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Receptors for the Fc fragment ofIgG (FcTR) couple the humoral and cellular im-
mune responses by targeting immune complexes to effector cells . Multiple FcyRs
exist, which differ in ligand affinity, cellular distribution, and effector function
(reviewed in reference 1) . Detailed characterization of the FcyRs in both mouse and
humanhas begun to address the molecular basis for the diversity of cellular responses
triggered by a common ligand . The binding of immune complexes is mediated by
extracellular Ig-like domains that are conserved among many FcyRs. The functional
consequence ofthis binding, on the other hand, is mediated by the divergent trans-
membrane and cytoplasmic domains that are the result of gene duplication as well
as alternative mRNA splicing . In the mouse the low affinity, immune complex IgG
Fc receptors (FcyRII) are encoded by two genes, a and a (2-4) . cDNA sequence
analysis predicts that these receptors are similar integral membrane glycoproteins
with 180 amino acid extracellular domains, single transmembrane spanning domains
of 20 amino acids, and intracytoplasmic domains that vary from 26 amino acids
for a to 93 amino acids for the larger spliced form of (3, at . a is expressed on mac-
rophages and NK cells, while 0 is expressed on lymphocytes and macrophages and
displays cell type-specific alternative mRNA splicing of its cytoplasmic domains.
The human homologues of these receptors include a minimum of three genes for
FcyRII(CD32) (Qiu, W Q, and J. Ravetch, unpublished observations) and two
genes for FcyRIII(CD16) (this article) . cDNA clones have been isolated for
FcyRIi(CD32) (5, 6; Brooks, D., WQ Qiu, A. Luster, andJ. Ravetch, manuscript
submitted for publication) and FcyRIII(CD16) (7, 8) .

FcyRIII(CD16) is expressed on NK cells, macrophages, and PMN (9-11) . Two
alleles, NA-1 and NA-2, have been described for this receptor on PMN. It has been
shown to mediate antibody-dependent cellular cytotoxicity (ADCC) t by NK cells
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(12), where it represents the only FcyR. On PMN, Fc-yRIII(CD16) has been pro-
posed to act together with FcyRII(CD32) to mediate effector functions (13, 14) . Anti-
FcyRIII(CD16) antibodies inhibit ADCC and immune complex binding (9, 10, 15)
on both PMN and NK cells. Recently it has been shown that FcyRIII(CD16) is an-
chored through a glycosyl-phosphatidylinositol (PI) linkage on PMN (13, 16). The
first evidence for an alternative membrane-associated form for FcyRIII(CD16) came
from the study of patients with paroxysmal nocturnal hemoglobinuria (PNH). In
that acquired disorder, a defect in the attachment of the PI tail in hematopoietic
precursor cells results in the selective deficiency of PI-anchored proteins (reviewed
in reference 17). Fc7RIII(CD16) is expressed at 10% of normal levels on PMN in
those patients, but its expression on macrophages and NK cells is unaffected (16,
18), indicating that NK cells express an alternative anchored form of Fc7RIII(CD16)
that is presumably transmembrane. cDNA clones for FcyRIII(CD16) have been iso-
lated from placental and neutrophil libraries (7, 8) . Those clones predict a sequence
for an FcyRIII(CD16) protein that contains two canonical Ig-like extracellular do-
mains, aweakly hydrophobic transmembrane domain anda short (four amino acid)
cytoplasmic domain, features characteristic of PI-linked molecules (17, 19). Trans-
fection of those clones resulted in the appearance of PI-linked molecules on COS
cells ; thus, it appeared unlikely that these cDNA clones encoded a transmembrane
form of FcyRIII(CD16).

In this report we demonstrate that the FcyRIII(CD16) molecule indeed exists in
two alternative membrane-anchored forms, a PI-linked form on PMN and a larger
PI-PLC-resistant transmembrane protein on NK cells . To establish the molecular
basis for this difference, Fc7RIII(CD16) encoding RNA from NK cells and PMN
of single individuals homozygous for either NA-1 or NA-2 were analyzed and found
to differ by multiple single nucleotide substitutions . One of these nonallelic changes
results in the expression of a transcript in NK cells in which a CGA codon replaces
a UGA termination codonthereby extending the reading frame for the cytoplasmic
domain of this Fc-yRIII(CD16) by 21 amino acids, which are homologous to the mu-
rine FcyRIIu cytoplasmic domain. Two distinct genes encoding FcyRIII(CD16) have
been cloned and sequenced . Cell type-specific expression of these linked genes ac-
counts for the NK cell and PMN transcripts and the alternatively anchored forms
of this receptor.

Materials and Methods
Cell Lines .

	

The human B lymphoblastoid cell line RPMI 8866, and the mAb-producing
hybrid cell clones were maintained in culture in RPMI 1640 (Flow Laboratories, Inc., Rock-
ville, MD) supplemented with 10% FCS (Flow Laboratories, Alexandria, VA). All cell lines
were free of mycoplasma contamination.

Monoclonal andFblyclonal Antibodies .

	

The mAbs used in this study, their origin, and specificity
have been previously described (10, 20). Anti-CD16 mAbs were : B73.1 (IgGI) produced and
characterized in our laboratory (10), 3G8 (9) (IgGI) produced from cells kindly provided
by Dr. J. Unkeless (Mount Sinai Medical School, New York, NY) and CLB-Gran 11 (21),
detecting the NA-1 alloantigen on PMN and GRM1, detecting the NA-2 antigen (kindly
provided by F. Garrido) . TS2/9 (anti-LFA-3) (22) was kindly provided by T Springer (Har-
vard Medical School, Boston, MA). IgG were purified from ascites and labeled with biotin
according to routine procedures . The polyclonal FITC-labeled goat F(ab')2 anti-mouse Ig
was purchased from CooperBiomedical Inc. (Malvern, PA). The goat anti-mouse IgG used
to prepare erythrocytes (E) for indirect rosetting was produced in our laboratory, absorbed



RAVETCH AND PERUSSIA

	

483

on human IgG, and affinity purified on mouse IgG-Sepharose 4B column (Pharmacia Fine
Chemicals, Uppsala, Sweden).

Pkripheral BloodLeukocytes, NK Cells, Fblymorphonuclear Granulocyte (PMN) andMacrophagePrepa-
rations. Venous peripheral blood was obtained from adult healthy donors and anticoagu-
lated with heparin . Buffy coats, PMN, PBMC, lymphocytes (PBL), and the NK cell subset
were obtained as previously described in detail (10, 15) . Monocytes were prepared from PBMC
by adherence to plastic (45 min, 37°C) and depleted ofcontaminating lymphocytes by com-
plement (C)-dependent lysis (45 min, 37 0C) after treatment with a mixture ofC-fixing anti-
bodies anti-CD21, anti-CD16, and anti-CD3 . Macrophages were collected after culturing
this population for 10-12 d in RPMI-1640 supplemented with 10% human serum . Both NA-1
and NA-2 homozygous donors were used . To obtain large numbers of homogeneous
CD3-/CD16' NK cells, PBMC were cocultured with 50 Gy-irradiated RPMI 8866 cells, as
described (20) . These 10-d cultures contain, on average, 80% CD3-/CD16*/NKH-1' NK
cells and 20% CD3'/CD16 -/NKH-1 - T lymphocytes . The NK cells were purified by nega-
tive selection using antiglobulin rosetting and density gradient centrifugation after sensitiza-
tion ofthe lymphocytes with a mixture ofanti-CD3, anti-CD5, and anti-CD14 mAbs. These
NK cell populations have morphologic, phenotypic, and functional properties identical to
those of NK cells freshly purified from blood (20, 23) . Like these cells, in vitro propagated
NK cells express functional FcyRIII(CD16), but neither Fc-yRII(CD32) nor the high affinity
receptor for the Fc fragment of monomeric IgG, FcyRI . The purity of each leukocyte prepa-
ration was tested by indirect immunofluorescence (flow cytometry) using anti-NK (anti-CD16
and anti-NKH-1), anti-T (anti-CD3 and anti-CD5), antimonocyte (anti-CD14) and anti-PMN
(anti-CDw17) reagents. It always exceeded 95% .

Glycosyl-phosphatidyl Inositol-speck Phospholipase C (PI-PLC) Treatment.

	

PI-PLC purified
from Bacillus thuringiensis was a kind gift of Dr. M. Low (Columbia University, New York,
NY) . In a typical preparation, the enzyme had a specific activity of -1,700 U/ml . Cells (5
x 106/ml RPMI-0.25% BSA) were treated with a 1 :200 dilution ofPI-PLC (45 min, 37°C)
and washed twice before testing . Cell viability after treatment was >95% as judged by vital
dye exclusion ; no loss of specific cell subsets was ever detected as judged by surface marker
analysis in indirect immunofluorescence .

Indirect Immuno,Jluorescence.

	

This was performed as previously described in detail (10) using
an FITC-goat F(aU)2 anti-mouse Ig (CooperBiomedical) preabsorbed on human IgG. Irrele-
vant antibodies of matched isotypes were used as negative controls . The samples were ana-
lyzed on an Ortho Cytofluorograf 50H connected to a 2150 Data Handling System (Ortho
Diagnostic Systems, Inc., Westwood, MA) . Intensity offluorescence was measured on a loga-
rithmic scale.

Immunoprecipitation ofFcyRIII(CD16) and N-glycanasc Treatment.

	

Intact NK cells, purified
by negative selection from either PBL or 10-d cocultures of PBMC with B lymphoblastoid
cell lines and PMN from the same donors were labeled with 1251 (1 MCi/10 1 cells using 1,
3, 4, 6-tetrachloro-3a, 6a-diphenylglycuroil ; (Amersham International, Arlington Heights,
IL) (100 p.g/tube; Iodogen ; Pierce Chemical Co., Rockford, IL) . When indicated, ' 251-labeled
PMN and NK cells were incubated with PI-PLC as described above and both cell-free super-
natants and cell pellets were used for immunoprecipitation . After washing, cells were lysed
(20 min, 4oC) with I 17o NP-40 (Calbiochem-Behring Corp, La Jolla, CA) in 0 .1 M Tris, pH
6.8, containing 2 mM EDTA, 2 mM PMSF, 0.33 U/ml aprotinin, 15% glycerol ; the cell ly-
sate was centrifuged (13,000 rpm, 30 min) and the postnuclear supernatant was collected .
All samples were preabsorbed (12 h, 4°C) with streptavidin-agarose beads (Bethesda Research
Laboratories, [BRL] Gaithersburg, MD) (25-jul beads/5 x 10 1 cells) and mouse monoclonal
IgG2a of no known antigen specificity (10 p.g/5 x 10 1 cells) . Aliquots from the samples were
sequentially incubated (3 h, VC each incubation) with biotin-labeled anti-CD16 or irrele-
vant antibodies as control (5 pg/10 1 cells) and with Streptavidin-agarose (BRL) (10 Al
beads/10 1 cells) . The streptavidin-agarose beads were washed 5 times with 0.15 NaCl con-
taining 4 mM EDTA, 1 mM PMSF, 0.02% NaN3 , 10 mM Hepes, 0.1% Tween-20, pH 7.2 .
After boiling (5 min, 100°C) in the presence of 0.5% SDS, 0.1 M 2-ME, each sample was
treated with N-glycanase according to the manufacturer. Briefly, sodium-phosphate buffer
(0.17 M, pH 8.6), 10 mM 1,10 phenantroline (Sigma Chemical Co., St . Louis, MO), and
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17o NP-40 were added to each sample before addition of N-glycanase (Genzyme Corp., Boston,
MA) (20 U/ml) to one of two identical aliquots . After an 18-h incubation at 37'C, sample
buffer (62.5 mM Tris, pH 6.5, containing 12.5% glycerol, 1% 2-ME, 2 .5% SDS, 0.005%
bromophenol blue) was added and the samples were analyzed in SDS-10% PAGE (24) . Mo-
lecular mass markers (Pharmacia Fine Chemicals) were : a-lactalbumin, soybean trypsin in-
hibitor, carbonic anhydrase, ovalbumin, BSA, and phosphorylase b for 14 .4, 20 .1, 30, 43,
67, and 94 kD, respectively. The gels were dried and exposed to Kodak Xomat x-ray films
at -700C with Lightning Plus intensifying screens (DuPont Co., Wilmington, DE) .
RNA andDNA Preparations .

	

NK cells, PMN, and macrophages were washed twice with
cold PBS and lysed with 4 M guanidine isothiocyanate for extraction of total cellular RNA
after centrifugation through CSC12 (25) . Genomic DNA was prepared from spleen and
placenta as previously described (26) .

Oligonucleotides.

	

All oligonucleotides were synthesized on an Applied Biosystems Inc . (Foster
City, CA) model 381A . HPLC purification was performed according to ABI specifications
or oligonucleotides were used without further purification ; no differences were observed . The
oligonucleotide primers and probes used in this study were derived from the published cDNA
sequence for FcyRIII(CD16) (7) and the numbering corresponds to that report .

Oligo 485 : GAGAGGCCTGAGGATGAT (870-888) ; complement
Oligo 491 : GGTTGCAAATCCAGAGAA (850-868) ; complement
Oligo 465 : TCATTTGTCTTGAGGGTC (781-799) ; complement
Oligo 474 : TTTCTCCATTTAAGTTTA (761-779) ; complement
Oligo 488 : TTTCTCCATTTAAATTTA (761-779) ; pos . 766 from NK
Oligo 489 : ACAAACATTCGAAGCTCA (724-742) ; pos . 733 from NK
Oligo 490 : ACAAACATTTGAAGCTCA (724-742)
Oligo 473 : TGGTACTCCTTTTTGCAG (677-695)
Oligo 466 : GTCTCTTTCTGCTTGGTG (658-676)
Oligo 501 : AAGAACACTGCTCTGCAT (427-445)
Oligo 494 : CACCTGAGGTGTCACAGC (406-424)
Oligo 492 : TCTTTGGTGACTTGTCCA (1-18)

cDNA Synthesis and PCR Amplification.

	

10 Ftg of total RNA extracted from either PMN
or NK cells were incubated in a reaction that contained either 0.5 or 50 pmol of a 3' oligonu-
cleotide primer (485 or 465), 20 U of murine Maloney leukemia virus (MuMLV) reverse
transcriptase (Life Sciences, St . Petersburg, FL), 200 gM of each dNTP, 50 mM KCI, 10
mM Tris-Cl, pH 8.3, 1 .5 mM MgC12, and 0.01% gelatin . The reaction was allowed to pro-
ceed at 42°C for 60 min, after which time 0 .5 or 50 pM of a 5' oligonucleotide primer (492,
494, or 466) was added along with 2.5 units of Taq polymerase (Cetus Corp., Emeryville,
CA) . 35 cycles of denaturation, annealing, and extension were performed as described (27)
in a Perkin Elmer-Cetus Corp . DNA thermal cycler. Denaturation was at 94°C for 1 min,
annealing was at 44°C for 2 min, and extension was at 72'C for 3 min . A final cycle with
a 7-min extension was performed .

Preparation of 32P-labeled Fragments and Sequence Analysis .

	

Typically, 20% of a reaction de-
scribed above was incubated with Tend-labeled 32P oligonucleotide internal to the amplified
segment of the cDNA, using 50 pM of labeled oligonucleotide . Extension was performed
with Taq polymerase (Cetus Corp.) and one cycle ofdenaturation, annealing, and extension .
Denaturation was at 92°C for 1 min, annealing was at 37°C for 2 min, and extension was
at 72°C for 10 min . The labeled product was purified on a 5% acrylamide/TBE gel, electro-
eluted, and subjected to DNA sequencing using the chemical degradation method (28) . Al-
ternatively, the PCR products were cloned into pUC-18 and sequenced by dideoxy chain
termination (29) .

Oligonucleotide Hybridization ofPCR-amplied cDNAs.

	

cDNA from NK cells and PMN ob-
tained from the same donor were synthesized and amplified using oligonucleotides 465/466,
spotted on nitrocellulose membranes, denatured, and baked as described (30) . Tend-labeled
oligonucleotides specific for NK cells (488, 489) or PMN (474,490) sequences were hybrid-
ized and washed as described (31) at 5°C below the calculated T. .
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Isolation of Genomic Clones for FcyRIM(CD16).

	

Eco RI-digested placental DNA was size
fractionated on a preparative agarose electrophoresis apparatus (Hoefer Scientific Instruments,
San Francisco, CA). The 9.0-kb fraction that hybridized with an FcYRIII(CD16) probe was
cloned into the phage vector X CH28, packaged in vitro and plated on Escherichia coli strain
C600 . Nine positive clones were obtained from 150,000 phage that were plaqued purified
and analyzed by restriction digestion, oligonucleotide hybridization, and DNAsequence anal-
ysis . Similarly, an 18-kb BamHI fraction, determined to hybridize with the FcYRIII(CD16)
probe, was cloned with L47.1 . Four positive phage were obtained from 250,000 plaques . Cosmid
clones encoding these two genes were isolated from a human placenta cosmid library con-
structed in the vector pWE15 and generously provided by Dr. Glenn Evans (Salk Institute,
San Diego, CA).

Results
Characterization of FcyRIM(CD16) on NK Cells.

	

To define the nature of the
FcyRIII(CD16) anchor on NK cells, its presence on buffy coat cells was tested by
indirect immunofluorescence after PI-PLC treatment . Fluorescence profiles obtained
on the lymphocyte (PBL), in which only NK cells bear FcyRIII(CD16), and PMN
populations in the same sample and gated on the basis of their light scatter charac-
teristics are shown in Fig. 1 . FcyRIII(CD16) fluorescence, as detected by mAb 3G8,
was reduced on both buffy coat and purified PMN by -85%, yet little or no de-
crease for this molecule was observed on PBL. As with fresh lymphocytes (left panel),
little or no decrease of fluorescence for FcyRIII(CD16) was observed on PI-
PLC-treated NK cells purified by negative selection from 10-d cocultures ofPBMC
with irradiated B lymphoblastoid cell lines (Fig. 1, rightpanels) . In contrast, PI-PLC
reduced the fluorescence due to LFA-3 in both PMN and NK cell populations by
-53% . The insensitivity of FcyRIII(CD16) on NK cells, then, is not the result of
an inability of these cells to express PI-linked molecules or their insensitivity to PI-
PLC because of unique membrane properties of NK cells . These PI-PLC-treated
NK cells maintained their characteristic phenotype (NKH-1 +/CD5 -) and were still
able to bind particulate immune complexes (data not shown) . These data indicate
that FcyRIII(CD16) is resistant to PI-PLC when expressed on NK cells, yet is sensi-
tive to this enzyme when expressed on PMN.

Biochemical Characteristics ofFcyRIII(CD16) Precipitatedfrom NK Cells andPMN.

	

The
biochemical basis for the altered PI-PLC sensitivity of FcyRIII(CD16) on NK cells
was investigated by comparing the protein backbone ofthe molecule on NK cells and
PMN. FcyRIII(CD16) was immunoprecipitated from PI-PLC-treated NK cells and
PMN and from the medium in which they were maintained. The products were
analyzed on SDS-PAGE after treatment with N-glycanase (Fig . 2) . FcTRIII(CD16),
which migrates as a broad band of apparent mass 50-70 kD, was immunoprecipi-
tated from control NK cells and PMN (Fig. 2 A) . N-glycanase treatment of the im-
munoprecipitate from NK cells resulted in the appearance of two bands of 32 and
36 kD apparent mass, with occasionally a less intense band at 38-40kD. In contrast,
two bands of smaller mass, migrating between 23 and 28 kD, were detected after
N-glycanase treatment of the immunoprecipitate from PMN. PI-PLC treatment
of NK cells resulted in equivalent amounts of immunoprecipitable FcYRIII(CD16)
to those precipitated from untreated control NK cells, while no significant amount
of immunoprecipitable protein remained on the PI-PLC-treated PMN (Fig . 2 B,
cell pellets). In addition to the products described above, N-glycanase treatment gener-
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FIGURE 1 .

	

FcyRIII(CD16) expression on NK cells and PMN. Buffy coat cells (left panels), cul-
tured NK cells, and PMN (right panels) were treated with PI-PLC and tested for surface expres-
sion ofthe indicated antigens by indirect immunofluorescence . PBLand PMNin the buffy coat
were gated on the basis of their forward and right angle light scatter and fluorescence was mea-
sured separately in each region . The histograms in eachpanel represent intensity of fluorescence :
(

	

) untreated cells ; (---) PI-PLC-treated cells . x-axis, intensity offluorescence (log scale) ;
y-axis, number of cells . The experiment on huffy coat cells is representative of two, those on purified
NK cells and PMN are representative of four performed.

ated bands ofhigher molecular mass that were observed whether N-glycanase diges-
tion was prolonged up to 30 h and using concentrations of the enzyme as high as
40 U/ml (data not shown), as reported previously (11, 14).
Although it is possible that the larger band within the precipitate from each cell

type represents an incompletely deglycosylated peptide, in no instance were bands
of molecular mass <32 kD or >28 kD precipitated from NK cells or PMN, respec-
tively, in experiments performed with eight different donors . Aminimum difference
of 4 kD thus exists between the NK cell and PMN FcyRIII(CD16) proteins . Vari-
able but significant amounts of FcyRIII(CD16) were reproducibly immunoprecipi-

I
_w
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FIGURE 2.

	

PI-PLC-sensitivity
and N-glycanase digestion of
FcyRIII(CD16). Cultured NK
cells purified as described in
Materials and Methods and
PMN freshly separated from
peripheral blood were labeled
with 1251 . After labeling, the
cells were divided into three ali-
quots: one of these (control) was
processed immediately, one (un-
treated) was incubated at 37°C
in medium, and one (treated)
was incubated in the presence
of PI-PLC (1:200 dilution, 45
min, 37°C). Antibody 3G8 was
used to precipitate FcyRIII-
(CDl6) from the different cell
pellets and from their superna-
tants, as indicated. Immunopre-
cipitates, untreated or treated
with N-glycanase (20 U/ml, 18 h,
37'C) were analyzed in SDS-
107o PAGE. Positions of the
molecular weight markers run
on the same gels are indicated
(Mr x 10 -3) . (A) 3G8 immuno-
precipitates from control cells .
In B, lanes labeled cells were ex-
posed three times longer than
the corresponding supernatant
lanes .

tated from the NK cell supernatant fraction (Fig . 2 B, supernatants) irrespective
of PI-PLC treatment . This result was reproducibly obtained using freshly isolated
NK cells or B73.1 antibody for FcyRIII(CD16) precipitation (data not shown) . In
agreement with a previous report (16), significant amounts of protein were also de-
tected in the supernatant fraction from untreated PMN, which was more abundant
in the supernatants from PI-PLC-treated PMN. N-glycanase treatment of the im-
munoprecipitates from supernatants ofboth NK cells andPMNresulted in two bands
of 23 and 28 kD apparent molecular mass irrespective of PI-PLC treatment . These
results are in agreement with a previous study (7) showing that the FcyRIII(CD16)
polypeptides precipitated from PI-PLC-treated NK cells supernatants, representing
N50% of those present on control cells, had apparent molecular masses of 28 kD
after N-glycanase treatment . Precipitation from NK cell pellets or control superna-
tants was not reported in that study. It is most likely that the soluble form of
FcyRIII(CD16) precipitated from the NK cell supernatants is not the result of PI-
hydrolysis and, instead, derives from proteolytic cleavage of the molecule at a posi-
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tion, near the transmembrane domain, at which the molecule is processed in PMN
during formation of the PI anchor. A similar finding has been reported for the low
affinity FceRII . An IgE-binding, 37-kD molecule, detected in the supernatant of
FceRII-expressing human B cell lines (32) arises by proteolytic degradation of a 45-
kD transmembrane form of FceRII . These observations on the differences in the
PI-PLC sensitivity and molecular weight after deglycosylation of Fc-YRIII(CD16)
on NK cells and PMN prompted us to characterize the FcyRIII(CD16) gene and
its transcript in NK cells and PMN.

Analysis of FcyRIII(CD16) RNA in NK Cells and PMN.

	

The molecular basis for
the structural differences observed for Fc-yRIII(CD16) on PMN and NK cells was
approached through the analysis of the RNA encoding these molecules . Northern
blot analysis using Fc-yRIII(CD16)-specific probes revealed a single species of iden-
tical size in PMN and NK cells (not shown) . In a previous study (7), S1 analysis
demonstrated no detectable differences in the FcyRIII(CD16) encoding RNA ob-
tained from NK cells as compared with a cDNA sequence encoding the PI-linked
molecule . To determine the structural basis for the size difference of the deglycosylated
proteins observed on PMN and NK cells, sequence analysis of cDNAs corresponding
to these RNA was performed . Total RNA was extracted from both cell types ob-
tained from an NA-2/NA-2 donor, converted to cDNA using Fe-yRIII(CD16)-specific
primers and reverse transcriptase and amplified by the polymerase chain reaction .
Sequence analysis of those cDNA revealed single nucleotide substitutions in the NK
cell transcript (corresponding to nucleotides 1-887) . For example, as shown in Fig.
3 A, a T at position 733 in the sequence derived from PMN RNA is seen to be
a C in the sequence obtained from NK cell RNA, resulting in an extended open
reading frame for the NK cell transcript . Similarly, a C at position 766 in PMN
is found to be aT in NK cells . Sequence analysis ofthis region ofthe Fc'YRIII(CD16)
RNA obtained from the cDNA amplified from these cell types ofthis donor revealed
the following cell type-specific single nucleotide substitutions: position 141 (C to
G), 147 (T to C), 277 (A to G), 473 (A to G), 505 (C to T), 531 (T to C), 559 (G
to T), 641 (C to T), 733 (T to C), 766 (C to T), 814 (A to G), and 829 (G to A)
(Fig. 3 B) . These 12 nucleotide changes result in six amino acid changes (Fig. 3 B) .
Similar sequence analysis of transcripts derived from PMN and NK cells ofa second
donor (NA-1/NA-1) revealed the same nucleotide substitutions between NK cells and
PMN at positions 473, 505, 531, 559, 641, 733, 766, 814, and 829 as were seen for
the NA-2/NA-2 donor, revealing that these differences between NK cells and PMN
were not the result of allelic variation . In contrast, five nucleotides were found to
differ between PMN transcripts of NA-2 and NA-1 donors : positions 141 (C-'G),
147 (T-C), 227 (G--,A), 277 (A-'G), and 349 (A--,G) (bold-faced nucleotides in
III-1, Fig. 3 B) . No differences were detected in NK transcripts between NA-2 and
NA-1, indicating that NA-1 and NA-2 alleles are restricted to III-1 . Thethree nucleo-
tide differences at positions 141, 147, and 277 coincide with the cell type-specific
differences between III-1 and III-2 in the NA-2 homozygous donor, resulting in a
III-1, NA-1 sequence identical to III-2 at those positions . This pattern of nucleotide
substitution in III-1 for NA-1 and NA-2 allows for the mapping of these epitopes .
Since NK cells are always NA-2+ and do not express the NA-1 epitope, we can con-
clude that the nucleotide differences at positions 227 and 349 must determine the
NA-1 and NA-2 epitopes . The G-A transition in III-1, NA-1 at position 227 results
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FIGURE 3.

	

Sequence analysis
ofFcyRIII(CD16) transcripts in
PMN and NK cells . (A) RNA
extracted from the indicated
cells ofa single individual were
converted to cDNA using oligo
465 and amplified by PCR
using oligo 466 (see Materials
and Methods) . Oligo 473 was
end labeled with 12P and used
to generate an extension prod-
uct from the amplified cDNA,
gel purified, and sequenced by
the chemical degradation meth-
od (28) . Identical results were
obtained using oligos 485/494
on total RNA, extending with
oligo 466 or 473. Sequences
were confirmed on the opposite
strand using oligos 491, 465, or
474. Asterisks indicate nucleo-
tide differences between the cell
types . The effect of these se-
quence changes on the transla-
tion of the FcyRIII(CD16) tran-
script is indicated . Thelanes of
the sequencing gels are (left to
right): G, A>C, T+C, and C.
(B) Nucleotide sequence of
cDNA for FcyRIII(CD16) ob-
tained from NK cells andPMN
of an NA-2/NA-2 individual .
III-1 indicates the PMN se-
quence ; III-2 the NK cell se-
quence. Identical nucleotides
are indicated by dashes . III-1
nucleotides indicated in bold-
faced type are allelic in NA-
1/NA-1 ; overlined nucleotides
(227 and 349) determine the
NA-2 and NA-1 reactivities of
PMN FcyRIII(CD16), respec-
tively. The predicted amino acid
sequence is shown below with
the hydrophobic core of the
signal sequence and transmem-
brane domain overlined. N-
linked glycosylation sites are un-
derlined . The extended reading
frame for the NK cell transcript
(111-2) is indicated in bold-faced
type, as are the amino acid
differences.
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in the loss of the glycosylation sequence Asn-Glu-Ser61 in III-1, NA-2, converting
it to Asn-Glu-Asn" . Similarly, the A-G transition at position 349 in III-1, NA-1
results in an Ile106 to Vali°6 change . III-2, although not allelic for NA-1/NA-2, has
been found to be allelic at nucleotide 559 (T/G), as determined from the sequencing
of the III-2 gene and transcript from 6 donors (not shown) .
The specificity of expression of the III-1 and III-2 transcripts was demonstrated

by oligonucleotide hybridization. Oligonucleotide probes that differed only at a single
nucleotide, indicated in Fig. 4, were hybridized to PCR:amplified cDNA obtained
from four sets of donor-matched PMN and NK cells. In all cases, the NK cell-de-
rived RNA contain a C at position 733 and a T at position 766, while PMN have
aTand C at these positions, respectively. An oligonucleotide probe common to both
cell type transcripts hybridized to all samples. Hybridization and sequencing studies
revealed no evidence for molecular heterogeneity within a single cell type .

Structural Analysis of Two FcyRIII(CD16) Genes.

	

The basis for these single nucleo-
tide differences in FcyRIII(CD16) transcripts ofNK cells and PMN was investigated
by determining the gene structure for this receptor. Southern blot analysis of placenta
or spleen DNA restricted with Eco RI, Hind III, Nco I, Kpn I, Bgl II, and Pst
I and probed with exon-specific probes for the signal sequence, the extracellular do-

FIGURE 4.

	

Oligonucleotide hybridization ofPCRamplifiedcDNAofNK cells and PMN. RNA
extracted from NK cells or PMN of single individuals was converted to cDNA and amplified
using oligos 465/466, spotted on nitrocellulose and hybridized with end-labeled, NK-specific oligos
488 and 489 or PMN-specific oligos 474 and 490 or the FcyRIII(CD16) common oligo 473. Four
donors were studied, indicated A-D. The single nucleotide difference in each oligo is indicated.
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mains (encoded on two exons), or the transmembrane-cytoplasmic-3' UT exon all
demonstrated single restriction fragments (not shown), suggestive of a single gene
or two highly conserved genes. However, Bam HI revealed two restriction fragments
of 4.8 and 18 kb when probed with either an EC-2 probe or TM-CYT3' UT probe
(Fig . 5) . Similarly, Hinc II revealed two fragments of 5.0 and 3.0 kb when probed
with this probe (not shown) . To rule out polymorphism as the basis for these addi-
tional fragments, DNA from 23 individuals ofdifferent racial origins were restricted
with Hinc 11 and probed with the FcyRIII(CD16) TM-CYT3'UT probe. AllDNAs
revealed two distinct Hinc II fragments (not shown) . These two distinct, but highly
homologous genes for FcyRIII(CD16) were cloned by size fractionation of Eco RI-re-
stricted placental DNA and cloning of the 9.0-kb fragment that encodes each
FcyRIII(CD16) gene. Nine independent FcyRIII(CD16) clones were obtained which
were screened with oligonucleotide probes described in Fig. 4 specific for each tran-
script . Five clones hybridized only with the NK-specific oligonucleotides, while four
clones hybridized exclusively with the PMN-specific oligonucleotides . In addition
to these clones, the 18-kb Barn HI fragment shown in Fig. 5 was cloned and, as ex-
pected, hybridized only with the NK-specific oligonucleotide probes . Cosmid clones
for each ofthese genes were also obtained . DNA sequence analysis of these two classes
of clones confirmed the hybridization results . Gene III-1 encodes the PMN tran-
script sequence, while gene III-2 encodes theNK cell transcript sequence. The III-1
sequence determined demonstrates the five nucleotide substitutions in EC-1 charac-
teristic of the NA-1 allele . Further evidence for a gene duplication for FcyRIII(CD16)
was obtained by utilizing the observation that the nucleotide changes at position
733 and 766 each generate a novel restriction enzyme recognition site. The T-C
change at 733 creates a Taq I site, while the C-"T change at 766 creates a Dra I
site . As seen in Fig. 5, Taq I or Dra I digestion of spleen DNA hybridized with TM
or TUTprobes reveals the existence ofboth sequences in the genome . When probed
with the TM probe, Taq I reveals fragments of6.5, 3.8, 3.5 kb (3 .8- and 3 .5-kb bands
migrate as a doublet in this experiment) and 280 by (seen optimally with the 3' UT
probe), while Dra I generates fragments at 900, 550, and 350 bp . The 6.5-kb Taq
I fragment seen in this experiment represents a polymorphism as determined by
screening DNA obtained from individuals of different racial origins with Taq I. It
is associated with the III-1 NA-2 allele, as determined by Taq I digestion of DNA
derived from NA-1/NA-1, NA-2/NA-2, and NA-1/NA-2 donors and hybridizing with
the FE-yRIII TM/CYT probe (not shown) . The 550-bp Dra I fragment is not de-
tected when the TUT probe is used, since the probe is 3' ofthe expected fragment .
Theadditional Taq and Drafragments of 3.0 and 3 .2 kb, respectively, detected with
the 3' UT probe result from corresponding 3' fragments . Cloned genes specific for
each transcript, when probed with the TM sequence, produce either a 3 .8-kb Taq
fragment (III-1, NA-1) or a 3.5- and 0.28-kb fragment (III-2); Dra I reveals either
an 900-bp fragment (III-1) or a 550- and 350-bp fragment (III-2). A map of these
two genes, derived from hybridization and sequence analysis, is presented in Fig. 5 .

The Nucleotide Substitution at Position 733 Eliminates a Translation Termination Sequence.
The nucleotide change at position 733 in gene III-2 occurs at a position in gene
III-1 that specifies an in frame translation termination codon TGA (occurring after
the codon for amino acid 233), encoding in its place a CGA codon that specifies
the amino acid arginine . The resulting open reading frame for the transcript de-
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FIGURE 5 .

	

Two genes encode FcyRIII(CD16): III-1 and III-2 . (Top) Southern blot analysis of
s~leen DNAor DNA derived from clones of each gene as indicated . The blots were probed with
s P-labeled probes as indicated under each autoradiograph. The 18-kb Bam HI fragment de-
tected with the TM probe, encoded on the 111-2 gene, is denoted with an asterisk. An arrow
indicates the 280-bp Taq I fragment derived from the III-2 gene . The Taq and Dra experiments
were resolved on 1.2 % agarose gels to optimize the separation ofsmall fragments, the blots marked
spleen were probed first with the TM probe, stripped, and reprobed with the 3' UT probe. (Bottom)
Restriction maps of the two FcyRIII(CD16) genes. The exon-intron structure of each gene is
indicated, as determined by DNA sequence analysis . The region corresponding to the TM-CYT
3'UT exon is expanded to indicate the position of the Taq I and Dra I sites generated in III-2
by the nucleotide differences between these genes (these sites are not indicated for III-2 on the
upper map for clarity) . Probes used in this study are indicated below the maps . E, EcoRI; B,
Barn HI ; H, Hind III; T, Taq I; D, Dra I, N, Nco I; M, labeled markers. The restriction maps
are not complete forthe sequences flanking these genes 5' of the signal exon and 3' of the TUTexon .
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circled in the III-2 sequence .
The predicted translation is in-

dicated, with the extended reading frame for III-2 gene and NK cell transcript indicated in bold-faced
type . (B) Sequence alignment of the predicted COOH terminus of Fry-RIII(CD16) in NK cells com-
pared with the murine homologue, FcyRIIct, usingthe fastp algorithm (37). Two dots indicate identity,
single dots indicate changes that arise by single nucleotide substitutions. The transmembrane domain
is indicated .

III-1
PM
111-2
NK

111-1
PMN
111-2

TM C S UT

G L A V S T I S S F S P P G Y Q V 5 F C L V
111-1 . . . . . . . . . .GTTTGGCAGTGTCMCCATCTCATCATTCTCTCCACCTGGGTACCMGTCTCTTTCTGCTTGGTG
PM . . . . . . . . . .r000GGCAGUGUCAACCAUCUCAUCAUUCUj~UCCACCUGGWACCAAGUCUCUIIUCUGCUUGGUG
111-2 . . . . . . . . . .GTTTGRCARTGTRMCCATCTCATCATTCIIQCCACCTGGGTACCAAGTCTCTTTCTGCTTGGTG
NK . . . . . . . . . .GUUUGGCAGUGUCAACCAUCUCAUCAUUCWUCCACCUGGGUACCMGUCUCUUUCUGCUUGGUG

F

TGGMRGACCATAMCTTAMTGRIIRAAAGGACCCTCMGCAMTGCCCCCATCCCATGGRIIRTMTAAGGC
UGGAAGGACCAUAAA~UUAAAUGGAGAMGGACCCUCAAGACAAAUGACCCCCAUCCCAUGGGAGTAATAAGAGC
TGRAARGACCAT=AMTGRASAAAGRACCCTCAAGACA1UITGCCCCCATCCCATGGOTMTMGAsc
UGGAAGGACCAUAAAUUUAAAUGGAGAAAGGACCCUCAAGACAAAVGACCCCCAUCCCAUGGG GTAATAAGAGC
N K D H K F K N R K D P Q D K

AGTRGCA6CAGCATCTCTGAACA . . . . .
GCAGCAGCAUCUCUGMCA . . . . .

ATCTCTGAACA. . . . .
AGUAGCAGCAGCAUCUCUGMCA . . . . .

rived from III-2, shown in Fig. 6 a, encodes an additional 21 amino acids, terminating
at nucleotide 797. The predicted cytoplasmic domain for the FcYRIII(CD16) se-
quence transcribed from the III-2 gene in NK cells is 25 amino acids long . The
46 additional amino acids encoded by the transmembrane andcytoplasmic domains
present in the III-2 transcript in NK cells could account for an additional 6,000
daltons ofmass, as would be predicted for a transmembrane-anchored Fc7RIII(CD16)
protein of NK cells . This value is in agreement with the results presented in Fig.
2, indicating that FcyR111(CD16) on NK cells is resistant to PI-PLC and migrates,
when deglycosylated, as a protein of apparent mass 5-10,000 dalton larger than its
PMNhomologue. The homology between the FcyRIII(CD16) protein predicted for
human NK cells and the murine FcyRIIa molecule is increased by this extended
open reading frame. The FcyRIII(CD16) sequence for the NK cell molecule now
demonstrates homology to the mouse FcyRIIa molecule not only in its transmem-
brane domain, as has been observed (7), but in its cytoplasmic domain as well (Fig.
6 b) .

Discussion
FcyRIII(CD16) ofNK cells and PMN differ in their PI-PLC sensitivity and their

apparent molecular weights after deglycosylation. Cell type-specific transcripts that
differ by single nucleotide substitutions were found to encode these alternative forms
of Fc7RIII(CD16). Numerous examples of alternative splicing to generate alterna-
tively anchored or secreted proteins have been described (N-CAM, DAF, AchE and
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LFA-3 ; reviewed in reference 17). The molecular basis for the structural differences
between the FcyRIII(CD16) molecule on PMN and NK cells is the result of cell
type-specific transcription of nearly identical but distinct genes that encode these
single nucleotide differences .
cDNA for Fc-yRIII(CD16) expressed in NK cells and PMNwere synthesized and

then amplified by the polymerase chain reaction . These sequences were found to
differ by multiple single nucleotide substitutions found in regions of the molecule
corresponding to the extracellular domain and transmembrane-cytoplasmic-3' UT
regions. That these differences were observed consistently in only one (NK) of the
paired RNA (NK/PMN) samples processed simultaneously argues against reverse
transcriptase or PCR amplification as the source of these differences. Polymorphism
has been reported to be associated with FcyRIII(CD16) on PMN. Two allelic forms
(NA-1 and NA-2) have been described that are distinguished by human alloantisera,
by molecular mass in SDS-PAGE, and by specific mAbs (21) . Five nucleotide changes
in the EC-1 domain of the III-1 gene are associated with allelic forms of the mole-
cule, two of which are specific for the NA-1 or NA-2 alleles (227 and 349) . The
Fc,yRIII(CD16) protein immunoprecipitated from NA-2 homozygous donors mi-
grates more slowly on SDS-PAGE as compared to NA-1 allele . The Ser65-Asn65
change that results in the loss of a glycosylation site in NA-1 is therefore consistent
with Ser65 determining the NA-2 allele. The Val116 then, is a likely candidate for
the NA-1 determinant. The remainder ofthe changes were observed in different cell
types of the same individual and were consistently observed in all NK cell samples,
regardless ofdonor allele . Two genes encoding FcyRIII(CD16) were cloned and charac-
terized. Both genes are encoded on human chromosome 1, tightly linked to
FcyRII(CD32) genes and each other (Qiu, W. Q, R. Pearse, andJ. Ravetch, un-
published observations). These genes have nearly identical restriction maps and en-
code all the sequence differences observed between the NK cell and PMN transcripts
for the appropriate allele . A 6.5-kb Taq fragment was found to be polymorphic and
specifically associated with the III-1, NA-2 allele ; this band was not detected in a
cosmid clone encoding the III-1 gene ofthe NA-1 allele (Fig . 5) . This polymorphism
should prove useful in the rapid typing ofNA-1 and NA-2 alleles ofIII-1 . The nonallelic
nucleotide differences between III-1 and III-2 occur in all exons encoding the receptor,
ruling out alternative splicing as the mechanism generating the alternative anchored
forms ofthis receptor. However, the degree ofidentity between these genes is remark-
able . This high degree of identity suggests either a recent evolutionary history or
a mechanism-like gene conversion that maintains sequence fidelity.

Cell type-specific transcription of these two genes, III-1 in PMN and III-2 in NK
cells, appears to be exclusive (Fig . 4) and results in the appearance of alternatively
anchored forms of the FcyRIII(CD16) protein. The basis for this alternative an-
choring results from the differences between these two genes and their respective
transcripts. The III-1 gene encodes a transcript with a short (four amino acid) cyto-
plasmic domain, which is expressed as a PI-anchored protein both in PMN and
transfected COS cells. III-2 gene encodes a transcript with a cytoplasmic domain
of 25 amino acids as a result of a T-C substitution in the termination codon TGA
ofthe III-1 gene . The effect of this longer cytoplasmic domain is likely to contribute
to the processing ofthis protein from a PI-linked molecule to a transmembrane pro-
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tein . This hypothesis is supported by our studies on murine FcyRIIa, which is ho-
mologous to the Fc-yRIII(CD16) predicted for NK cells in its transmembrane and
cytoplasmic domains. Murine FcyRIIa can be transfected andexpressed in murine
L cells (33), which do not express PI-linked molecules (34) . In addition, we have
observed that FcyRIIa is expressed as a PI-PLC resistant molecule on mouse mac-
rophage cell lines (Zalman, H., and J . Ravetch, unpublished) and NK cells (35) .

Fbssible Functionsfor the Alternatively Anchored Forms ofFcyRIII(CD16).

	

FcyRIII(CD16)
has been postulated to mediate different functions on NK cells andPMN. This FcyR
on NK cells mediates ADCC; the interaction ofFcTRIII(CD16) with ligand on NK
cells results in transduction of intracellular signals, presumably through its in-
tracytoplasmic domain, that induce activation of genes for lymphokines and receptors
involved in NK cell functions and biology (23, 36). This activation is mediated, at
least partly, through increased [Ca2+ ]i and receptor-induced PI hydrolysis . The role
of FcyRIII(CD16) on PMN is less certain. Those cells express two distinct classes
of receptors for immune complexes, FcyRII(CD32) and FcyRIII(CD16). Antibodies
to either FcyR class inhibit PMN functions, suggesting that both receptors may be
needed to trigger a functional response and may act synergistically when presented
with multivalent immune complexes. Since PMN anchor FcyRIII(CD16) with a PI
tail attachment, it has been proposed that the role of this form of the molecule is
to capture immune complexeswithout triggering neutrophil activation (13) . The cell
type-specific expression of the two genes encoding FcyRIII(CD16) described here
that generates these alternative protein forms thus hasa significant effect on the bio-
logical function of these molecules.

Summary
A low affinity receptor for IgG immune complexes, FcyRIII(CD16), is expressed

on human NK cells as an integral membrane glycoprotein anchored through atrans-
membrane peptide; on polymorphonuclear neutrophils (PMN) the receptor is an-
chored through a phosphatidylinositol (PI) linkage. The protein on NK cells has
a molecular mass 6-10 kD larger than that on PMN, and, unlike the latter, is resis-
tant to PI-specific phospholipase C (PI-PLC) . FcyRIII(CD16) transcripts isolated
from PMN and NK cells of single donors revealed multiple single nucleotide differ-
ences, one of whichconverts an in frame UGA termination codon to a CGA codon.
The resulting open reading frame encodes a longer cytoplasmic domain for
FcyRIII(CD16) in NK cells, contributing to its transmembrane anchor. Two nearly
identical, linked genes that encode these transcripts have been cloned for
FcyRIII(CD16), one of which (III-1) is allelic for NA-1 and NA-2 . The allelic sites
have been mapped to two single nucleotides in the extracellular domain . Thesegenes
are transcribed in a cell type-specific fashion to generate the alternatively anchored
forms of this receptor.
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