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Esophageal squamous cell carcinoma (ESCC) ranks as the fourth leading cause of

cancer-related death in China. Although paclitaxel has been shown to be effective in

treating ESCC, the prolonged use of this chemical will lead to paclitaxel resistance. In

order to uncover genes and pathways driving paclitaxel resistance in the progression

of ESCC, bioinformatics analyses were performed based on The Cancer Genome

Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database including

GSE86099 and GSE161533. Differential expression analysis was performed in TCGA

data and two GEO datasets to obtain differentially expressed genes (DEGs). Based on

GSE161533, weighted gene co-expression network analysis (WGCNA) was conducted

to identify the key modules associated with ESCC tumor status. The DEGs common

to the two GEO datasets and the genes in the key modules were intersected to

obtain the paclitaxel resistance-specific or non-paclitaxel resistance-specific genes,

which were subjected to subsequent least absolute shrinkage and selection operator

(LASSO) feature selection, whereby paclitaxel resistance-specific or non-paclitaxel

resistance-specific key genes were selected. Ten machine learning models were used

to validate the biological significance of these key genes; the potential therapeutic drugs

for paclitaxel resistance-specific genes were also predicted. As a result, we identified 24

paclitaxel resistance-specific genes and 18 non-paclitaxel resistance-specific genes. The

ESCC machine classifiers based on the key genes achieved a relatively high AUC value

in the cross-validation and in an independent test set, GSE164158. A total of 207 drugs

(such as bevacizumab) were predicted to be alternative therapeutics for ESCC patients

with paclitaxel resistance. These results might shed light on the in-depth research of

paclitaxel resistance in the context of ESCC progression.
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INTRODUCTION

Esophageal squamous cell carcinoma (ESCC) is one of the most
lethal malignancies in the world and occurs with an especially
high frequency in China. As the fourth leading cause of cancer-
related deaths, ESCC kills about 250,000 people in China every
year (Peng et al., 2018). The global incidence burden and
mortality have been increasing over time (Batra et al., 2019).
The disease is aggressive with poor overall survival and is
generally unresectable. Therefore, it is urgent to develop effective
therapeutic strategies against ESCC.

Although most ESCC patients receive standard treatments
including surgery, radiotherapy, and chemotherapy, the long-
term outcomes for these patients remain dismal, with a 5-year
survival rate of around 30% (Liu et al., 2012). The poor prognostic
outcomes result from the failure of early diagnosis and acquired
chemoresistance. The targeted therapies and immunotherapies
approved by the US Food and Drug Administration (FDA) only
resulted in significant improvements in survival for a few specific
subgroups of patients who are positive for certain biomarkers
(Lam and Kwong, 2018; Ma et al., 2018; Barsouk et al., 2019). The
remaining majority of patients without such biomarkers still rely
on traditional chemotherapy and radiation therapy. Paclitaxel-
based regimens have been examined and reported to be effective
in multiple clinical trials (Hirano and Kato, 2019). However,
prolonged therapeutic management will inevitably lead to the
development of paclitaxel resistance, the predominant cause of
treatment failure, which poses a challenge to ESCC treatment.
Thus, there is an intense focus on how to counteract paclitaxel
resistance, especially the underlying molecular mechanisms.

High-throughput technologies have been broadly employed
in cancer research, and large amounts of data are being created
from various microarrays, tissue arrays, and next-generation
sequencing platforms. Bioinformatics and computational biology
are powerful tools to analyze massive data. To identify
the genes responsible for paclitaxel resistance, we identified
the differentially expressed genes (DEGs) between paclitaxel-
resistant embryo/cancer sequence A (ECSA) cell lines and their
parental cell lines based on the GSE86099 dataset. We also
downloaded the mRNA expression matrix data of ESCC from
The Cancer Genome Atlas (TCGA) and the Gene Expression
Omnibus (GEO) database to analyze the DEGs between normal
and tumor tissues. Afterward, weighted gene co-expression
network analysis (WGCNA) was performed to screen the
modules associated with ESCC tumor status. In addition,
we evaluated the prognostic potential of ESCC-specific genes
associated with paclitaxel resistance using the least absolute
shrinkage and selection operator (LASSO) andmachine learning,
which provides new insights into paclitaxel resistance and
potential targets for overcoming resistance in ESCC.

Abbreviations: ESCC, esophageal squamous cell carcinoma; DEG, differentially

expressed gene; WGCNA, weighted gene co-expression network analysis; LASSO,

least absolute shrinkage and selection operator; FDA, United States Food and Drug

Administration; ECM, extracellular matrix; PPI, protein–protein interaction; GO,

Gene Ontology; MM, module eigengene; PCC, Pearson’s correlation coefficient;

KEGG, Kyoto Encyclopedia of Genes and Genomes.

MATERIALS AND METHODS

Data Collection
GSE86099 was obtained from the GEO database (http://
www.ncbi.nlm.nih.gov/geo/). This dataset was from a study
conducted by Wang et al. (2016), which consisted of four
paclitaxel-resistant ECSA cell lines and four parental cell lines
(non-paclitaxel-resistant). The keywords “Esophageal” and
“Homo sapiens” were used as query to search ESCC-associated
datasets from the GEO database. The GEO datasets used in
this study met the following criteria: (1) the dataset contains
both ESCC samples and control samples; (2) each sample was
assigned a group label; (3) the type of platform was restricted
to “microarray”; (4) the gene symbol or GeneBank ID was
available for each probe; (5) the patient was not previously
treated with chemotherapy or non-paclitaxel drugs; and 6) the
number of samples in the dataset was larger than 10. Finally, we
obtained GSE161533 from the GEO database, which included
28 ESCC samples and 28 normal samples. Gene expression
and subtype data of the esophageal carcinoma samples were
downloaded from the TCGA database (https://www.cancer.
gov/about-nci/organization/ccg/research/structural-genomics/
tcga), which included 164 esophageal carcinoma samples and 11
normal samples. An independent dataset (GSE164158) was used
for the validation of our current findings based on a machine
learning classifier.

Identification of DEGs and Construction of
Co-expression Network
The mean value of gene expression was retained when the
gene symbol mapped with multiple probes and the genes
with missing value or with zero value were excluded. The R
“limma” package was used to perform differential expression
analysis and data normalization. Data scaling of GSE86099,
GSE161533, and TCGA Esophageal Carcinoma (TCGA-ESCA)
was implemented by logarithmic conversion in R. DEGs
were identified with the threshold of |log2FoldChange| >

0.263 and padj. < 0.05 (adjusted p-value). The top 25 most
significant upregulated and downregulated DEGs (sorted by the
|log2FoldChange|) were extracted and visualized in a heatmap
using the R “pheatmap” package. The corresponding volcano
plot was visualized by R “ggpubr” (https://cran.r-project.org/
web/packages/ggpubr/index.html) and “ggthemes” (https://cran.
r-project.org/web/packages/ggthemes/index.html) packages. The
top 10 upregulated and downregulated DEGs (ranked by padj.
value) were labeled with gene symbols in the volcano plots.

The R “WGCNA” package was used to construct a scale-
free topological matrix based on GSE161533, which included
22,880 genes and 56 samples. The pickSoftThreshold function
was used to select a suitable power to construct a co-expression
network that conforms to the scale-free distribution. Pearson’s
correlation coefficient (PCC) was used to analyze the correlation
between the ESCC tumor status and module eigengene (MM),
and the modules with the highest correlations (positive and
negative) with the ESCC tumor status were selected as ESCC-
specific modules.
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Identification of Paclitaxel
Resistance-Specific/Non-paclitaxel
Resistance-Specific Genes
Paclitaxel resistance-specific and non-paclitaxel resistance-
specific genes were obtained from the intersection among the
DEGs in the GSE86099, GSE161533, and the ESCC-specific
modules. Specifically, genes that were positively associated with
ESCC and upregulated in the ESCC/paclitaxel resistance cell lines
by comparing normal and non-paclitaxel resistance cell lines
were considered to be responsible for ESCC progression and
paclitaxel resistance and were defined as paclitaxel resistance-
specific genes. In contrast, genes that were inversely associated
with ESCC and downregulated in the ESCC and paclitaxel
resistance cell lines by comparing normal and non-paclitaxel
resistance cell lines, which showed a low risk of paclitaxel
resistance, were defined as non-paclitaxel resistance-specific
genes. The correlations between the genes of the ESCC-specific
modules and the DEGs from GSE86099 and GSE161533 were
visualized by the R “UpSetR” package.

Identification of Key Genes Using LASSO
The least absolute shrinkage and selection operator (LASSO)
was adopted to identify the important features of paclitaxel
resistance and non-paclitaxel resistance. The R “glmnet” (https://
glmnet.stanford.edu) package was used to perform the LASSO
selection with 10-fold cross-validation. The key genes (associated
with paclitaxel resistance and non-paclitaxel resistance, including
paclitaxel resistance-specific and non-paclitaxel resistance-
specific key genes) were identified based on the coefficient weight.

TCGA-ESCA was used to display the expression levels of the
key genes across the different ESCC tumor stages. Statistical
significance was analyzed using analysis of variance (ANOVA)
with a Python script. The R “limma” package was used to analyze
the expression levels of the key genes in the ESCC tumor group
compared with the normal group. The R “beanplot” and R
“boxplot” were used to visualize the expression levels of the key
genes in the TCGA-ESCA dataset.

Machine Learning-Based Validation of the
Key Genes
To further uncover the prognostic value and biological
significance of the key genes, we constructed ESCC classifiers
using 10 machine learning algorithms. Firstly, we split
GSE161533 into a training set and a validation set with a 7:3
ratio. Ten machine classifiers (SVM, random forest, ExtraTree,
AdaBoost, GradientBoosting, MLP, KNeighbors, logistic
regression, linear discriminant analysis, and GaussianNB) were
performed on the training set; the generalization performance
of these models was validated in both validation and test
sets. A 10-fold cross-validation method was used to select the
hyperparameters and to avoid overfitting. Then, the ESCC
machine classifiers were constructed using a machine learning
model from the Python scikit-learn library (Pedregosa et al.,
2011). The random state of the classifiers was set as 42 and
the mean area under the receiver operating characteristic
(ROC) curve (AUC) was calculated after cross-validation. An

additional dataset, GSE67269, was used as a test set for the
back-propagation neural network (BPNN)-based validation
following the same procedure.

PPI Network Construction
To uncover the interaction between the paclitaxel resistance-
specific genes/non-paclitaxel resistance-specific genes, protein–
protein interaction (PPI) analysis was performed. Twenty-
four paclitaxel resistance-specific genes and 18 non-paclitaxel
resistance-specific genes were uploaded onto the Search Tool
to obtain the interaction information of their coded proteins.
Herein, “Homo sapiens” was used to filter the results. Protein
interactions with low confidence (a combined score >0.4) were
considered acceptable. Based on these criteria, the resulting ∗TSV
file was downloaded from STRING and visualized locally as a
PPI network using Cytoscape 3.4.0 software. Nodes without any
connection to other nodes were removed from the PPI network.
The hub genes in the PPI network were defined according to the
degree centrality.

To explore the prognostic role of the hub genes obtained in
the PPI networks, we performed Kaplan–Meier survival analysis
of the hub genes based on TCGA-ESCA by GEPIA (http://
gepia.cancer-pku.cn/). The overall survival (OS) and disease-free
survival (DFS) of the hub genes in ESCC were analyzed.

Functional Enrichment Analysis
The R “clusterProfiler” package was used to investigate the
biological function of the genes in this study. The padj. value was
used to rank the Gene Ontology (GO) terms and pathways, and
the pathways with padj. < 0.05 were considered significant. The
visualization of the top 10 GO terms under the biological process,
cellular component, andmolecular function branches and the top
10 Kyoto Encyclopedia of Genes andGenomes (KEGG) pathways
were implemented by the R “ggplot2” package.

Drug Interaction Prediction for Paclitaxel
Resistance-Specific Key Genes
The Drug Gene Interaction Database (DGIdb; www.dgidb.org)
was used to predict the interaction between genes and drugs.
We uploaded the paclitaxel resistance-specific key genes onto
the DGIdb to obtain the potential targeted drugs effective for
paclitaxel resistance in ESCC.

RESULTS

Screening of DEGs Based on GSE86099,
GSE161533, and TCGA-ESCA
A total of 7,460 DEGs in tumor and normal tissues from
GSE161533 are shown in Figure 1A, with 3,933 upregulated
and 3,527 downregulated genes (padj. < 0.05, |log2FoldChange|
> 0.263). The top 25 DEGs in two clusters (upregulated
or downregulated) are shown in Figure 1B (ranked by
|log2FoldChange|). As shown in Figure 1C, 548 genes were
significantly differentially expressed between the paclitaxel
resistance cell lines and the non-paclitaxel resistance cell
lines (padj. < 0.05, |log2FoldChange| > 0.263) in GSE86099.
Among them, 275 genes were upregulated and 273 genes
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were downregulated. The expressions of the top 25 DEGs
in the upregulated and downregulated clusters are shown in
Figure 1D. A total of 5,842 DEGs (2,963 upregulated and 2,879
downregulated) were found in the tumor group compared
with the normal group from TCGA-ESCA; the cutoff values
were padj. < 0.05 and |log2FoldChange| > 0.263. The volcano
plot and heatmap of the DEGs in TCGA-ESCA are shown in
Figures 1E,F, respectively.

WGCNA and Identification of the Key
Modules
WGCNA was used to identify disease-associated modules
wherein genes exhibited coordinated expression patterns, which
greatly improved the chance of identifying hub genes. The
sample dendrogram and trait heatmap of the GSE161533 dataset
are shown in Figure 2A. As shown in Figure 2B, power of β

= 4 was selected to conduct further analysis. As depicted in
Figure 2C, by setting the minModuleSize to 30 (relatively large
modules would be detected), numerous modules were identified
by dynamic clustering; these modules were further merged based
on their similarity by setting the MEDissThres to 0.25 (modules
with the top 25% similarity were merged). As a result, a total
of 26 merged modules were generated. Finally, we chose the
modules with the highest correlations with the external trait
“ESCC tumor” (positive and negative correlations) as the ESCC-
associated modules (Figure 3A), which were a brown module
(cor = 0.91, p = 9e−22) and a dark orange module (cor =

−0.8, p= 1e−13). The correlations betweenmodulemembership
and gene significance of the ESCC-associated modules are shown
in Figures 3B,C. Corresponding information of the ESCC-
associated modules are provided in Supplementary Table 1.

Identification of Paclitaxel Resistance- and
Non-paclitaxel Resistance-Specific Genes
We analyzed the intersection of the DEGs obtained from
GSE86099 and GSE161533 and the genes in two ESCC-associated
modules. As shown in Figure 4A, a total of 24 genes (INHBA,
MLLT11, PTGS2, PHTF2, CCL26, FN1, MFAP2, SPARC, MME,
FKBP14, SHOX2, NUAK1, CYP26B1,MUCL1, ASAP1, KDELC1,
TSPAN9, VEGFA, COL1A1, HTRA1, GUCY1A2, OLR1, KIF3C,
and CLDN1) with high expression in ESCC tumor, high
expression in paclitaxel resistance, and positively associated
with ESCC tumor status were selected as paclitaxel resistance-
specific genes. The biological function and pathways (Figure 4B)
of the paclitaxel resistance-specific genes were enriched in the
response to acid chemical, extracellular matrix organization,
collagen-containing extracellular matrix, endoplasmic reticulum
lumen, extracellular matrix structural constituent, human
papillomavirus infection, and focal adhesion.

Similarly, a total of 18 non-paclitaxel resistance-specific
genes (DIO2, PLEKHN1, DGAT2, CD59, CCBE1, USP43,
ZBED2, SLC6A4, BRCC3, ZFYVE21, L1CAM, SQRDL, NEBL,
AMOTL1, ARNTL2, TMEM45B, LRRC20, and ADAMTSL4)
were obtained from the intersection of the genes with low
expression in ESCC tumor samples, low expression in the
paclitaxel resistance cell lines, and negatively associated
with ESCC tumor status (Figure 4A). The GO and KEGG
analyses (Figure 4C) demonstrated that the non-paclitaxel

resistance-specific genes were involved in the pathways
of positive regulation of endothelial cell migration, focal
adhesion, cell–substrate junction, thiol-dependent ubiquitinyl
hydrolase activity, homologous recombination, fat digestion,
and absorption.

LASSO Analysis and Expression Levels of
Key Genes
For feature selection and machine learning validation, the
samples were first grouped based on “tumor” and “normal”
labels. According to the LASSO analysis (Figures 5A,B), nine
paclitaxel resistance-specific key genes were obtained, namely,
PHTF2, MFAP2, MME, INHBA, TSPAN9, MLLT11, CLDN1,
KDELC1, and CCL26. Except for KDELC1 (not found in TCGA-
ESCA), MLLT11, and TSPAN9, the expression levels of the
paclitaxel resistance-specific key genes were significant in the
ESCC tumor group compared with the normal group (padj. <

0.05) (Figure 5C). The expression levels of PHTF2, MFAP2,
INHBA, TSPAN9, and CCL26 (p < 0.05) displayed tumor stage-
dependent alterations (Figure 5D). The AUC value was used to
evaluate the classification performance of the ESCC machine
classifiers based on the nine paclitaxel resistance-specific key
genes. The AUCs of all the ESCC machine classifiers reached
0.95, except for the classifiers based on the AdaBoost algorithm
(Figure 5E).

As shown in Figures 6A,B, a total of eight key genes associated
with non-paclitaxel resistance were obtained by LASSO analysis:
CD59, L1CAM, BRCC3, PLEKHN1, AMOTL1, TMEM45B,
CCBE1, and USP43. The expression levels of CCBE1, PLEKHN1,
and USP43 were significantly different in the ESCC tumor group
compared with the normal group (Figure 6C). The expression
level of TMEM45B displayed tumor stage-dependent alterations
(p < 0.05) (Figure 6D). Except for the ESCC machine classifiers
based on the AdaBoost and Gradient Boosting algorithms, the
AUC values of the remaining ESCC machine classifiers were
higher than 0.95 (Figure 6E).

In the independent dataset GSE164158, we verified the
biological significance of the key genes using BPNN, as shown
in Supplementary Figure 1, to classify the ESCC tumor samples
from normal controls. The BPNNmodel based on nine paclitaxel
resistance-specific key genes achieved an AUC value of 0.924
in the test set; the BPNN model based on eight non-paclitaxel
resistance-specific key genes showed an inferior performance,
with an AUC of 0.7046 (Supplementary Figure 2). These results
corroborated the biological significance of the identified key
genes. In addition, box plots in Supplementary Figures 1, 2 show
that the majority of the paclitaxel resistance-specific key genes
and the non-paclitaxel resistance-specific key genes displayed
a consistent trend of tumor vs. normal expression differences
across the training set (GSE161533) and the test set (GSE164158).

PPI Network Analysis of Paclitaxel
Resistance-Related Genes
The PPI network was used to discover the interactions of
24 paclitaxel resistance-specific genes and 18 non-paclitaxel
resistance-specific genes. As shown in Figure 7A, a total of 35
nodes and 85 edges were found in the PPI network. Five hub
genes (FN1,VEGFA, COL1A1, PTGS2, and SPARC) were selected
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FIGURE 1 | Volcano plot and heatmap of the differentially expressed genes in the GSE161533, GSE86099, and The Cancer Genome Atlas Esophageal Carcinoma

(TCGA-ESCA) datasets. (A) Volcano plot of GSE161533 with the top 10 significant genes in the upregulated and downregulated clusters (ranked by padj. value)

(Continued)
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FIGURE 1 | highlighted. (B) Expression levels of the top 25 significant genes in the upregulated and downregulated clusters (ranked by |log2FoldChange|) of

GSE161533. (C) Volcano plot of GSE86099 with the top 10 significant genes in the upregulated and downregulated clusters (ranked by padj. value) highlighted.

(D) Expression levels of the top 25 significant genes in the upregulated and downregulated clusters (ranked by |log2FoldChange|) of GSE86099. (E) Volcano plot of

TCGA-ESCA with the top 10 significant genes in the upregulated and downregulated clusters (ranked by padj. value) highlighted. (F) Expression levels of the top 25

significant genes in the upregulated and downregulated clusters (ranked by |log2FoldChange|) of TCGA-ESCA.

FIGURE 2 | Construction of the weighted gene co-expression network based on GSE161533. (A) Sample dendrogram and trait heatmap. Red or white bar codes

underneath the dendrogram correspond to the presence or absence of a pair of mutually exclusive clinical traits. (B) Identification of soft-thresholding powers based

on scale independence and mean connectivity. The minimum power that satisfied a scale-free fit index of 0.8 was selected. (C) Module identification using dynamic

tree cut. The minimum module size was 30. Modules with the top 25% similarity were merged.
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FIGURE 3 | Identification of esophageal squamous cell carcinoma (ESCC)-specific modules of GSE161533. (A) Heatmap of module–trait relationships. (B,C) Scatter

plots of module membership vs. gene significance in the brown (B) and dark orange (C) modules.

with the degree of nodes larger than eight. FN1 has the greatest
number of connections within the network, implying that this
gene plays a central role in the network. The top 10 GO terms
(Figure 7B) of the nodes in the PPI network suggested that
these genes were enriched in response to acid chemical, cellular
response to acid chemical, positive regulation of endothelial
cell migration, response to lead ion, positive regulation of
epithelial cell migration, positive regulation of axonogenesis,
response to vitamin, extracellular structure organization, and
response to nutrient. The most representative genes involved
in the 10 GO terms were MFAP2, COL1A1, CLDN1, PTGS2,
SPARC, SHOX2, HTRA1, FN1, VEGFA, CYP26B1, AMOTL1,
L1CAM, DGAT2, ADAMTSL4, CCBE1, and SLC6A4. Among
them, SPARC, PTGS2, VEGFA, and COL1A1 participated in the
greatest number of GO terms, and these genes were all associated

with paclitaxel resistance. The survival analysis (Figures 7C–E)
demonstrated that high expression levels of COL1A1, FN1, and
SPARC were associated with a poor prognosis of ESCC patients
(p < 0.05).

Drug Interaction Prediction for Paclitaxel
Resistance-Specific Key Genes
The relationship between the paclitaxel resistance-specific genes
and the corresponding potential therapeutic candidates was
retrieved from DGIdb. As presented in Supplementary Table 2,
a total of 207 drugs were predicted to interact with paclitaxel
resistance-specific genes. Among them, the drugs with the
highest number of target genes were bevacizumab, capecitabine,
celecoxib, lenalidomide, naproxcinod, ocriplasmin, oxaliplatin,
and ranibizumab.
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FIGURE 4 | Intersection and functional enrichment analysis of the differentially expressed genes (DEGs) of two Gene Expression Omnibus (GEO) datasets and the

genes in esophageal squamous cell carcinoma (ESCC)-specific modules. (A) Upset plot of the DEGs identified in GSE86099 and GSE161533 and the genes in the

ESCC-specific modules selected by weighted gene co-expression network analysis (WGCNA). (B,C) Function enrichment analyses of the paclitaxel

resistance-specific (B) and non-paclitaxel resistance-specific (C) genes.
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FIGURE 5 | Identification of the paclitaxel resistance-specific key genes by least absolute shrinkage and selection operator (LASSO) analysis based on GSE161533.

(A) Cross-validation of LASSO analysis of the paclitaxel resistance-specific key genes. (B) Coefficient weights of the paclitaxel resistance-specific key genes. (C)

Expression levels of the paclitaxel resistance-specific key genes in the tumor group compared with the normal group based on The Cancer Genome Atlas Esophageal

Carcinoma (TCGA-ESCA). (D) Expression levels of the paclitaxel resistance-specific key genes in four tumor stages based on TCGA-ESCA. (E) Area under the ROC

curve (AUC) values of 10 esophageal squamous cell carcinoma (ESCC) classifiers of the paclitaxel resistance-specific key genes based on GSE161533.
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FIGURE 6 | Identification of the non-paclitaxel resistance-specific key genes by least absolute shrinkage and selection operator (LASSO) analysis based on

GSE161533. (A) Cross-validation of LASSO analysis of the non-paclitaxel resistance-specific key genes. (B) Coefficient weights of the non-paclitaxel

resistance-specific key genes. (C) Expression levels of the non-paclitaxel resistance-specific key genes in the tumor group compared with the normal group based on

The Cancer Genome Atlas Esophageal Carcinoma (TCGA-ESCA). (D) Expression levels of the non-paclitaxel resistance-specific key genes in four tumor stages based

on TCGA-ESCA. (E) Area under the ROC curve (AUC) values of 10 esophageal squamous cell carcinoma (ESCC) classifiers of the non-paclitaxel resistance-specific

key genes based on GSE161533.
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FIGURE 7 | Protein–protein interaction (PPI) network analysis and survival analysis of the paclitaxel resistance-specific and non-paclitaxel resistance-specific genes.

(A) PPI network. Red points indicate paclitaxel resistance-specific genes and blue points indicate non-paclitaxel resistance-specific genes. The size of the node was

determined by the degree of each node and the color depth of the node determined by the |log2FoldChange| of the gene. The thickness of the node connection

depends on the combined scores between the nodes. (B) The top 10 Gene Ontology (GO) terms and corresponding genes in the PPI network were visualized in the

chord diagram. (C–E) Disease-free survival analyses of COL1A1 (C), FN1 (D), and SPARC (E) based on The Cancer Genome Atlas Esophageal Carcinoma

(TCGA-ESCA).
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DISCUSSION

As a subtype of esophageal cancer (EC), ESCC is highly invasive.
In the current study, a total of 548 and 7,460 DEGs were
identified from GSE86099 and GSE161533, respectively. Based
on GSE161533, WGCNA was used to construct a co-expression
matrix, where 26 modules were obtained, among which two
ESCC-specific modules were selected for subsequent analyses.
Combining the DEGs identified in the above-mentioned two
GEO datasets and the genes in the ESCC-specific modules, a total
of 24 paclitaxel resistance-specific genes and 18 non-paclitaxel
resistance-specific genes were identified. LASSO was used to
identify the key genes associated with paclitaxel resistance and
those associated with non-paclitaxel resistance with expression
levels across different ESCC tumor stages, which were further
confirmed in the TCGA-ESCA dataset. Additionally, 10 machine
learning algorithms were used to construct ESCC classifiers
based on the expression data of the key genes. Next, a PPI
network was constructed to visualize the interactions between
the paclitaxel resistance-specific genes. The nodes with a degree
higher than 8 in the PPI network were selected as the hub
genes; the survival analysis showed that high expressions of
COL1A1, FN1, and SPARC indicate poor prognosis. Additionally,
paclitaxel resistance-specific key genes were used to predict drugs
that may be effective in paclitaxel-resistant ESCC. Our results
showed that the paclitaxel resistance-specific key genes might
be potential target sites for bevacizumab, capecitabine, celecoxib,
ranibizumab, and abt-510.

PI3K, mTOR, and AKT were reported to be inhibited by
paclitaxel at both the expression and phosphorylation levels (Xu
et al., 2020), while our current function enrichment analyses
showed that the paclitaxel resistance-specific genes were involved
in the PI3K–Akt signaling pathway, implying that paclitaxel
resistance-specific genes might prevent the PI3K–Akt signaling
pathway from being inhibited by paclitaxel. In addition, aberrant
hyperplasia of the extracellular matrix (ECM) was proposed to be
associated with chemotherapy resistance, which agreed with our
current results showing the enrichment of paclitaxel resistance-
specific genes in the ECM–receptor interaction pathway (Zhou
et al., 2020).

We confirmed the key genes significantly associated with the
prognosis of ESCC tumor status through LASSO analysis and
machine learning approaches. A total of nine key genes associated
with paclitaxel resistance were obtained by using LASSO, in
which the expression levels of MFAP2, MME, INHBA, CLDN1,
PHTF2, and CCL26 were upregulated in the tumor group based
on TCGA-ESCA, which is consistent with the previous reports
discussed above. Moreover, significant differences were found
in the expressions of INHBA, CCL26, MFAP2, TSPAN9, and
PHTF2 in tumor stage based on TCGA-ESCA, suggesting their
prognostic value in ESCC tumor development. Machine learning
has been widely applied in cancer prognosis and prediction.
A recent study has reported a support vector machine (SVM)
classifier based on 75 features that can be used to predict
the prognosis of ESCC patients (Yu et al., 2020). The SVM
based on clinicopathological parameters together with 14-3-
3σ expression generated an AUC in the validation cohort of

0.82 (Qi et al., 2014). In this study, the AUC values of the
ESCC machine classifiers based on the key genes associated with
paclitaxel resistance reached 0.9 and had prognostic potential
in identifying patients with ESCC. We suggest that the ESCC
machine classifiers may also work in the determination of
sensitivity to paclitaxel in ESCC patients. Additionally, we also
validated the prognostic value of the key genes associated with
non-paclitaxel resistance, which showed prognostic potential
as well.

To investigate the interactions between the ESCC-specific
genes, we constructed a PPI network. In this network, we
found that the five nodes with the highest degree centrality
were FN1, VEGFA, COL1A1, PTGS2, and SPARC, suggesting
that these genes were key signatures driving carcinogenesis
and paclitaxel resistance in ESCC. The Kaplan–Meier survival
analysis suggested good prognosis in ESCC patients with low
expressions of COL1A1, SPARC, and FN1. In order to uncover
the key pathway of paclitaxel resistance in ESCC, we investigated
the biological function and pathways of the ESCC-specific genes
in the PPI networks. The result was in line with a previous study
showing a high expression of FN1 in ESCC (Li et al., 2020). In EC,
the upregulation of FN1 expression is regulated by STAB1 (Song
et al., 2017). A study also reported that the suppression of LTBP1
can attenuate cancer-associated fibroblast (CAF) transformation
and inhibit FN1 in ESCC (Cai et al., 2020). The elevated FN1
expression may also promote the occurrence of cancer, including
breast cancer (Dorman et al., 2016). However, there is no
research report on how FN1 promotes the formation of paclitaxel
resistance in ESCC. We speculate that FN1may participate in the
paclitaxel resistance of ESCC through the response to nutrient,
extracellular matrix organization, and positive regulation of
epithelial cell migration, which can explain the association
between FN1 and cell migration (Steffens et al., 2012). SPARC can
serve as a therapeutic target in ESCC since the high expression of
SPARC can predict tumor prognosis (Chen et al., 2017), which
was consistent with our findings. Downregulating the expression
of SPARC can reduce the migration and invasion of tumor cells
in ESCC (Zhang et al., 2020). A previous study demonstrated that
the overexpression of SPARC may be associated with response
to nanoparticle albumin-bound paclitaxel (nab-paclitaxel in neck
cancer) (Desai et al., 2009). Similarly, SPARC can be used
to predict the response to nanoparticle-bound paclitaxel (nab-
paclitaxel) in non-small cell lung cancer (NSCLC) (Komiya et al.,
2016). Herein, we found that SPARC may be involved in the
regulation of paclitaxel resistance in ESCC by extracellular matrix
organization and positive regulation of epithelial cell migration.
COL1A1 is a type of collagen (COL) that has been reported to
be upregulated in ESCC (Li et al., 2019) and may contribute
to paclitaxel and topotecan resistance in ovarian cancer cells
(Januchowski et al., 2016). It is reported thatCOL1A1 is the target
of miR-29, and the downregulation of miR-29 can promote the
cisplatin resistance of ovarian cancer cells (Yu et al., 2014). To
date, limited studies have reported on the relationship between
COL1A1 and paclitaxel sensitivity in ESCC. Based on the results
of functional enrichment analysis, we speculate that COL1A1
may regulate the sensitivity of ESCC to paclitaxel through ECM-
related pathways, which is corroborated by the findings that the
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α1 chain coded byCOL1A1 is an essential component of the ECM
(Rousseau et al., 2014).

Furthermore, we predicted the drugs regulating paclitaxel
sensitivity in ESCC patients. The DGIdb can provide data
on the interaction between drugs and paclitaxel resistance-
specific genes based on existing resources. Among the 207
predicted drugs, some have been reported in ESCC treatment.
Bevacizumab has already been used in chemotherapy in ESCC,
which targeted vascular endothelial growth factor A (VEGF-
A) (Yang et al., 2020). Paclitaxel plus bevacizumab is reported
as a method of treatment for HER2-negative metastatic breast
cancer, which had a better effect than paclitaxel treatment alone
(Delaloge et al., 2016). Recently, a study has suggested that the
addition of bevacizumabmay contribute to the treatment of non-
squamous NSCLC (Cortot et al., 2020). Thus, the combination
of bevacizumab and paclitaxel in ESCC treatment may reduce
the paclitaxel resistance of patients. Celecoxib is the inhibitor
of cyclooxygenase-2 (COX-2) and was reported to enhance
the antitumor effects of chemotherapy and radiotherapy for
ESCC (Yusup et al., 2014; Kim and Shah, 2017). Our study
showed the treatment ability of celecoxib in ESCC and was
supported by a previous study, demonstrating that celecoxib
may exert antitumor effects by blocking the blood flow to
the tumor cell. We predicted that capecitabine might target
paclitaxel resistance-specific genes, and the findings were in
line with a previous study demonstrating that capecitabine
might be a therapeutic candidate for ESCC. It was reported
that the cell viability was significantly reduced with paclitaxel
and celecoxib combination therapy in ovarian cancer (Kim
et al., 2014). Another study revealed the effect of celecoxib
and taxol on multidrug resistance in human breast cancer (Liu
et al., 2011), which can be an alternative treatment method for
paclitaxel-resistant ESCC. Although we have only discussed some
of the predicted drugs, other candidates also deserve further
investigation in the treatment of paclitaxel-resistant ESCC.

We found several genes that were significantly related to
ESCC tumor status and constructed ESCC machine classifiers
to determine their prognostic potential in ESCC. Through PPI
analysis, we revealed the genes and possible pathways associated
with paclitaxel resistance in ESCC. Finally, we used the database
to predict drugs related to paclitaxel resistance. However, our
results are mainly based on public data and existing reports,
lacking experimental proof. Due to limited samples, we were
unable to verify the genes related to paclitaxel resistance in ESCC
in other datasets or at the animal level. Nevertheless, we plan to
further verify our current findings in mouse models.

In summary, our study identified paclitaxel resistance-specific
genes, along with their predicted pathways and biological
functions. Based on LASSO analysis and machine learning,

some of these genes were confirmed as good predictors

of ESCC patients’ survival. The predicted drugs have the
potential to be used in combination with paclitaxel to reduce
paclitaxel resistance in ESCC patients and improve therapeutic
effectiveness. These findings may help in understanding the
mechanisms of drug resistance and in discovering potential
targets to overcome paclitaxel resistance, which may help
improve the therapeutic outcomes of ESCC patients.
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