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Abstract
Burn-induced neuropathic pain is complex, and fat grafting has reportedly improved neuro-

pathic pain. However, the mechanism of fat grafting in improving neuropathic pain is

unclear. Previous investigations have found that neuroinflammation causes neuropathic

pain, and anti-inflammatory targeting may provide potential therapeutic opportunities in neu-

ropathic pain. We hypothesized that fat grafting in burn scars improves the neuropathic pain

through anti-inflammation. Burn-induced scar pain was confirmed using a mechanical

response test 4 weeks after burn injuries, and autologous fat grafting in the scar area was

performed simultaneously. After 4 weeks, the animals were sacrificed, and specimens were

collected for the inflammation test, including COX-2, iNOS, and nNOS in the injured skin

and spinal cord dorsal horns through immunohistochemistry and Western assays. Further-

more, pro-inflammatory cytokines (IL-1 β and TNF-α) in the spinal cord were collected. Dou-

ble immunofluorescent staining images for measuring p-IκB, p-NFκB, p-JNK, and TUNEL

as well as Western blots of AKT, Bax/Bcl-2 for the inflammatory process, and apoptosis

were analyzed. Fat grafting significantly reduced COX2, nNOS, and iNOS in the skin and

spinal cord dorsal horns, as well as IL-1β and TNF-α, compared with the burn group. More-

over, regarding the anti-inflammatory effect, the apoptosis cells in the spinal cord signifi-

cantly decreased after the fat grafting in the burn injury group. Fat grafting was effective in

treating burn-induced neuropathic pain through the alleviation of neuroinflammation and

ameliorated spinal neuronal apoptosis.
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Introduction
Burn-related neuropathic pain has been reported in 52% to 67.3% of burn injury patients [1, 2].
Neuropathic pain is a localized sensation of discomfort, such as allodynia and hyperalgesia, and it
is difficult to treat with even the most potent analgesic compound [3]. Autologous fat grafting has
reportedly improved traumatic neuropathic pain in patients with burn induced neuropathic pain,
postmastectomy pain syndrome, and traumatic scar pain [4–6]. The mechanism of fat graft pain
relief is unclear. Many hypotheses have been proposed regarding the mechanism of fat grafting
such as scar softness, improved scar tissue differentiation, nerve entrapment relief [7], and
improved nerve liberation [8]. Klinger et al and Valenti et al also reported that fat grafting reduces
scar adherents and similar cushions on the nerve stump [8–10]. Rigotti et al indicated that the fat
grafting effect of neuropathic pain may be related to adipose-derived stem cells in fat grafts [11].
Fat grafts and their mesenchymal stem cells have been reported to alleviate inflammation in coli-
tis, stroke, and inflammatory models [12, 13], further prevent second necrosis and apoptosis [14].
A rat model of fat graft alleviated burn-induced neuropathic pain has been established [4]. We
used this model to explore the mechanism of fat grafts in improving neuropathic pain.

Pain is processed in a neural network, and the interaction between neurons, microglia, and
astrocytes is critical for the initiation and maintenance of chronic pain. Activation of glia cells
(eg, microglia and astrocytes) contributes to the pathogenesis of chronic pain through neuron-
glial interaction [15, 16]. Evidence increasingly suggests that astrocytes are crucial for promoting
and maintaining chronic neuropathic pain and pain sensitization [17]. The activation of astro-
cytes results in the activation of the nuclear factor κB (NFκB), extracellular regulated kinase
(ERK), and Jun N-terminal kinase (JNK) signal pathways[18] and the production of inflamma-
tory mediators, including tumor necrosis factor-α (TNF-α), interlukin-1β (IL-1β), nitric oxide
(NO), prostaglandin, and neurotrophins [17]. Inflammation also induces cyclooxygenase-2
(COX-2), causing the sensitization of peripheral nociceptors and generation of pain hypersensi-
tivity, which leads to central sensitization and accompanying chronic pain [15,18,19]. This per-
sistent pain caused by neuroinflammation also triggers neuronal apoptosis [20, 21].

NO, which is synthesized by NO synthase (NOS), is involved in processes related to the
regeneration of neuropathic pain [22]. Inhibitors of NOS may have analgesic effects and can be
used to treat inflammatory and neuropathic pain [23]. NOS, a key enzyme for neuronal NOS
(nNOS) or inducible NOS (iNOS), mediates numerous neuropathic pain symptoms [24]. In the
neuropathic pain model, inhibition of NOS diminishes the upregulation of iNOS and nNOS in
the in spinal cord and skin. This indicates the efficiency of neuropathic pain alleviation. In this
study, we focused on whether fat grafts can regulate cytokines and the downstream target of NO
in inflammatory pain and isoforms of NOS, which involved in pain modulation [25].

We hypothesized that autologous fat grafts alleviate burn-induced neuropathic pain through
the alleviation of skin inflammation and that neuroinflammation in the spinal cord further
diminishes neuron cell apoptosis. The aim of this study was to determine the effect of fat grafts
on allodynia and hyperalgesia in burn-induced neuropathic pain. Moreover, we examined hind
paw skin inflammatory cytokine expression and NOS. Furthermore; we observed the astrocytic
response, iNOS, nNOS, COX-2, B cell lymphoma/lewkmia-2 (Bcl-2) family protein, and apo-
ptosis protein expressions in the spinal cord dorsal horn after fat grafting.

Materials and Methods

Animals and experimental design
All experiments were performed on adult male Sprague-Dawley rats weighing 180–200 g that
were randomly obtained from BioLASCO Taiwan Co., Ltd. All animals were housed in an

Fat Graft Alleviates Pain by Anti-Inflammation

PLOS ONE | DOI:10.1371/journal.pone.0137563 September 14, 2015 2 / 13

and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.



animal facility at 22°C with a relative humidity of 55% in a 12-hour light–dark cycle with food
and sterile tap water available ad libitum. All procedures were approved by the Institutional
Animal Care and Use Committee at Kaohsiung Medical University (approval no. 10048). The
rats were divided into four groups (n = 6 in each group) as follows: Group A, received saline
injections 4 weeks after sham burns (Sham-burn + Saline); Group B, received fat grafts 4 weeks
after sham burns (Sham-burn + Fat graft); Group C, received saline injections 4 weeks after
burn injuries (Burn + Saline); and Group D, received fat grafts 4 weeks after burn injuries
(Burn + Fat graft). The experimental flow chat was presented in Fig 1A.

Full-thickness burn injury and behavior test
As described in our previous study [4], the third-degree burn was caused by placing the right
hind paw on the 75 ± 0.5°C heated metal block in a water bath with a 100 g weight on the hind
paw for 10 seconds under anesthesia with Zoletil

1

50 (50 mg/kg body weight) (Virbac Labora-
tories, Carros, France). Silver sulfadiazine cream was applied to the wound for approximately 3
weeks until it healed. Paw withdrawal latency tests (PWLs) and paw withdrawal threshold tests
(PWTs) were measured using the same method as our previous study 1 day before the burn
injury, 4 weeks after the burn injury and at 1 week intervals for an additional 4 weeks.

These behavioral reactions were measured in the burned hind paw and on the contralateral
side. The PWL was used to estimate thermal hyperalgesia. The PWL was recorded using a
Plantar Test (Hargreaves Apparatus, Ugo Basile, Varese, Italy). In brief, an infrared radiant
heat source was positioned beneath the plantar surface of the hind paw. The time from applica-
tion of the heat source to withdrawal of the hind paw was defined as the PWL (measured in
seconds).

The PWT was recorded using a Dynamic Plantar Aesthesiometer (Ugo Basile, Varese,
Italy). The rats were placed on a metal mesh, and a mechanical stimulus was applied using
the automated tester with a metal rod (2 mm in diameter) to stimulate the plantar surface of
the hind paw. The pressure applied to the rod was increased at a rate of 2.5 g/second until
the animal withdrew the paw, which was recorded as the lowest force (g). Each measurement
was repeated six times at intervals of 10 minutes with 30 minutes of rest between hind paw
applications.

Autologous fat graft
Four weeks after burn injuries, the left inguinal fat was harvested under Zoletil 50 anesthesia.
The adipose tissue was cut into pieces with scissors and aspirated into a 1-mL syringe until 0.4
mL of volume was reached. The fat graft was injected into the subcutaneous area of the burn-
injured hind paw skin with a 19-gauge needle. The donor site was closed with nylon 4–0. The
control group was injected with 0.4 mL of normal saline in the burn-injured hind paw skin
subcutaneously.

Western blot analysis
Rats were sacrificed 4 weeks after burn injuries by an overdose of Zoletil 50. Lumbar 3,4,5
(L345) spinal cords were collected, and the dorsal horn area and skin were separated, frozen in
liquid nitrogen, and stored at -80°C. L345 dorsal horn specimens and skin were homogenized
in an ice-cold lysis buffer, T-PER Tissue Protein Extraction Reagent (Thermo Scientific) with
one tablet of Complete Protease Inhibitor Cocktail (Roche) per 25 mL and then centrifuged
(15,000 g) for 30 minutes at 4°C. Each protein concentration in the supernatant was measured
using bovine serum albumin as the standard. The procedures and analyses of Western blots
were performed through the same method as our previous report [26]. The primary antibodies
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of COX-2 (1:1000, Cell Signaling, Danvers, MA), iNOS (1:1000, Abcam, Cambridge, MA), and
nNOS (1:1000, Abcam, Cambridge, MA), protein kinase B (AKT) (1:1000, Cell Signaling, Bos-
ton, MA), p-AKT (1:1000, Cell Signaling, Boston, MA), Bcl-2 Associated X protein (Bax)
(1:1000, Proteintech Group, Chicago, IL), Bcl-2 (1:1000, Abcam, Cambridge, MA), and β-actin
(1:20000 dilution, Sigma-Aldrich, Saint Louis, MO) were used in this study.

Immunohistochemistry (IHC) detections of COX-2, iNOS, and nNOS
Hind paw skin was formalin-fixed and embedded in paraffin, and skin of 10 μm thickness was
cut and mounted on glass slides, deparaffinized, and rehydrated in graded alcohol solutions.
The skin sections were subjected to antigen retrieval by heating the sections to 121°C in 0.1
mol/L of citrate buffer (pH 6.0) in an autoclave for 10 minutes and slowly cooling the sections
to room temperature. Furthermore, the sections were incubated for 5 minutes with 3% of H2O2

to quench the endogenous peroxidase activity. After the blocking of nonspecific sites with 5%
goat serum in a phosphate buffered saline (PBS) for 30 minutes, the sections were incubated
overnight at 4°C with a rabbit polyclonal antibody against COX-2 (1:200, Cell Signaling,

Fig 1. The flowchart of this study and the behavior tests from various groups. (A) A flowchart of the study D (day) andW (week). (B) The response
thresholds to the mechanical stimuli decreased strongly on the burn injury side hind paws in Group C and Group D, 1–4 weeks post burn injury. After the fat
grafting, Group D thresholds significantly increased in the following weeks versus Group C. (C) The response thresholds to the radiant heat stimuli did not
show significant differences between the groups. The sample size was n = 6 for each group. (Data are plotted as mean ± SEM; ***P < 0.001; **P < 0.01;
*P < 0.05).

doi:10.1371/journal.pone.0137563.g001
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Danvers, MA), iNOS (1:200, Abcam, Cambridge, MA) and nNOS (1:200, Abcam, Cambridge,
MA). The sections were then incubated with a secondary antibody conjugated with horseradish
peroxidase for 30 minutes at room temperature. Finally, the slides were incubated in 3,3-diami-
nobenzidine for 5 minutes before undergoing Mayer’s hematoxylin counterstaining for 60 sec-
onds and being mounted.

Measurement of IL-1β and TNF-α in the spinal cord dorsal horn
The lumbar spinal cord segments were dissected. Spinal cord dorsal horn tissues were homoge-
nized in a lysis buffer. The Bicinchoninic Acid Protein Assay (Pierce) is used to check protein
concentrations. And ELISA was performed as in previous studies [26]. The standard curve was
included in each experiment. IL-1β and TNF-α levels were measured using enzyme-linked
immunosorbent assay kits for the quantitative detection of IL-1β and TNF-α (eBioscience,
USA). The reference range for the enzyme-linked immunosorbent assay kit was from 0 to 1400
(IL-1β), and from 0 to 750 (TNF-α) pg/mL. All the measurements were recorded in triplicate.

Immunofluorescence detection of p-IκB and p-NFκB
The lumbar spinal cord segments were harvested 4 weeks after the fat grafts or vehicle treat-
ments. The fresh-frozen sections were performed through the same method as the previously
mentioned immunohistochemistry procedure [4]. For double immunofluorescence staining,
the spinal cord dorsal horn was incubated with a mix of polyclonal p-IκB (1:100 dilution, Cell
Signaling) and monoclonal NeuN (a neuron cell marker, 1:1000, Millipore, Temecula, CA);
polyclonal p-NFκB (1:100 dilution, Cell Signaling, Boston, MA); monoclonal GFAP (an astro-
cyte marker, 1:1000 dilution, BD Biosciences San Diego, CA); and p-JNK (1:100 dilution, Cell
Signaling, Boston, MA) overnight at 4°C. The appropriate secondary antibody conjugated with
goat anti-rabbit Cy3 (red, Millipore, Temecula, CA) and goat anti-mouse Alexa Flour 488
(green, Invitrogen, Carlsbad, CA) was added. Images were acquired using a fluorescence
microscope (Leica DMI6000).

Measurement of apoptosis in the spinal cord
The L3 to L5 segments were removed and embedded in an optimal cutting temperature com-
pound to prepare frozen sections cut into 16 mm thick slices. The procedures were mentioned
in previous report [26]. Briefly, apoptotic cell death was detected using the TUNEL assay
according to the manufacturer’s suggestions (Millipore, ApopTag fluorescein in situ apoptosis
detection kit S7110), following incubated with an NeuN primary antibody (1:1000, Merck
Millipore, Bedford, MA) at 4°C. The sections were then incubated with a Cy3-conjugated anti-
mouse IgG secondary antibody (Merck Millipore, Bedford, MA) at room temperature for an
additional hour, rinsed 3 times with PBS for 5 minutes each, and mounted with a mounting
medium containing 4,6-diamidino-2-phenylindole (DAPI).

Statistical analysis
For statistical analysis, SPSS software (Version 14.0, Chicago, IL) was used. Each sample was
measured in triplicated, and data were expressed as mean ± standard error of the mean (SEM)
(rat, n = 6 for each group). Tissue cytokine and Western blot measurements were tested using
one-way analysis of variance and Tukey pairwise comparison with P< 0.05 representing statis-
tical significance.
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Results

Fat grafts ameliorates burn-induced neuropathic pain
Burn-induced hindpaw skin inflammations caused mechanical allodynia, and the PWT (g) of
rats significantly decreased. The burns elicited mechanical allodynia. No significant change
occurred in the PWL(s) and PWT (g) observations in the sham group or in the sham burn with
fat graft treatment group (Fig 1B and 1C). A marked decrease in the PWT following burn inju-
ries was noted 1 week after the burn injuries. After the fat graft injection to the hind paw skin,
the PWT (g) of rat increased significantly in rats compared with the burn with saline injection
group at 5, 6, 7, and 8 weeks. In other words, the anti-nociceptive effects of the fat grafts were
strikingly different from 5 to 8 weeks after the burn injuries compared with Group C. Taken
together; the results demonstrated that fat grafts ameliorated burn-induced pain such as
mechanical allodynia.

Fat grafts reduce COX-2, iNOS, and nNOS in immunohistochemical
localization and attenuates protein expressions in the hind paw skin
IHC staining images (Fig 2A) and protein expressions (Fig 2B) further confirmed that COX-2,
iNOS, and nNOS activations were involved in the hind paw skin after the burn injuries. We
found that the burns induced an increase of COX-2, iNOS, and nNOS protein levels in the
hind paw skin 8 weeks after injury. Fat grafts significantly attenuated burn-induced COX-2,
iNOS, and nNOS protein levels 4 weeks after treatment.

The inflammatory COX-2, iNOS, and nNOS proteins and pro-
inflammatory cytokines in the spinal cord dorsal horns are significantly
attenuated after fat graft injection
Burns induced the expression of several inflammatory proteins in the spinal cord dorsal horns.
COX-2, iNOS, and nNOS were shown 8 weeks after the burn injuries compared with Group A,
Group B and Group D. The fat grafting in the Group B showed no significant effects on these
proteins compared with Group A. The fat grafts significantly attenuated inflammatory proteins
in the spinal cord dorsal horns compared with Group D (Fig 3A). To explore the possible
mechanism of the fat grafting effect on burn-induced neuropathic pain, we quantified the levels
of IL-1β and TNF-α in the spinal cord dorsal horns (Fig 3B). We found significant neuropathic
pain in paw withdrawal latency and inflammatory proteins in the spinal cords after burn
injury. Therefore, pro-inflammatory cytokines were assessed; IL-1β and TNF-α levels were
markedly decreased in Group D compared with Group C. Fat grafting thus alleviated neuroin-
flammation in the burn-induced neuropathic pain.

Fat grafts increased p-IκB, reduced the p-NFκB expression and
attenuated apoptosis in the spinal cord dorsal horns
To reveal p-NFκB activation and neuron cell apoptosis in the spinal cords, we performed dou-
ble immunofluorescent staining to measure p-IκB (blocking NFκB activation), p-NFκB (an
inflammation marker) followed by p-JNK (an inflammation marker), and TUNEL (an apopto-
sis marker) (Fig 4). The total number of NeuN and p-IκB double positive cells in Group C
decreased significantly compared with other groups. Additionally, the number of p-NFκB-
expressing astrocytes was significantly higher in Group C than in Group D. Double immuno-
fluorescent staining for p-JNK and TUNEL was performed in the spinal dorsal horns 4 weeks
after fat grafts or saline injections. P-JNK and TUNEL double positive cells were significantly
decreased in the spinal dorsal horn in Group D compared with Group C.
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Fat grafts decreased the p-AKT/AKT and Bax/Bcl-2 ratios in the spinal
cord dorsal horns
The p-AKT/AKT and Bax/Bcl-2 expressions were assessed byWestern blotting. The expression
of 42 kb β-actin was used as a loading control. Group D significantly decreased both in p-AKT/
AKT and Bax/Bcl-2 ratios compared with Group C. An increase in the Bax downstream pro-
cesses of apoptosis in the spinal cord dorsal horn was also observed (Fig 5).

Fig 2. IHC staining images and protein expressions of COX-2, iNOS, and nNOS in the hind paw skin.
(A) The effect of fat grafts on the expression of the inflammatory proteins,COX-2, iNOS and nNOS in the hind
paw skin induced by a third-degree burn. (B) Western blot analyses of COX-2, iNOS and nNOS in the hind
paw skin at week-8 after the burn injury. (Above) Western blot images were illustrated, and β-actin was used
as the internal control. (Bottom) Quantitative result analyses were demonstrated, and the sample size was
n > 3 for each test. The expressions of COX-2, iNOS and nNOS were decreased significantly in the burn with
fat graft (Group D) compared with the burn with saline injection (Group C). *P < 0.05.

doi:10.1371/journal.pone.0137563.g002

Fig 3. Fat grafting inhibited the expressions of inflammatory proteins, COX-2, iNOS and nNOS, in the
spinal cord dorsal horn, and reduced the secreted levels of pro-inflammatory cytokines, IL-1β and
TNF-α. (A) Western blot analyses of COX-2, iNOS and nNOS in the spinal cord dorsal horn at 8 weeks after
the burn injury. β-actin was used as the internal control. The presentation format is similar to Fig 2. Protein
expressions of COX-2, iNOS and nNOS were decreased significantly in the burn with fat graft group
compared with the burn with saline injection group (Group D vs. Group C). (B) Fat grafts appreciably reduced
the secretions of the pro-inflammatory cytokines, IL-1β and TNF-α, in the spinal cord dorsal horn. IL-1β and
TNF-α assessment was conducted at least in triplicate, n > 3, *P < 0.05.

doi:10.1371/journal.pone.0137563.g003
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Discussion
Fat grafts alleviate burn-induced neuropathic pain or traumatic painful scar had been reported,
but the mechanism of fat graft in neuropathic pain is still not been elucidated [4, 5]. In this
study, we have demonstrated that fat grafting is a promising method for alleviated burn-
induced neuropathic pain, fat grafts reduce skin inflammation and neuroinflammation in the
spinal cord further diminishes neuron cell apoptosis. Furthermore, fat graft also reduced
inflammation protein expression such as effect iNOS, nNOS, COX-2 in burn-injured skin as
well as in spinal cord dorsal horn.

Ipaktchi et al. reported that burn would induce excessive local inflammation and producing
inflammatory cytokines [27]. Furthermore, burn wounds and their healing processes can cause
inflammatory mediators and cells, such as T-helper cells and macrophages. In the wound heal-
ing process, pro-inflammatory mediators, such as TNF-α, TGF-β, and the interleukin family
are highly up-regulated [28]. Therefore, inflammation is a physiologic phenomenon of wound
healing that may occur for over 12 months until scars mature [29]. Inflammation and nerve
injuries induce transcriptional change and the induction of COX-2 in dorsal horn neurons
[30]. This causes burn scar neuropathic pain, and if inflammation persists, it also causes second
necrosis and apoptosis in the spinal cord [31].

In addition to the inflammatory induction of COX-2, which leads to the release of prosta-
noids and localized pain hypersensitivity, this local inflammation also induced pain in unin-
jured area by increasing neuronal excitability in the central nerve system thus as spinal cord

Fig 4. Fat grafts increased p-IκB, reduced the p-NFκB protein, and through the inhibition of p-JNK,
attenuated apoptosis in the spinal cord dorsal horn. (A) Double immunofluorescent staining was
performed to measure p-IκB and p-NFκB. Few p-IκB proteins were expressed in Group C, but p-IκB were
increased in Group D. The expression of p-NFκB was abolished and reduced by fat grafts in Group D versus
Group C. (B) Double immunofluorescence images in p-JNK and TUNEL expression were elevated following
an increase in the TUNEL-positive cells. In Group D, we found that the inhibition from fat graft of p-JNK
attenuated apoptosis in the spinal cord dorsal horn.

doi:10.1371/journal.pone.0137563.g004
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(also known as central sensitization). Samad et al demonstrated that in the hind paw inflam-
mation model evoked by complete Freund’s adjuvant, the hind paw skin produced high
increases in COX-2 mRNA and a similar increase in the lumbar spinal cord. The inhibition of
IL-1β signaling prevents transcriptional upregulation of the COX-2 gene, reduced mechanical
hyperalgesia, and normalized pain sensitivity [32]. The pro-inflammatory cytokines, IL-1β
and TNF-α, were key cytokines during inflammation and reduced mechanical pain thresh-
olds. Moreover, pro-inflammatory cytokine antagonists were able to reduce hyperalgesia in
the inflammation model, meaning that the activation of IL-1β and TNF-α was a crucial step
in the generation of inflammatory pain [25]. Our data showed that fat grafting decreased the
expression of COX-2 in IHC staining and in western blot in skin and spinal cord dorsal horn.
Furthermore, fat grafting decreased the level of IL-1β and TNF-α in the spinal cord dorsal
horn. Therefore, we suggested that fat grafting alleviated burn-induced neuropathic pain by
decreasing the level of IL-1β and further reduced the expression of COX-2 to alleviate the
inflammation process.

The overexpression or inappropriate NO produced by iNOS and/or nNOS is associated
with inflammatory and neuropathic pain. Upregulated nNOS and iNOS expressions are noted
in the spinal cord and skin after nerve or burn injuries in neuropathic pain animal models [33,
34]. Payne et al demonstrated that iNOS/nNOS inhibitors were effective in the model of neuro-
pathic pain [35]. The inhibition of NOS in the neuropathic pain model diminishes the upregu-
lation of iNOS and nNOS in the spinal cord and skin. Therefore, iNOS and nNOS can indicate
neuropathic pain. Keihoff et al demonstrated the time-course of neuropathic pain in chronic
constriction injury (CCI) model, in wild-type mice, the neuropathic pain was noted in day 10
after chronic constriction injury (CCI) and was normalized on day 52. However, the pain
threshold normalized on day 6 in the nNOS- knockout mice and day 17 in the iNOS mice.
This resulted from the required regulatory role of iNOS in the upregulation of nNOS [22, 36].
In our results, fat grafts alleviated allodynia in the behavior test, decreased iNOS and nNOS

Fig 5. Fat graft regulated p-AKT/AKT and Bax/Bcl-2 ratios in the spinal cord dorsal horn. (A andB)
Both expression ratios of p-AKT/AKT and Bax/Bcl-2 increased significantly in Group C versus Group D.
These results indicated that fat grafting reduced cell death of neuron in the spinal cord (Data were presented
with mean ± SEM, **P < 0.01; *P < 0.05).

doi:10.1371/journal.pone.0137563.g005
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expression in the IHC staining images and decreased protein expression. Additionally, an
increased protein expression was shown in the spinal cord dorsal horn. These results indicated
that fat grafting alleviated the skin and spinal cord neuroinflammatory reaction and improved
the neuropathic pain.

NFκB is a nuclear transcription factor that regulates inflammation and apoptosis. Activa-
tion of the NFκB signal pathway depends on phosphorylation and degradation of IκB proteins
[37]. The MAPKs play essential regulatory roles in neuronal inflammatory response [38,39]. A
recent study indicated that the JNK pathway mediated apoptosis involving an inflammatory
response in the neuroblastoma cell line [40]. This apoptosis reaction was also revealed in the
expression of AKT and the increasing of the Bax/Bcl-2 ratio [41, 42]. Activation of phosphati-
dylinositol 3 kinase/AKT has been linked to cytotoxic cell death, and AKT inhibitors also pro-
tect cultured neurons against photodynamic-induced necrosis [43]. Bax and Bcl-2 play central
roles in regulating apoptosis. The decreasing expression of Bax and the increasing expression
of Bcl-2 promote cell survival by inhibiting apoptosis [42]. Our data revealed that fat grafting
may increase p-IκB and decrease the NFκB transcription in anti-inflammation. Through the
inhibition of AKT and JNK phosphorylation in astrocytes, decreasing the expression of Bax
and increasing the expression of Bcl-2 to alleviate apoptosis in the spinal cord dorsal horn thus
alleviates apoptosis [43,44]. We speculated that fat grafting alleviated neuropathic pain through
the anti-inflammatory effect and ameliorated the apoptosis in the spinal cord dorsal horn neu-
ron cells.

Conclusions
The subcutaneous injection of fat grafts in burn-injured hind paw skin significantly attenuated
burn-induced neuropathic pain. In summary, our results revealed that fat grafting reduced p-
NFκB activation in spinal astrocytes and attenuated inflammatory proteins including COX-2,
iNOS, and nNOS in spinal cord and burn scar. Our findings thus showed that fat grafting,
because of its anti-inflammatory effect, can be used as an innovative therapeutic method for
burn-induced neuropathic pain.
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