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Summary
Background Early diagnosis of breast cancer has always been a difficult clinical challenge. We developed a deep-
learning model EDL-BC to discriminate early breast cancer with ultrasound (US) benign findings. This study
aimed to investigate how the EDL-BC model could help radiologists improve the detection rate of early breast
cancer while reducing misdiagnosis.

Methods In this retrospective, multicentre cohort study, we developed an ensemble deep learning model called EDL-
BC based on deep convolutional neural networks. The EDL-BC model was trained and internally validated on B-mode
and color Doppler US image of 7955 lesions from 6795 patients between January 1, 2015 and December 31, 2021 in
the First Affiliated Hospital of Army Medical University (SW), Chongqing, China. The model was assessed by
internal and external validations, and outperformed radiologists. The model performance was validated in two
independent external validation cohorts included 448 lesions from 391 patients between January 1 to December
31, 2021 in the Tangshan People’s Hospital (TS), Chongqing, China, and 245 lesions from 235 patients between
January 1 to December 31, 2021 in the Dazu People’s Hospital (DZ), Chongqing, China. All lesions in the
training and total validation cohort were US benign findings during screening and biopsy-confirmed malignant,
benign, and benign with 3-year follow-up records. Six radiologists performed the clinical diagnostic performance
of EDL-BC, and six radiologists independently reviewed the retrospective datasets on a web-based rating platform.

Findings The area under the receiver operating characteristic curve (AUC) of the internal validation cohort and two
independent external validation cohorts for EDL-BC was 0.950 (95% confidence interval [CI]: 0.909–0.969), 0.956
(95% [CI]: 0.939–0.971), and 0.907 (95% [CI]: 0.877–0.938), respectively. The sensitivity values were 94.4% (95%
[CI]: 72.7%–99.9%), 100% (95% [CI]: 69.2%–100%), and 80% (95% [CI]: 28.4%–99.5%), respectively, at 0.76. The
AUC for accurate diagnosis of EDL-BC (0.945 [95% [CI]: 0.933–0.965]) and radiologists with artificial intelligence
(AI) assistance (0.899 [95% [CI]: 0.883–0.913]) was significantly higher than that of the radiologists without AI
assistance (0.716 [95% [CI]: 0.693–0.738]; p < 0.0001). Furthermore, there were no significant differences between
the EDL-BC model and radiologists with AI assistance (p = 0.099).
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Interpretation EDL-BC can identify subtle but informative elements on US images of breast lesions and can
significantly improve radiologists’ diagnostic performance for identifying patients with early breast cancer and
benefiting the clinical practice.
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Research in context

Evidence before this study
We searched PubMed with the terms “(deep learning OR
machine learning OR artificial intelligence) AND (ultrasound
OR ultrasonography) AND early breast cancer” for papers
published from database inception up to Dec 31, 2021, with
no language restrictions or date restrictions. We found that
previous researches were mainly limited to deep learning-
based classification of breast lesions, prediction axillary lymph
node status in early-stage breast cancer and early prediction
of response to neoadjuvant chemotherapy in breast cancer.
None of these studies discriminated early breast cancer with
ultrasound (US) benign findings.

Added value of this study
We developed an ensemble deep learning model, called EDL-BC
to identify high-risk breast lesions in US images. The model

diagnostic performance was verified by multi-centre cohorts.
Both in the internal validation cohort and two external
validation datasets, our model showed high sensitivity and
specificity. To further demonstrate its practicability, six
radiologists independently reviewed the retrospective datasets
with or without assistance from EDL-BC. The results showed
that EDL-BC improved the performance of radiologists when
reviewing US images.

Implications of all the available evidence
EDL-BC could identify high-risk lesions in US images with
benign findings, which is beneficial to early confirmation with
immediate biopsy. Therefore, it can significantly improve the
diagnostic performance of radiologists to identify breast
cancer at an early stage.
Introduction
Globally, breast cancer has become one of the most
common cancers and accounts for one-quarter of all
new cancers in female patients. It is also a leading cause
of cancer death in women around the world.1 According
to the eighth edition of the American Joint Committee
on Cancer staging system, early-stage breast cancer re-
fers to breast cancer stagesIandII,T1-2N0-1M0.2 Early
detection of breast cancer can reduce the corresponding
mortality by 40%.3 Mammography and ultrasound (US)
are suitable for addressing this task. However, for
women with dense breast tissue, the sensitivity of
mammography decreases from 85% to 48–64%.
Namely, it is not suitable for all ethnic groups.4 On the
other hand, US can cope with the clinical cases for
women with dense breasts. Meanwhile, Chinese women
tend to have more dense breasts than Caucasian and
Hawaiian groups, which reduces the accuracy of
mammography in diagnosis.4,5 The US is the primary
instrument for early breast cancer screening in China
due to its convenience, price moderate, non-
invasiveness, low radiation, and universality. Accord-
ingly, the US has been applied in differentiation of cysts
from solid masses and breast cancer screening.4,6 Re-
views of US images with diagnosed breast cancer have
demonstrated that cancer indicators are visible on
merely 10.8% of early examinations interpreted as
normal.7 A variety of factors in the US images related to
this phenomenon, including noise, contrast, illumina-
tion, and resolution.8 Until now, a reliable US image
processing method still needs to be discovered, espe-
cially for an early diagnosis of challenging breast cancer
cases with multiple types of modalities. Therefore, this
is a meaningful work that the malignant lesions were
accurately identified at an earlier stage after analysing
diagnosed-benign US lesions.

Artificial intelligence (AI) has made an outstanding
contribution to a plethora of clinical challenges in
oncology, including tumor diagnosis, treatment, and
prognosis.9 Deep learning (DL) is a subset of Machine
learning (ML), which is a subfield of AI. Recently, Since
DL is capable of performing feature extraction auto-
matically and dealing with big data, it has achieved
unprecedented success in various areas, including im-
age classification, natural language processing, audio
recognition, and video analysis.10,11 DL-assisted image
analysis plays a gradually increased role in early cancer
detection while enhancing diagnosis accuracy by
reducing false positives.11 DL has also achieved prom-
ising outcome in the diagnosis of various tumors,
www.thelancet.com Vol 60 June, 2023
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including liver cancer, breast cancer, colorectal cancer,
prostate cancer, non-small cell lung cancer and naso-
pharyngeal carcinoma using mammogram, US,
computed tomography (CT), magnetic resonance im-
aging (MRI), positron emission tomography-CT (PET-
CT).12–17 Previous studies of DL models have shown their
comparable performance to doctors in cancer detection,
cancer classification, and cancer grading. By integrating
feature extraction and fine-tuning in an automated
fashion, DL-based algorithms can guarantee the per-
formance of cancer diagnosis while simplifying the
diagnostic workflow and reducing mistakes.11

The application of US in breast cancer screening is
increasing. Correspondingly, a fast and accurate diag-
nosis has become a significant problem, which has in-
fluence on the entire therapeutic process. DL has made
significant progress in analysing medical images, while
manual inspection of US images is error-prone, labo-
rious and time-consuming.18 For instance, Fujioka et al.
introduced the GoogLeNet for lesion detection and
classification in US images.19 DL has shown its effec-
tiveness in breast imaging and treatment response of
breast cancer. And DL-based diagnostic platforms are
becoming more common.20,21 It has shown the crucial
role of DL-based system in classifying benign and ma-
lignant breast images.22

However, few studies have focused on DL-based
early breast cancer detection in the US images.
Bearing the above-mentioned analysis in mind, we
selected 7421 patients from January 1, 2015 and
December 31, 2021 with US benign and 219 patients
with breast cancer confirmed. We hypothesized subtle
elements within US images that may not be discernible
by human visual inspection or revealed by straightfor-
ward measurements,23 and DL can leverage these
informative representations to estimate the malignant
degree.6 We developed an ensemble DL model to iden-
tify high-risk lesions in US images, which is beneficial
to early confirmation with immediate biopsy. The pro-
posed model contains two separate feature extraction
modules designed for B-mode and color Doppler US
images, respectively. Rather than the manually-crafted
embeddings, we employed the DL model to unveil
more discriminative representation from US image
samples.

This retrospective cohort study was performed on
images from patients with early breast cancer with
benign US images at Southwest (SW) Hospital
(Chongqing, southwestern China; 70% of patients are
from Sichuan, Guizhou and Yunnan provinces; 30%
are from Chongqing), the Tangshan (TS) People’s
Hospital (Hebei Province, northern China), and the
Dazu (DZ) People’s Hospital (Chongqing, south-
western China). We initially trained the proposed
model and evaluated its performance on the dataset
from SW, split into training and validation sets. We
then evaluated the generalizability and robustness of
www.thelancet.com Vol 60 June, 2023
our proposed model using the TS and DZ datasets
simultaneously.
Methods
Study design and participants
For SW database, due to repeated visits, male, or
declined to allow the use of their medical records for
research, we excluded the samples from 338,282 pa-
tients. In the remaining 84,016 female patients with US
benign lesions, 76,605 (91.2%) patients were suspected
breast cancer on mammogram and did not undergo
biopsy confirmation or three years of follow-up, 118
(1.6%) patients were <18 years or age unknown, 31
(0.4%) had malignant phyllodes tumors, various malig-
nancies of the non-mammary origin or were pregnant,
231 (3.2%) were diagnosed with evidence of the per-
sonal history of breast cancer or ductal carcinoma in situ
with clinical signs of a non-mass accompanied by bloody
nipple discharge, 172 (2.4%) did not have B-mode or
color Doppler images available, and 64 (0.9%) patients
had images of poor quality (Fig. 1). The SW database, on
which the EDL-BC model was trained and internally
validated, consisted of B-mode and color Doppler US
images of 7955 lesions from 6795 patients with US
benign findings between January 1, 2015 and December
31, 2021 (Fig. 2, Table 1). The doctors involved had an
averaged 20 years of clinical experience in breast US
imaging. We selected 1–2 lesions from each patient as
model input, and each lesion included 2 images. In each
patient’s US examination, there were 2–4 (mean, 2.3)
images collected. In our paper, the training set, internal
test set, Tangshan test set and Dazu test set contained
7076 lesions (14152 images), 879 (1758 images), 448
(896 images) and 245 (490 images) lesions in total,
respectively. In the SW dataset, the training set con-
sisted of biopsy-confirmed malignant (n = 186), benign
lesions (n = 4824; 2015–2021), and benign lesions with
3-year follow-up records (n = 2066; 2015–2017). Mean-
while, the validation set consisted of biopsy-confirmed
malignant (n = 18), benign lesions (n = 440; 2021),
and benign lesions with 3-year follow-up records
(n = 421; 2018). The datasets used to evaluate the
generalizability of the proposed approach were selected
from 9227 patients in US benign lesions. They con-
tained 448 lesions (10 malignant, 438 benign) from 391
patients within TS between January 1 and December 31,
2021 and 245 lesions (5 malignant, 240 benign) from
235 patients within DZ between January 1 and
December 31, 2021.

This study aimed to develop a DL model to recognize
the breast cancer risk at early stages in US images. The
SW dataset on which the model was trained and inter-
nally validated consisted of 7955 US benign lesions
from 6795 patients. The generalization ability of the
proposed model was evaluated with two datasets from
TS (448 lesions from 391 patients) and DZ (245 lesions
3
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Fig. 1: Flow chart of patients’ selection. This study was approved by the institutional review board with a waiver requiring the informed
consent and was compliant with the Health Insurance Portability and Accountability Act. Due to the characteristics of retrospective investi-
gation, multimodal ultrasound (US) images are not completely preserved and/or annotations are not integrally labeled in some lesions. To
employ the US image datasets from three medical centres, our EDL-BC system was developed and internally validated based on US image.
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from 235 patients). All datasets were constructed to
reflect the variability across geographically distributed
medical centres for different ethnic groups and a variety
of US devices, contributing to image variability.24

The details on data preprocessing are described in
the appendix (p1). All image pairs (color Doppler over-
laid on corresponding B-mode images) showed one-to-
one correspondence. The proposed model consisted of
several fundamental modules, which used structurally
identical backbones to unveil underlying features in
images, respectively. All breast cancer cases were
confirmed by pathological biopsy, and all benign lesions
were confirmed by pathological biopsy or 3-year follow-
up. The details of the datasets are provided in Fig. 3. The
model construction, procedures, and interpretability are
described in the appendix (p1–p2).

This study was approved by the ethics committee of
the First Affiliated Hospital of Army Medical University
[No. (B) KY202264]. The requirement for patient
informed consent was waived. The CONSORT-AI
guideline was used for reporting in the current study.

Model aided diagnosis
Six radiologists were ignorant of the pathological
confirmation of the breast mass status and research
aims before the review. Each radiologist independently
completed a review process on an online platform. In
addition, the radiologists’ diagnosis was compared with
a reference diagnosis from EDL-BC. If the two results
are inconsistent, the radiologists could then choose to
adhere to their own diagnosis or adopt the diagnosis
from EDL-BC. The final diagnosis was generated from
the assistance of EDL-BC.

Statistical analysis
Categorical variables were presented as frequency (per-
centage). Continuous variables were presented as
mean ± standard deviation, and between-group
www.thelancet.com Vol 60 June, 2023

www.thelancet.com/digital-health


Fig. 2: Data and strategy. a. Conventional ultrasound (US)-based diagnosis, and the patients with US benign findings are generally managed
with a short-interval of 6 months follow-up or continued surveillance. b. Summary of training and validation datasets. The entire dataset
consists of biospy-confirmed positive/negative samples collected from three medical centres of Southwest (SW), Tangshan (TS), and Dazu (DZ),
as well as 3-year follow-up negative samples from SW. c. Ensemble model. d. AI Performance.
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differences were assessed using variance (ANOVA).
Models were evaluated based on the following metrics
from the five-fold cross validation: the area under the
receiver operating characteristic curve (AUC), F-mea-
sure to receiver operating characteristic (ROC), and
values for kappa accuracy, sensitivity, and specificity. We
calculated the following performance evaluation metrics
with a 95% confidence interval (CI) using 1000 boot-
straps and P < 0.05 against the null hypothesis: (1)
Sensitivity (true positive rate), representing the propor-
tion of samples with breast cancer correctly identified as
breast cancer: sensitivity = true positive/(true
positive + false negative); (2) Specificity (true negative
rate), representing the proportion of samples without
breast cancer correctly identified as non-breast cancer:
specificity = true negative/(true negative + false posi-
tive); (3) AUC using to evaluate the efficiency of the
proposed model. EDL-BC will generate predictions of
the probability of malignancy (POM). That is, for each of
the patient’s breasts, the system produces a number in a
range between 0 and 1. Two-sided P values less than
0.05 were considered indicative of statistical signifi-
cance. All statistical analyses were performed using the
statistical package SPSS (version 19.0, SPSS, Chicago).
www.thelancet.com Vol 60 June, 2023
Role of the funding source
The funder of the study had no role in study design, data
collection, data analysis, data interpretation, or writing
of the report. LH and FN had access to their respective
institution’s data. The corresponding author had final
responsibility for the decision to submit for publication.
Results
Model performance and interpretability
The EDL-BC model was trained and validated using
14,152 B-mode and color Doppler US images of 7076
lesions. The validation set consisted of 3144 images of
1572 lesions from 1300 patients within three hospitals
(SW:674TS:391 DZ:235) and was used to evaluate the
EDL-BC model in clinical practice. The demographic
characteristics of the patients in these three datasets are
provided in Table 1. A summary of the US devices used
is provided in supplementary Table S1.

We evaluated the performance of the proposed sys-
tem by examining AUC) (supplementary Fig. S1 and
supplementary Table S2). In the base learner of EDL-
BC, the combination of two types of images (B-mode
or color Doppler) played an important role in diagnosis
5
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Specifications Primary dataset (SW) External datasets

Train & validate Test TS DZ

Patients (7421 patients from 3 centers, 199 patients developed cancers)

Age

<30 2741 (44.8%) 163 (24.2%) 105 (26.9%) 62 (26.4%)

30–49 3080 (50.3%) 418 (62.0%) 233 (59.6%) 159 (67.6%)

50–69 292 (4.8%) 93 (13.8%) 52 (13.3%) 14 (6%)

≥70 6 (0.1%) 0 1 (0.2%) 0

Diagnostic methods

Biopsy 4334 (70.8%) 351 (52.1%) 391 (100%) 235 (100%)

Follow-up 1787 (29.2%) 323 (47.9%) 0 0

Malignant type (Patient result)

Luminal A 78 (46.2%) 6 (40%) 4 (40%) 2 (40%)

Luminal B 30 (17.8%) 2 (13.3%) 3 (30%) 1 (20%)

HER2+ 25 (14.8%) 2 (13.3%) 1 (10%) 1 (20%)

TNBC 28 (16.5%) 4 (26.7%) 2 (20%) 1 (20%)

None 8 (4.7%) 1 (6.7%) 0 0

N stage

N0 148 (87.6%) 14 (93%) 8 (80%) 4 (80%)

N1 21 (12.4%) 1 (7%) 2 (20%) 1 (20%)

TNM stage

1 88 (52.1%) 11 (73.3%) 4 (40%) 3 (60%)

2 81 (47.9%) 4 (26.7%) 6 (60%) 2 (40%)

Category of Ultrasound

symptomatic 1028 (16.8) 115 (17.1%) 52 (13.3%) 56 (23.8%)

screen-detected 5093 (83.2%) 559 (82.9%) 339 (86.7%) 179 (76.2%)

Lesions (8648 lesions from 7421 patients, 219 lesions are malignant)

Lesions size

<5 285 (4.0%) 116 (13.2%) 17 (3.8%) 12 (4.9%)

5–9.9 1682 (23.8%) 508 (57.8%) 143 (31.9%) 72 (29.4%)

10–19.9 3405 (48.1%) 243 (27.6%) 223 (49.8%) 108 (44.1%)

≥20 1704 (24.1%) 12 (1.4%) 65 (14.5%) 53 (21.6%)

Lesions width

<5 1984 (28.0%) 534 (60.8%) 124 (27.7%) 73 (29.8%)

5–9.9 3662 (51.8%) 313 (35.6%) 228 (50.9%) 113 (46.1%)

10–19.9 1350 (19.1%) 30 (3.4%) 94 (21.0%) 58 (23.7%)

≥20 80 (1.1%) 2 (0.2%) 2 (0.4%) 1 (0.4%)

Aspect ratio

≥1 108 (1.5%) 6 (0.7%) 5 (1.1%) 2 (0.8%)

<1 6968 (98.5%) 873 (99.3%) 443 (98.9%) 243 (99.2%)

Boundary

Clear 6106 (86.3%) 820 (93.3%) 376 (83.9%) 190 (77.6%)

Others 970 (13.7%) 59 (6.7%) 72 (16.1%) 55 (22.4%)

Morphology

Regular 6346 (89.7%) 848 (96.5%) 396 (88.4%) 200 (81.6%)

Others 730 (10.3%) 31 (3.5%) 52 (11.6%) 45 (18.4%)

Blood Flow Spectrum

Pulsating 115 (1.6%) 0 5 (1.1%) 3 (1.2%)

Others 6961 (98.4%) 879 (100%) 443 (98.9%) 242 (98.8%)

Mammography

Lesions can be seen 3399 (48.1%) 202 (22.9%) 181 (40.3%) 103 (42.1%)

Occult 3677 (51.9%) 677 (77.1%) 267 (59.6%) 142 (57.9%)

The primary dataset consisting of the training dataset and the internal dataset, was collected by Southwest Hospital of China. Another two external datasets were collected by
the Tangshan People’s Hospital (TS, located in Hebei Province, northern of China) and the Dazu People’s Hospital (DZ, located in Chongqing), and used for evaluating the
proposed EDL-BR3 system. In the table, lesion information was determined using existing screening and diagnostic reports. Note that the training dataset of the primary dataset
of SW includes 2015–2020 biopsy-confirmed lesions and 2015–2017 follow-up confirmed lesions, and shows not very consistent features to the internal testing dataset and two
external testing datasets. HER2: human epidermal growth factor receptor 2; TNBC: triple negative breast cancer; LN: lymph node; TNM: tumor node metastasis.

Table 1: Detailed patients and breast lesion characteristics statistics.
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Fig. 3: Details of the proposed model. The architecture of our designed base learner, namely Multiple Source Feature Learning Model (MSFLM),
where we used two ResNet50 models for dealing with the B-mode US image and the Doppler image, respectively. ResNet50 is a variant of
ResNet model which has 48 convolutional layers, one max-pooling, and one average-pooling layer.
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performance (supplementary Fig. S2 and
supplementary Table S3). We adopted the EDL-EC
model with 100 base learners as a baseline to compare
with 10, 20, 40, 60, and 80 base learners. The proposed
model with 80 base learners achieved an optimal trade-
off between performance and overhead. Thus, we
leveraged 80 base learners in the proposed DL frame-
work (supplementary Fig. S3). The AUC for the pro-
posed model was significantly better than the average
AUC for the 80 base learners in both internal dataset
and external datasets (P < 0.05; Fig. 4, supplementary
Figs. S3 and S4). The proposed model achieved an
AUC of (0.950; 95% CI, 0.909–0.969) on the internal test
set, an AUC of (0.956; 95% CI, 0.939–0.971) and an
AUC of (0.907; 95% CI, 0.877–0.938) on the external
validation set, respectively (Fig. 4a, d, g).

The EDL-BC model showed promising accuracy in
identifying malignant lesions in the internal dataset and
two external datasets (Fig. 4b, e, h). The sensitivity is of
94.4% from 18 cases for breast cancer in the internal
www.thelancet.com Vol 60 June, 2023
dataset, and the sensitivity is 80% in the DZ dataset. In
these cases, cancer was confirmed by pathological
analysis. Specifically, the malignancy detection rates
were respectively 94.4% (95% [CI]: 72.7%–99.9%), 100%
(95% [CI]: 69.2%–100%), and 80% (95% [CI]: 28.4%–

99.5%) in the internal testset and two external testsets
with the threshold of 0.76.

Furthermore, we analysed the distribution of pre-
dicted probabilities of malignancy (POM), which further
confirmed the performance of the proposed model in
discrimination (Fig. 4c, f, i). Totally, there were 199
cases of early breast cancer in the three datasets, the
number of Luminal A, Luminal B, Human epidermal
growth factor receptor (HER) 2 +, and triple-negative
breast cancer (TNBC) were 90 (45.23%), 36 (18.09%),
29 (14.57%), and 35 (17.59%), respectively (Table 1).
There were 30 malignant cases in the internal validation
cohort and two external validation datasets. We classi-
fied these cases into different types of moleculars.
The number of cases with luminal A, luminal B,
7
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Fig. 4: Performance of EDL-BC and radiologists in the discrimination of malignant from benign breast lesions. a. Receiver operating
characteristic (ROC) curves for the binary classification of breast lesions. The area under the receiver operating characteristic curve (AUC) scores
are reported together with the 95% confidence interval (CI) is on the internal validation set. b. Sensitivity, specificity, false positive, true positive,
false negative, and true positive evaluated on the internal validation set. c. The distribution of predicted probabilities of malignancy (POM) on
the internal validation set. d. The AUCs are reported together with the 95% CI on the external validation set of Tangshan (TS). e. Sensitivity,
specificity, false positive, true positive, false negative, and true positive evaluated on the external validation set of TS. f. The distribution of
predicted POM on the external validation set of TS. g. The AUCs are reported together with the 95% CI on the external validation set of Dazu
(DZ). h. Sensitivity, specificity, false positive, true positive, false negative, and true positive evaluated on the external validation set of DZ. i. The
distribution of predicted POM on the external validation set of DZ.
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HER2-positive and TNBC were 12, 6, 4 and 7, respec-
tively (Table 1). The average of POM in the four mo-
lecular subgroups were 0.917, 0.911, 0.922 and 0.827,
respectively. The average value of POM in the TNBC
group was significantly lower than the remaining
groups (p < 0.05) (supplementary Fig. S5).

Fig. 5 provides the examples of true-positive and
false-positive outcomes in the SW dataset. These heat-
maps can reveal the salient areas in the US images
contributing to the prediction of malignant and benign
microcalcifications (strong emphasis in red and weak
emphasis in blue). They could intuitively explain what
the model can learn from the training data by focusing
on the lesion areas.

The breasts were highly informative, and neuro-
activation corresponding to the lesions contributed
significantly to the final assessment of malignancy
probability. In previous studies, most heatmap signals
did not coincide on B-mode and color Doppler images
of the same lesions. The proposed EDL-BC model was
sensitive to blood flow signals around and inside of tu-
mors, which were inconspicuous in the color Doppler
images. The number of false positives in the internal
dataset and the two external datasets were 110, 64 and
48, respectively (Fig. 4b, e, h). In total, 11 false-positive
cases of them contained strong signals (9 benign le-
sions in the nipple and areola area and 2 cases with
inflammation; 8 of them were shown in Fig. 5b). When
the threshold is set to 0.76, there is 1 false negative in
the internal dataset and the DZ dataset, respectively
(Fig. 5b and h). More heatmaps of US benign lesions
generated by EDL-BC are provided in supplementary
Fig. S6 and supplementary Fig. S7.

Multi-factorial exploration of artificial intelligence
assistance in clinical practice
To evaluate the influence of EDL-BC on clinical practice,
we invited six radiologists with more than 20 years of
clinical experience to analyse both B-mode and color-
Doppler images with or without assistance from EDL-
www.thelancet.com Vol 60 June, 2023
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Fig. 5: Visualization of the attention heatmaps of breast lesions in the B-mode ultrasound (US) images and Doppler US images from
Southwest (SW) cohort. These heatmaps are generated using by EDL-BC with Grad-CAM. a. Heatmaps of true positive breast lesions, which
both EDL-BC model and pathology confirmed as malignancy. b. Heatmaps of false positive breast lesions, which EDL-BC predicted as malignancy
while pathological results were benign. Note that the first row represents the B-mode images and the second row shows Color Doppler images
of patient lesions, the last two rows are the corresponding EDL-BC ensembled heatmaps of two types of US images.

Articles
BC. As mentioned above, the review process was real-
ized on an online rating platform and 1572 pairs of
images from 3 centres were incorporated.

As shown in Table 2, supplementary Table S4 and
supplementary Fig. S8, the proposed EDL-BC achieved
an AUC of 0.945 (95% CI: 0.933–0.965). With the
addition of the threshold, the specificity increased from
0.753 (CI: 0.741–0.795) to 0.945 (CI: 0.933–0.957), the
www.thelancet.com Vol 60 June, 2023
value of Kappa was increased from 10.1% to 21.5%, the
F1-score was increased from 12.3% to 23.2%, while the
sensitivity decreased from 0.969 (CI: 0.842–0.999) to
0.454 (CI: 0.281–0.636). The radiologist can find 15.2%–

30.3% of breast cancers in the test sets (in a separate
manner). Diagnostic performance for each individual
radiologist, the sensitivity was 15.2%–30.3% and the
specificity was 95.9–98.2%. On average, the radiologists
9
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AUROC (95%

Composition of test dat

AI only

0.62 0.945 (0.933–0

0.67 0.945 (0.933–0

0.76 0.945 (0.933–0

0.80 0.945 (0.933–0

0.90 0.945 (0.933–0

Radiologists without AI a

0.716 (0.693–0

Radiologists with AI assis

0.899 (0.883–

The primary dataset consistin
Province, northern of China)
were radiologists with AI co

Table 2: The diagnostic p
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achieved an AUC of 0.716 (CI: 0.693–0.738). The
sensitivity, the value of Kappa and F1-score of these
radiologists was merely 0.121 (CI: 0.034–0.282), 0.139
and 0.146, respectively, but the corresponding specificity
was better than the proposed approach using any
threshold (0.753–0.945 compared to 0.991). It can be
ascribed to the characteristics of the datasets. In addi-
tion, the radiologists favored predicting these lesions to
be benign.

These experimental results did demonstrate the
complementarity between radiologists and the proposed
DL-based platform. With the assistance of EDL-BC
(threshold set to 0.76), the radiologists achieved an
AUC of 0.899 (CI: 0.883–0.913), a Kappa of 0.359 and a
F1-score of 0.370, and the sensitivity was 0.545 (CI:
0.364–0.719), which was immensely superior to the
outcome without AI assistance (p < 0.0001) (as shown in
Table 2). There were no significant differences between
the EDL-BC model and radiologists with AI assistance
(p = 0.099) (Table 2). For each individual radiologist, the
Kappa value and F1-score of radiologists with AI assis-
tance were higher than those of radiologists without AI
assistance (supplementary Table S4). Namely, the per-
formance of malignant lesion detection had been
significantly enhanced.

In general, the experimental results suggested that
our model could be potentially valuable to assist radi-
ologists in interpreting the manually indistinguishable
breast US images. With the assistance of our model,
under the premise of insignificant decrease in speci-
ficity, the sensitivity of radiologists was significantly
improved, indicating the application prospect of our
model in clinical practice.
Discussion
This is an early work of DL in screening the patients
with early breast cancer with US images for assisting the
CI) P value Accuracy (95% CI) Sensitivity (95% CI)

aset (1562 data pairs from 3 centres)

.956) – 0.769 (0.741–0.795) 0.969 (0.842–0.999)

.956) – 0.803 (0.778–0.824) 0.969 (0.842–0.999)

.956) – 0.867 (0.847–0.885) 0.909 (0.757–0.981)

.956) – 0.898 (0.878–0.916) 0.878 (0.718–0.966)

.956) – 0.944 (0.929–0.957) 0.454 (0.281–0.636)

ssistance

.738) <0.001ɸ 0.973 (0.965–0.978) 0.121 (0.034–0.282)

tance

0.913) <0.001ʘ 0.099§ 0.974 (0.963–0.982) 0.545 (0.364–0.719)

g of the internal dataset, was collected by Southwest Hospital of China. Another two exter
and the Dazu People’s Hospital (DZ, located in Chongqing), and used for evaluating the pr
mpared to radiologists without AI, § were radiologists with AI compared to AI only.

erformance of EDL-BC alone, radiologists alone, and EDL-BC-assisted radiologis
radiologists in clinical practice. Breast cancer is the most
commonly diagnosed cancer in women, severely
threatening women’s health globally. In addition, breast
cancer could be successfully cured if detected in its early
stage. AI plays a vital role in breast cancer screening and
detection, which can reduce the workload of the radi-
ologists while making up for the inexperience and skill
deficiency of beginners. AI models can find details in
medical images that human visual inspection cannot
and automatically make a quantitative judgment. DL has
been extensively employed in image detection and
classification due to its advantages, including being ac-
curate, fast, and reproducible. Many studies have been
reported regarding the detection and classification of
lesions in breast US images using AI models.6,25–29 Our
study has several strengths. First, prior research has
primarily focused on differentiating between benign
and malignant breast lesions, hence evaluating AI sys-
tems only on the images which contain either benign or
malignant lesions.6,27–29 In this work, we aim to develop a
DL model to identify high-risk lesions in US images
with benign findings, which is beneficial to early
confirmation with immediate biopsy. Thus, it can
further improve the detection rate of early breast cancer.
Second, most studies used only training and validation
sets from one institution without an independent
external test set.25,28,29 In order to eliminate the differ-
ences in the disease spectrum in different centres, two
external test sets were included for our model validation.
Third, unlike other studies that only included B-mode
US images,27,29 our EDL-BC contains two separate
feature extraction modules designed for B-mode and
color Doppler US images. Finally, different from pre-
vious work that was built on the top of a conventional
image classification model of SEResNet18,6 our work
proposed an ensemble model consisting of 80 base
learners (each base learner was built on the top of
ResNet50) by considering the nature of unbalanced
Specificity (95% CI) PPV NPV Kappa F1-score

0.753 (0.731–0.775) 0.082 0.999 0.122 0.156

0.754 (0.732–0.776) 0.095 0.999 0.141 0.173

0.842 (0.823–0.860) 0.127 0.999 0.203 0.232

0.899 (0.883–0.914) 0.158 0.997 0.230 0.258

0.945 (0.933–0.957) 0.178 0.989 0.231 0.254

0.991 (0.985–0.995) 0.148 0.982 0.139 0.146

0.982 (0.974–0.988) 0.244 0.990 0.359 0.370

nal datasets were collected by the Tangshan People’s Hospital (TS, located in Hebei
oposed AI system. P value ɸ were radiologists without AI compared to AI only, ʘ

ts.
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negative/positive samples. This study focused on
developing a DL model to identify subtle changes in an
early stage of breast cancer which is accessible to mis-
diagnosed by radiologists. Moreover, US has shown
better sensitivity than mammography for breast cancer
detection regardless of age group.30

The experimental results indicated that our EDL-
based AI system could enhance the accuracy and
sensitivity of radiologists. According to these findings,
we make two recommendations for implementing the
DL model in clinical practice. Firstly, our EDL-BC model
could improve the accuracy of diagnosis. The diagnosis
of US images is often subject to inter-observer vari-
abilities, especially in non-academic centres. It has been
reported that the variability in sensitivity ranges from
54.9% to 100%, and specificity ranges from 23.3% to
94.2% radiologists.31–34 In our study, the sensitivity of six
radiologists was 0.121, which is lower than those of each
radiologist. In our case, each doctor provides a clear
judgment of benign or malignant with the given lesion,
so the malignant probability is either 0 or 1. Then, with
a given malignant lesion, the probability value of this
lesion will increase by 1/6, if a doctor judges correctly.
The malignant probability of the given lesion is the
accumulation of probability value of all radiologists.
Finally, considering our AI system employs the
threshold of 0.76 to classify the benign lesions and the
malignant lesions, roughly corresponding to the cases of
(at least) 5 radiologists judge the given positive lesion as
malignant (with the malignant probability of 5/6). As a
result, we yield a low sensitivity of 0.121 for all radiol-
ogists. With the assistance of EDL-BC, the accuracy of
radiologists increased from 0.716 to 0.899 (Table 2).
EDL-BC also improved the performance of radiologists
in clinical practice. The combined accuracy of EDL-BC
and radiologists using the DL model in the diagnosis
of breast cancer in US images was significantly better
than that of US doctors (P < 0.0001) (Table 2). Mean-
while, the diagnostic accuracy of US doctors for breast
cancer assisted by the DL model was significantly higher
than that of the non-assisted AI group (P < 0.0001)
(Table 2). The accuracy of breast cancer diagnosis by AI-
assisted doctors was slightly lower than that of the DL
model, and there was no significant difference between
the two groups (P = 0.099) (Table 2). Therefore, the
employment of DL in breast cancer screening and
detection is of great significance. Our proposed AI sys-
tem can be used to assess breast lesions comparable to
that of experienced human experts. Note that clinical
decisions should be supervised by clinicians even
though EDL-BC is reported to have superior perfor-
mance. Secondly, EDL-BC could contribute to discrim-
inating against the high risk of early breast cancer,
reducing the misdiagnosis rate, and avoiding unnec-
essary invasive biopsies. Notably, the most crucial role
of the proposed model is improving diagnostic accuracy
by assisting clinicians.
www.thelancet.com Vol 60 June, 2023
The salient regions in the heatmaps from various
imaging modalities were beneficial in discriminating
malignant lesions and aiding clinicians in understand-
ing the decisions made by AI. For instance, the tumor
vessel density is proportional to the tumor size and
pathological severity.35 Early breast cancer can be char-
acterized by a high density of blood vessels with disor-
dered distribution.24 Vessel distribution is equivalent in
the cores and peripheries of benign lesions but
concentrated toward the centres of malignant lesions
had greater vascularization towards their centre.36

Almost 99% of malignant lesions, and only 4% of
benign lesions, had detectable vascularization on color
Doppler images superimposed on B-mode images.37 AI
decision making is derived from the morphological and
texture features extracted from the images. In this study,
we speculate that the EDL-BC model could capture
subtle changes in blood flow signals in color Doppler
images, which plays an important role in identifying
malignant lesions and represents a significant advantage
over diagnosis by US doctors.

In addition, we found two cases of early breast cancer
whose US images did not change in size and shape
within three years. However, EDL-BC suggested that the
malignant value was high before pathology finally
confirmed breast cancer. It is suggested that breast
cancer cannot be excluded even if the size or
morphology does not change in the patients with US
benign during follow-up. Furthermore, there are four
subtypes of breast cancer according to molecular cate-
gories: luminal A, luminal B, HER 2 over-express, and
TNBC. In 199 cases of early breast cancer, Luminal A
45.23%, Lumina B 18.09%, HER2+ 14.57%, and TNBC
17.59%. About 40% of the 199 cases belong to Luminal
A, which is consistent with the distribution of Luminal
A in the breast cancer population. As reported in pre-
vious studies, luminal A is the most common molecular
subtype, representing 40%–50% of breast cancers.38 Our
results showed that EDL-BC has different prediction for
different breast cancer subtypes. We can observe that
the malignant predictive value of our model for TNBC is
lower than that of another molecular subtype, and the
differences in these comparisons were significant
(p < 0.05) (supplementary Fig. S5). In addition, the
performance of our model for TNBC is unsatisfactory
since TNBC was more likely to be misinterpreted as
benign in the US images. Meanwhile, the mass lesions
of TNBC were characterized by circumscribed margins,
were markedly hypoechoic, and were less likely to show
posterior shadowing.39

The proposed DL model produced 11 false-positive
cases with strong signals detected in the internal and
external datasets. In 9 cases of them, the lesions were
located in the nipple and areola, and the distance be-
tween the nipple and the lesion was less than 30 mm.
The other 2 cases contained inflammatory masses. The
enhancement of the blood flow signal can be discovered
11
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in the thermogram generated by the proposed model in
all 11 cases and its mechanism needs further study.
Furthermore, the false-negative predictions made by the
EDL-BC model at malignancy thresholds of 0.628 and
0.769, were diagnosed by US doctors as fibroadenoma
and adenosis in the internal dataset (supplementary
Fig. S9). With the threshold set to 0.5, the lesions
were classified as breast cancer, indicating that the EDL-
BC model is biased toward malignancy prediction. Lack
of the trust of human experts is a barrier to the
deployment of DL in clinical practice. To cope with the
black-box nature of DL,40 we highlightened the visually
interpretable features (i.e., heatmaps) in the EDL-BC
model to make the model’s outcome understandable
and increase the likelihood of its application.

This study also has several limitations. First, it was
retrospective, which resulted in variation in the class
distribution among datasets, with a mixture of consec-
utive series of patients and convenience samples. Sec-
ond, we did not have data about risk factors, including a
family history of breast cancer and BRCA gene test re-
sults. Third, all the patients in the training and valida-
tion datasets in this study have undergone pathological
examination. Therefore, the accuracy and stability of the
DL model depend on the quality of cytopathological
diagnosis. The change in the incidence of breast cancer
among people in different regions may significantly
affect the malignant predictive value among people or
may reduce the potential universality of the results.
Moreover, potential biases exist concerning the selection
of radiologists and data, including the exclusion of low-
quality images and normal scans. Therefore, future
validation in a clinical prospective large-scale screening
cohort is needed.

In conclusion, the EDL-BC significantly improved
the diagnostic accuracy on breast nodule differentiation
and could decrease the number of invasive biopsy. The
proposed model can extract the morphological features
from early breast lesions, conduct effective and objective
image analysis, and provide precise outcome for early
breast cancer. The performance of this model in clinical
cases shows its effectiveness in assisting the doctors to
improve the diagnostic accuracy.
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