus, VitD: vitamin D3, Wnt5a: wingless-type family member 5a.

https://doi.org/10.1371/journal.pone.0277457.g005
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4. Discussion

Because of the epidemiological evidence for an increased risk of dementia and mild cognitive

impairment in patients with diabetes, VitD and RSV were given to diabetic rats either alone or

combined to investigate their protective potential in T2DM-induced memory deficits. This

effect was partly attributed to (1) halting of T2DM-associated metabolic dysfunction, (2) mod-

ulation of the crosstalk between hippocampal insulin and noncanonical Wnt/β-catenin cas-

sette, (3) stimulation of the canonical Wnt/β-catenin signaling pathway, (4) mitigation of

neuroinflammation and preservation of BBB integrity, (5) improvement of memory and cog-

nitive abilities, and 6) restoration of the hippocampal histological architecture.

Peripheral insulin resistance is accompanied by central manifestations like defective insulin

signaling [45], neuroinflammation [46], brain abnormalities, as well as cognitive and memory

deficits [47]. Remarkably, disrupted brain insulin pathways are accompanied by increased

deposition of Aβ, Tau hyperphosphorylation, and the formation of neurofibrillary tangles

(NFTs) [45]. In consistence, findings of the current work showed that maintaining rats on

HFSD for eleven weeks with a single injection of STZ in the fourth week resulted in T2DM

Fig 6. Effect of VitD and/or RSV on the noncanonical Wnt/β-catenin signaling pathway. (A) RhoA; (B) Rac1 and (C) p-AKT protein expression.

Data expressed as mean ± SD. � vs control, # vs T2DM, @ vs VitD, $ vs RSV using one-way ANOVA followed by Tukey multiple comparison test at

p<0.05. NC: normal-control, p-Akt: phosphorylated-protein kinase-B, Rac1: rac family small GTPase 1, RhoA: ras homolog family member A, RSV:

rosuvastatin, T2DM: type-II diabetes mellitus, VitD: vitamin D3.

https://doi.org/10.1371/journal.pone.0277457.g006
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classical triad including hyperglycemia, insulin resistance, and dyslipidemia. These changes

were accompanied by massive hippocampal injury as manifested by the profound neuronal

loss, NFTs formation, neuroinflammation, and increased deposition of Aβ and Tau hyperpho-

sphorylation with ensuing behavioral and memory deterioration as observed herein. T2DM is

reported to induce impaired brain insulin functions through alteration of the PI3K/AKT/

GSK-3β cascade [48]. Insulin and insulin receptors (IRs) are located in various brain regions

[49]. They were found spread in the brain including the hippocampus [50] where it is antici-

pated to participate in cognitive function [51]. Further, amyloid-β peptides compete with insu-

lin for binding to IR. This decreases the insulin binding affinity to IR and hence results in

insulin resistance [52]. The dropped expression of hippocampal IRs in diabetic rats and its

reversal by treatment, as reported in the current study, support the hypothesis that decreases

in hippocampal IR activities contribute to behavioral deficits in type 2 diabetes [53].

The primary finding was that treatment of diabetic animals with VitD or RSV markedly

improved T2DM-induced metabolic abnormalities in line with other reports [20, 21, 26, 28].

Fig 7. Effect of VitD and/or RSV on the indicators of BBB integrity. (A) claudin-3, (B) VE-cadherin contents, and (C) Annexin A1 relative gene

expression. Data are expressed as mean ± SD. � vs control, # vs T2DM, @ vs VitD, $ vs RSV using one-way ANOVA followed by Tukey multiple

comparison test at p<0.05. NC: normal-control, RSV: rosuvastatin, T2DM: type-II diabetes mellitus, VE-cadherin: vascular endothelial-cadherin, VitD:

vitamin D3.

https://doi.org/10.1371/journal.pone.0277457.g007
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The beneficial effects of either VitD or RSV on the disrupted metabolic profile were paralleled

by improved insulin sensitivity. VitD could increase insulin sensitivity either directly by stimu-

lating the expression of insulin receptors [54, 55] and/or indirectly by lessening the effects of

systemic inflammation in patients with T2DM. This could be achieved by protecting against β
cell cytokine-induced apoptosis through modulating the expression and activity of cytokines

and reducing chronic inflammation [56–59]. On the other hand, RSV increases insulin sensi-

tivity in the whole body and peripheral tissues via improving cellular insulin signal transduc-

tion, in part, through increased activation of AKT [60]. It may also diminish the activity of

inflammatory cascades including Jun N-terminal kinase and nuclear factor kappa-B pathways,

that in turn improves insulin sensitivity since both are known to block insulin signaling

through inhibition of IRS-1 [60].

Notably, the combined treatment with VitD and RSV provoked greater outcomes on the

disrupted metabolic profile than either one alone. Interestingly, modulation of these metabolic

abnormalities was reflected centrally and could be related to the ability of VitD and/ or RSV to

improve defective insulin signaling by increasing the gene expression of hippocampal insulin

receptors and protein expression of p-AKT and p-GSK-3β with reduced Tau hyperphosphory-

lation and Aβ deposition as shown in Figs 5 & 9 in parallel with other studies [61, 62]. VitD is

involved in stimulating PI3K/AKT signaling, sensitizing the neuronal cells to downregulate

the AD-like markers, particularly GSK-3β and Tau gene expression and amyloid-beta deposi-

tion [63, 64]. It seems that RSV reduces the risk of dementia due to its lipid-lowering effect.

Lower cholesterol levels in the midlife help to reduce the risk of all types of dementia in late-

life [65]. Furthermore, treatment with RSV ameliorated cognitive impairment by improved

locomotor activity, reducing cholesterol deposition, acetylcholinesterase activity, and Aβ1–42

peptide aggregation [66]. VitD or RSV-induced molecular changes were corroborated with

improved performance in the MWM and NOR tests and go in line with many investigators

who reported their beneficial impacts on learning and memory [67–69].

Findings revealed that the protective effect of VitD in asthma [70], colon cancer [71, 72]

and inflammatory bowel disease [73] is possibly through regulating the activity of Wnt/β-cate-

nin signaling. VitD activates Wnt/β-catenin signaling pathway through modulating LDL

Receptor Related Protein 5 (Lrp5) co-receptor (the main cofactor in Wnt/β-catenin pathway)

[74]. Furthermore, VitD suppress (Dickkopf-1) DKK1 which is the main deactivator of the

Wnt/β-catenin signaling pathway [75]. RSV, having pleiotropic effects, also modulates the

Fig 8. Effect of VitD and/or RSV on hippocampal T2DM-induced neuroinflammation. (A) IL-23; and (B) IL-27 contents. Data are expressed as

mean ± SD. � vs control, # vs T2DM, @ vs VitD, $ vs RSV using one-way ANOVA followed by Tukey multiple comparison test at p<0.05. IL-23:

interlukin-23, IL-27: interlukin-27, NC: normal-control, RSV: rosuvastatin, T2DM: type-II diabetes mellitus, VitD: vitamin D3.

https://doi.org/10.1371/journal.pone.0277457.g008
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Wnt/β-catenin signaling pathway [76] possibly through reducing the degradation of β-catenin

and increasing its accumulation in the cells [77]. Indeed, administration of either drug signifi-

cantly increased the hippocampal protein expression of the Wnt5a ligand, the main activator

of the noncanonical Wnt pathway [78], with upregulation of RhoA and Rac1, phosphorylation

of AKT, GSK-3β inhibition, Tau dephosphorylation and Aβ clearance [79]. Activation of the

noncanonical Wnt pathway was reported to improve learning and memory deficits in various

studies [18, 79]. Insulin resistance and hyperglycemia deactivate Wnt signaling and induce β-

catenin degradation and nuclear dislocation [80]. Regarding VitD, the present findings

showed for the first time that it resulted in activation of the noncanonical Wnt cascade and its

downstream molecules RhoA and Rac1.

As for the canonical Wnt/β-catenin cassette, it was activated following the administration

of VitD, RSV, or their combination. Inhibition of canonical Wnt/β-catenin pathway leads to

enhanced phosphorylation of β-catenin by GSK-3β that mediated its ubiquitination and pro-

teasomal degradation as observed herein [17]. However, administration of VitD and/or RSV

Fig 9. Effect of VitD and/or RSV on p-tau protein expression and gene expression of insulin and α7nACh receptors in the hippocampus. (A) p-tau

protein, (B) insulin, and (C) α7nACh receptors. Data are expressed as mean ± SD. � vs control, # vs T2DM, @ vs VitD, $ vs RSV using one-way ANOVA

followed by Tukey multiple comparison test at p<0.05. α7nACh: α7 nicotinic acetylcholine, NC: normal-control, RSV: rosuvastatin, T2DM: type-II

diabetes mellitus, VitD: vitamin D3.

https://doi.org/10.1371/journal.pone.0277457.g009
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modulated the canonical Wnt/β-catenin trajectory as evidenced by the increased protein

expression of Wnt5a and pS675 β-catenin, as well as reduced ApoE-4 hippocampal levels.

Hence, the enhanced Wnt/β-catenin signaling with subsequent stimulation of its nuclear tar-

gets could pin down a key mechanism by which VitD or RSV may improve T2DM provoked

hippocampal injury and associated cognitive and memory impairment.

Among activated Wnt/ β-catenin transcriptional targets are genes encoding for tight junc-

tion proteins Annexin A1 [81] and claudin 3 [82], as well as adherens junction proteins namely

VE-cadherin [83]. The present study demonstrated that administration of VitD and/or RSV

markedly upregulated the protein expression of Annexin A1 and claudin 3 paralleled by a pro-

nounced reduction in neuronal loss, NFTs, and Aβ deposition. Regarding VE-cadherin, its

downregulation triggers BBB leakage, which is involved in CNS pathologies like AD [84] as

observed herein. Notably, administration of VitD and/or RSV to T2DM rats upsurged the hip-

pocampal levels of VE-cadherin in line with previous studies [85–87].

Another important downstream target for Wnt /β-catenin signaling is α7 nicotinic acetyl-

choline receptor (α7nAChR) [88] whose downregulation in the hippocampus and cortex cor-

relates with Aβ-induced neurotoxicity and cognitive dysfunction [89]. The present findings

demonstrated that VitD administration upregulated the gene expression of α7nAChR, an

effect that could be ascribed to its ability to turn on the Wnt/β-catenin hub. Similarly, RSV

upsurged the gene expression of α7nAChR which is quite consistent with Chen et al. [90].

Remarkably, the administration of both agents produced a greater effect than either one alone,

suggesting the benefits of the combination treatment. The upregulated gene expression of

α7nAChR goes in line with many authors [91–93].

The findings of the current work showed that VitD or RSV increased the anti-inflamma-

tory, IL 27 and decreased the proinflammatory, IL 23 cytokines’ levels. This was further aug-

mented by the co-administration of both drugs. Regulating the expression of these pivotal

cytokines is one of the Wnt/β-catenin downstream signaling [94] roles in maintaining the bal-

ance between anti-inflammatory and proinflammatory cytokines, preserving the BBB integ-

rity, and improving learning and memory deficits [95]. The ability of VitD and/or RSV to

suppress neuroinflammation is either related to their direct anti-inflammatory effects or to

their aptitude to modulate the crosstalk between impaired insulin/AKT/GSK-3β and canoni-

cal/ noncanonical Wnt/β-catenin pathways. Again, such molecular effects were mirrored

histopathologically and behaviorally.

5. Conclusion

Taken altogether, the current study accentuated the neuroprotective potential of VitD and/or

RSV in ameliorating T2DM-induced hippocampal insult and accompanied behavioral alter-

ations. These protective effects include modulation of the intersection between insulin/AKT/

GSK-3β and canonical/non-canonical Wnt/β-catenin trajectories, as well as mitigation of neu-

roinflammation with subsequent improvement in memory and cognitive defects, as well as

restoration of the hippocampal histological profile. The present work provides novel incentives

for the use of RSV and/or VitD to slow down T2DM-induced neuronal injury. Further studies

are warranted to determine their benefits in clinical practice.

6. Limitation of the study

It is important to remember that even though insulin resistance is the core pathology of diabe-

tes, there are several metabolic consequences that should also be taken into consideration. In

addition, effects of the drugs used on the signaling pathways were studied in the whole hippo-

campal region; further studies may be needed to determine which sub-regions are responsible
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for the observed outcomes. Furthermore, apart from the studied pathways, more cascades

need to be assessed to elucidate other mechanisms by which the examined agents can act.
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