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Abstract

Anemia commonly occurs in people with chronic kidney disease (CKD) and is associated

with poor clinical outcomes. The management of patients with anemia in CKD is challeng-

ing, due to its severity, frequent hypo-responsiveness to treatment with erythropoiesis stim-

ulating agents (ESA) and common hemoglobin cycling. Nonlinear dose-response curves

and long delays in the effect of treatment on red blood cell population size complicate predic-

tions of hemoglobin (Hgb) levels in individual patients. A comprehensive physiology based

mathematical model for erythropoiesis was adapted individually to 60 hemodialysis patients

treated with ESAs by identifying physiologically meaningful key model parameters from tem-

poral Hgb data. Crit-Line® III monitors provided non-invasive Hgb measurements for every

hemodialysis treatment. We used Hgb data during a 150-day baseline period together to

estimate a patient’s individual red blood cell lifespan, effects of the ESA on proliferation of

red cell progenitor cells, endogenous erythropoietin production and ESA half-life. Estimated

patient specific parameters showed excellent alignment with previously conducted clinical

studies in hemodialysis patients. Further, the model qualitatively and quantitatively reflected

empirical hemoglobin dynamics in demographically, anthropometrically and clinically

diverse patients and accurately predicted the Hgb response to ESA therapy in individual

patients for up to 21 weeks. The findings suggest that estimated model parameters can be

used as a proxy for parameters that are clinically very difficult to quantify. The presented

method has the potential to provide new insights into the individual pathophysiology of renal

anemia and its association with clinical outcomes and can potentially be used to guide per-

sonalized anemia treatment.

Introduction

A decrease in the total amount of red blood cells (RBC) and hemoglobin (Hgb) levels impair-

ing the blood’s ability to carry oxygen is referred to as anemia. Anemia is a common
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occurrence in patients suffering from chronic kidney disease (CKD). In 2014, 84% of 680,000

end-stage renal disease patients in the US were treated for anemia by administering erythro-

poiesis stimulating agents (ESA) [1]. The administration of ESAs exerts hematological effects

similar to the endogenous hormone erythropoietin (EPO) which drives the production of new

RBCs. Based on several randomized controlled trials the most current clinical practice guide-

line calls for a partial correction of anemia in CKD patients, urging inception of therapy at a

Hgb of 9.0 to 10.0 g/dl, and treatment to levels in general not beyond 11.5 g/dl [2].

Renal anemia is often severe and difficult to treat not least due to a high inter-individual

variability in response to ESA therapy. The reasons underlying anemia include insufficient

RBC production, abnormally elevated RBC breakdown, and blood loss (e.g. gastro-intestinal

bleeding episodes). Routine measurements of quantities, such as RBC lifespan, bone marrow

response to ESA, EPO levels and individual half-life of the administered ESA compound, are

either not practical or infeasible in a clinical environment. Patient-specific predictions of the

response to ESA administration are extremely challenging mainly due to the long delay and

non-linearity in reaction of the RBC population to ESA treatment. Hence, Hgb levels in

patients frequently fail to achieve recommended Hgb targets and Hgb levels in hemodialysis

(HD) patients tend to fluctuate widely and are prone to exhibit cyclic behavior [3, 4].

Erythropoiesis is a complex physiological process requiring the orchestrated activation of

numerous regulatory systems on multiple spatial and temporal scales. Thus, a comprehensive

mechanistic mathematical model based on physiological considerations is particularly well

suited to examine the intricate dynamics of bone marrow activity in response to EPO in differ-

ent individuals. Detailed computer simulations permit further insights into reasons for non-

responsiveness of patients to ESA therapy and Hgb cycling. Further, a model that gives reliable

estimates for physiological parameters may be used to assess correlative patterns between clini-

cal and in-silico parameters.

The model presented in this study is not the first mathematical model to describe the

dynamics of erythropoiesis. The earliest efforts to develop such a model date back to the 1990s

with most approaches inspired by the work of Belair and colleagues [5]. Several authors modi-

fied, analyzed and adapted the Belair model to different experimental data. For example, an

improved and extended version of this model was published by Mahaffy et al. [6] who per-

formed model fitting based on experimental recordings of rabbits with induced auto-immune

hemolytic anemia. Later on, the authors adapted the same model to phlebotomy data in

humans [7]. A later study, which was also inspired by [5], focused on an application to periodic

hematological diseases [8] and Crauste and colleagues [9–11] presented a different modifica-

tion of the Belair model incorporating self-renewal of progenitor cells. A rigorous theoretical

analysis of the Belair model and some of its modifications can be found, for example, in [12,

13] and [14]. Besides the seminal work of Belair, Loeffler and collaborators made substantial

contributions to erythropoiesis modeling, see e.g. [15–17]. Later publications (see e.g. [18, 19])

focused primarily on modeling of hematopoietic stem cells.

The mathematical model used in this study is a comprehensive age-structured cell popula-

tion model, which distinguishes granularly between different erythroid cell stages [20]. As dis-

tinct from previously developed models, it incorporates neocytolysis, a mechanism that has

been confirmed in a variety of physiologic and pathophysiologic situations [21], including the

anemia of renal failure [22], [23]. Erythropoietin suppression triggers neocytolysis, a selective

eryptosis of neocytes, the youngest circulating red blood cells. The pathologic erythropoietin

deficiency of renal disease precipitates neocytolysis, which contributes to dosing differences

between different ESA treatment regimens [24].

Comprehensive physiology based models are commonly used to generate insights and test

hypotheses about underlying mechanisms of diseases. Such models are rarely individualized
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using patient specific data as they are often thought to be too complex to be adaptable using

clinically available data. We explored the feasibility of personalizing a comprehensive model

for erythropoiesis using clinical data in a cohort of 60 anemic HD patients. Adaptation and

prediction of individual Hgb levels showed excellent results. Moreover, individually estimated

parameters that are of physiological key importance allow further insight into patient specific

pathophysiology.

Materials and methods

Ethics statement

The study was approved by the Beth Israel Institutional Review Board (# 087–13) and the New

England Institutional Review Board (# 15–291) and conducted in accordance with the Decla-

ration of Helsinki. Informed consent was not obtained as this was determined not to be

human subject research, and we were working with de-identified data.

Study design

A mathematical model of erythropoiesis [20] was adapted to Hgb recordings from individual

HD patients treated with epoetin alfa (EPOGEN1, Amgen, Thousand Oaks, CA). Epoietin

alfa is a human erythropoietin produced in cell culture using recombinant DNA technology. It

has a molecular weight of 18,396 dalton, whereas endogenous erythropoietin has a molecular

weight of approximately 30,400 dalton; the difference in molecular weight is explained by dif-

ferent glycosylation patterns. Retrospective data from the Renal Research Institute (RRI) and

dialysis facilities of Fresenius Medical Care across the United States between April 2012 and

July 2014 were used.

In these clinics use of the CLM is part of standard care, albeit with some utilization variabil-

ity. A baseline period of 5 months was defined on a patient level for parameter estimation pur-

poses. In general, patients visit the HD center 3 times a week, i.e. about 65 treatments are

expected to occur during baseline. Only patients with more than 42 eligible CLM measure-

ments and at least 2 epoetin alfa administrations during the model adaptation period were

considered. Hgb measurements supplemented with simulation results obtained from the

mathematical model were used to estimate patient’s individual erythrocyte lifespan, bone mar-

row response to the ESA (slopes of the apoptosis and maturation velocity functions of ery-

throid precursor cells), endogenous EPO production, and EPOGEN1 half-life.

Data acquisition & eligibility

The CLM provides quasi-continuous non-invasive measurements of hematocrit during hemo-

dialysis. The method is based on an optical sensor technique. The sensor is attached to a blood

chamber placed in the extracorporeal circuit. The measurements are based on both the absorp-

tion properties of the hemoglobin molecule and the scattering properties of red blood cells. In

most patients CLM measurements are available for every dialysis treatment.

The first and last Hgb recordings of eligible treatments were used for this study, subse-

quently referred to as “pre-dialysis” and “post-dialysis” values. All data points with pre-dialysis

Hgb readings less than 5 g/dl and larger than 20 g/dl were excluded. All 60 patients were

treated with recombinant human erythropoietin also commonly referred to as epoetin alfa,

which was the most commonly used drug in the US at the time of the study (96.5% of US HD

patients received epoetin alfa according to USRDS report at the time of the study [1]).
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A physiologically based model for erythropoiesis

The mathematical model of erythropoiesis used in this study is based on structured population

models and describes the production of red blood cells from stem cells in the bone marrow to

mature erythrocytes circulating in the blood stream. Cell types are grouped into population

classes according to their characteristic properties with respect to interaction with EPO. These

properties include the proliferation rate, the rate of apoptosis and the maturation velocity of

cells, which—depending on the cell type—may vary depending on EPO levels. Five different

age-structured classes of cell populations are considered: BFU-E, CFU-E, erythroblasts, mar-

row reticulocytes and erythrocytes (including blood reticulocytes). Each population class can

be described by the following partial differential equation

ð
@

@t
uðt; mÞ þ nðEðtÞÞ

@

@m
uðt; mÞ ¼ ðbðEðtÞÞ � aðEðtÞ; mÞuðt; mÞ;

vðEðtÞÞuðt; 0Þ ¼ f ðtÞ;

uð0; xÞ ¼ u0ðxÞ:

where u(t, �) is the population density with respect to the cell maturity μ at time t. Further, the

functions β(�) and α(�) describe the proliferation rate and the rate of apoptosis, respectively

and the function v(�) denotes the maturation velocity of cells in this population class. The

boundary condition is given by the function f(�), which describes the influx of cells with maxi-

mal maturity from the previous population class and u0(�) is the initial density of the popula-

tion. The model presented in [20] further consists of two ordinary differential equations

describing the dynamics of exogenous and endogenous EPO over time. The release of endoge-

nous EPO in healthy adults involves a feedback loop that is regulated by the number of red

blood cells circulating in the blood. This feedback mechanism is heavily impaired in dialysis

patients and we assume a constant release of endogenous EPO, independent of the size of the

red blood cell population, i.e. EPO serum levels are assumed to be constant for individual

patients. Further, in case of blood loss or blood transfusions the last population class (erythro-

cytes) can be decreased or increased accordingly to match the data. For instance, in the US

about a pint of blood (473 ml) is donated with an average cell count of 5 � 109 cells per ml [25,

26]. Thus, one blood transfusion adds approximately 23.65 � 1011 cells to the erythrocyte popu-

lation class.

Parameter estimation

Individual Hgb and ESA administration data over a 150-day period were used to adjust the

model and identify key biological characteristics of the specific patient. Gender, height and

(average) post-dialytic weight of the patient was used to estimate post-dialytic blood volume

using the Nadler formula [27]. The number of stem cells committing to the erythroid lineage

was adjusted based on the patient’s blood volume and a steady state assumption for the model.

The following model parameters were estimated for each individual: RBC Lifespan, endoge-

nous erythropoietin levels, half-life of the administered ESA, the slope of the apoptosis of

hematopoietic colony forming units and the slope of the maturation velocity of bone marrow

reticulocytes.

The employed parameter identification scheme has been thoroughly presented in [28].

Briefly, a least-squares cost-functional was minimized in order to determine the parameter

estimates. A fast and robust numerical approximation scheme based on semigroup theory was

constructed and implemented in Python to solve the system of partial differential equations

describing the cell populations of the erythroid lineage. Multiple parameter identification runs
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are initiated with different initial conditions. Initial guesses for the parameters were chosen

within physiological reasonable ranges. A direct search method was used to find minima of the

cost-functional and we did not restrict the parameter search to a predefined area, i.e. we used

an unconstrained optimization technique. The Nelder-Mead simplex method implemented in

the SciPy package for Python was used for this purpose [29]. The parameter identification was

restarted around local minima with low residual values of the cost functional, by slightly per-

turbing the optimal parameter values (around ± 10%) to avoid being a stuck in a non-optimal

point. Further, for some patients we iterated over the parameters separately to check for any

further improvements around the local minima.

The post-dialytic CLM measurements of hemoglobin levels were chosen for parameter

identification purposes. Based on previous research the estimation of the post-dialytic blood

volume using the empirical Nadler formula [27] is slightly more accurate than for the pre-dial-

ysis blood volume. However, in the medical community the pre-dialysis Hgb values are more

commonly accepted. Thus, we calculate the simulated pre-dialysis Hgb and present these

results in the paper. We use the following formula to determine the simulated pre-dialysis

Hgb:

preTBV ¼
postHgbCLM � postTBV

preHgbCLM
; preHgbsim ¼

postHgbsim � postTBV
preTBV

;

where preTBV describes the calculated pre-dialysis blood volume and postTBV refers to the

post-dialytic blood volume which is estimated using the Nadler formula. Further, postHgbCLM
and preHgbCLM are the post-dialysis and pre-dialysis Hgb measurements and postHgbsim and

preHgbsim denote the simulated post-dialysis and pre-dialysis Hgb levels, respectively.

The error between the model and data is reported as the mean absolute percentage error,

which is a standard measure of prediction accuracy of forecasting methods and is defined as

MAPE ¼
100

N

XN

i¼1

�
�
�
yðtiÞ � gðtiÞ

yðtiÞ

�
�
�;

where N is the number of observations, y(ti) denotes the measurements and g(ti) describes the

model output at the time points ti, i = 1, . . ., N, respectively.

Comparison between the one dimensional distribution of the estimated model parameter

pest and literature data on the distribution of the physiological parameter pdata is done using

the Kantorovich distance (also known as Wasserstein or earth mover’s distance). The metric

quantifies the minimum amount of “work” required to transform pest into pdata, where “work”

means the amount of distribution weight that must be moved times the distance it needs to be

moved. The Kantorovich distance is defined as

lðpest; pdataÞ ¼ inf
p2Gðpest ;pdataÞ

Z

R�R
jx � yjdpðx; yÞ;

where Γ(pest, pdata) is the set of distributions on R� R whose marginals are pest and pdata. A

Scipy implementation was used to calculate the first Wasserstein distance [29].

Results

A comprehensive physiologically informed mathematical model of erythropoiesis was adapted

to 60 chronic HD patients using parameter estimation techniques. Crit-Line1 III Monitors

(CLM; Fresenius Medical Care, Concord, CA) were used to measure hemoglobin (Hgb) on a

per-treatment level. The mean age of the HD patients was 59.4 ± 14.7 years, dialysis vintage

was 3.63 ± 3.3 years, 48.3% were female, 51.7% were black, and 58.3% were diabetic. The body
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mass index in this cohort was 27.9 ± 6.7 kg/m2. All patients received intravenous iron

(16.9 ± 6.8 mg) and their transferrin saturation and ferritin levels indicate sufficient iron avail-

ability on a population level. For more details on the patient characteristics see Table 1. Two

patients experienced bleeding episodes, which we accounted for in the model simulations.

Model adaptation

On average, Hgb levels of patients were recorded in 53 ± 7 treatments during a 150 day period.

This data was used to estimate model parameters on a per patient level. The model closely

resembled the Hgb dynamics observed in the empirical recordings and showed a remarkable

approximation quality of the data. The model was adjusted to 60 individuals with a consis-

tently high quality, demonstrating the excellent model fidelity. The mean absolute percentage

error (MAPE) for the model adaptation over the population cohort was 3.6 ± 0.9%. In Fig 1A

the distribution of the MAPE for the 60 patients is plotted. The 75th percentile of the error

between measurements and model output is with 4.2% very low. Moreover, the maximum

MAPE of 6% in the patient cohort underscores the excellent quality of the model adaptations.

Fig 2 illustrates model adaptation and prediction in two exemplary dialysis patients of very

different demographics, anthropometrics and comorbidities—all factors that potentially influ-

ence the severity of anemia and required ESA usage to correct the anemia. Fig 2A depicts Hgb

dynamics of a young, class II obese, non-diabetic, black male, while the lower panel shows the

temporal evolution of Hgb in an elderly, normal-weight, diabetic, white female. The model

can be adapted to both individuals with a similar accuracy (MAPE: 5.16% and 4.9%, respec-

tively.). Notably, the simulations resemble the observed Hgb dynamics exceptionally well

Table 1. Population demographics.

Parameter Mean ± SD Parameter Mean ± SD

Age [years] 59.4 ± 14.7 Neutrophil-to-lymphocyte ratio 3.59 ± 2.01

Interdialytic weight gain [kg] 2.56 ± 0.88 Height [cm] 166.5 ± 9.7

Pre-dialysis weight [kg] 78.6 ± 19.7 Vintage [years] 3.63 ± 3.30

Albumin [g/dl] 4.01 ± 0.28 Percentage [%]

Epoetin alfa dose [U/kg/treatment] 17.94 ± 17.66 White [%] 48.33

Ferritin [ng/ml] 1005 ± 544 Male [%] 51.67

Transferrin saturation [%] 36.41 ± 6.94 Diabetic [%] 58.33

Intravenous iron dose [mg per dialysis session] 16.89 ± 6.79 Central venous catheter as vascular access [%] 8.33

https://doi.org/10.1371/journal.pone.0195918.t001

Fig 1. Mean absolute percentage errors (MAPE) between model simulation and individual patient data. Density of

MAPE of hemoglobin levels between empirical patient data and simulated patient data during the model adaption

period (Panel A). Panel B depicts Box-and-Whisker plots of the MAPE for the adaption period (yellow) and for every

30 days during the prediction period (magenta). N denotes the number of patients that have been followed-up.

https://doi.org/10.1371/journal.pone.0195918.g001
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under the respective ESA regimen. For further details on the patient characteristics and the

individual determined model parameters see Table 2. Figures for all individual model adapta-

tions and predictions can be found in the supplemental material S1 Figs.

Fig 3 depicts Hgb levels of a senior, normal-weight, non-diabetic, black male. He suffered

from a gastro-intestinal bleeding episode of several days starting around day 85 of the model

adaptation period. Due to the severity of the resulting anemia the patient received a transfu-

sion of packed red blood cells. Unsurprisingly, initial model adaptation attempts that did not

consider this hemodynamic incident failed to account for the dynamics during and after the

bleeding episode (see Fig 3A). Thus, we incorporated the patient’s gastro-intestinal bleeding

episode to obtain a new simulation without changing the previously estimated set of model

parameters for this individual. The resulting model output can be seen in Fig 3B. The model

fully accounts for variations in Hgb dynamics during and after the bleeding episode without

requiring a re-adjustment of patient-specific model parameters.

Model prediction

Depending on the availability of follow-up data we predicted individual Hgb levels for up to

150 days. The average follow-up time was 84 ± 46 days (range: 25–172 days), with Hgb record-

ings available in 23 ± 15 of the treatments during this time. The adaptation period served to

Fig 2. Comparison of model simulations and empirical data for two patients. Pre-dialysis Hgb measurements

(magenta) and model output (blue) during the model adaptation period (yellow area) and prediction period (purple

area). Green bars represent the administered ESA doses.

https://doi.org/10.1371/journal.pone.0195918.g002
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Fig 3. Model adaptation and prediction for a patient experiencing a severe bleeding episode. Pre-dialysis CLM Hgb

levels (magenta) and model output (blue) during the model adaptation period (yellow area) and prediction period

(purple area). Green bars represent the administered ESA doses. Model output without and with considering the

bleeding and subsequent blood transfusion are presented in Panel A and B, respectively.

https://doi.org/10.1371/journal.pone.0195918.g003

Table 2. Characteristics of individual patients.

Patient characteristics Patient 1 Patient 2 Patient 3

Race Black White Black

Age [years] 36 84 66

Gender Male Female Male

Height [cm] 187 155 170

Weight [kg] 136 62 54

Diabetes No Yes No

RBC Lifespan [days] 74 92 81

Endogenous EPO level [U/l] 9.8 5.2 9.5

Epoetin alfa half-life [h] 9.6 4.8 4.4

Bone marrow reaction

(apoptosis rate parameter, maturation velocity parameter)

Suppressed

(0.0087, 0.0196)

Normal

(0.016, 0.0488)

Slightly suppressed

(0.0079,0.84)

Gastro-intestinal bleeding No No Yes

Characteristics of patients presented in Figs 2A (Patient 1), 2B (Patient 2) and 3 (Patient 3).

https://doi.org/10.1371/journal.pone.0195918.t002
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individualize the model. Patient specific model parameters estimated during the adaptation

period were used to simulate Hgb levels in the prediction period. The individually determined

model parameters were kept constant during the entire baseline and follow-up time. The

model accurately predicts future hemoglobin levels and dynamics in individual patients for up

to 150 days.

Fig 1B shows a Box-and-Whisker plot of the mean percentage errors for the adaptation

period and for every 30 days of the prediction period. The MAPE for the adaptation period

and the prediction period was calculated separately. Median, 25th and 75th percentiles as well

as minimum and maximum relative errors remain stable over the prediction period. The

available duration of per treatment Hgb recordings varies highly between individuals. We

had access to eight months of CLM Hgb data in 22 patients, which was divided into 150 days

of adaptation period and 90 days of prediction period. The median relative errors during the

prediction period were 3.9% after 30 days (N = 60), 4.4% after 60 days (N = 39), and 4.2%

after 90 days (N = 22). Further, the 90th percentile for the model prediction error remained

stable with 6.7%, 7.2%, and 7.2% after 30, 60, and 90 days respectively. An extended follow-

up time of 120 days was available in 13 patients and 10 patients had a prediction period of

150 days. In the small cohort with prediction horizons longer than 90 days, median relative

errors remained stable (4.3% after 120 days, 4.9% after 150 days) and the 90 percent of

the patients had a relative mean error of less than 7.5% and 8.8% after 120 and 150 days,

respectively.

The predictions of individual Hgb levels depicted in Figs 2 and 3 show the excellent capabil-

ity of the model to reflect Hgb dynamics over an extended period of time. Notably, the ESA

regimen of the patient depicted in Fig 2A changed considerably from the adaptation period to

the prediction phase, with doses being administered that were twice as high as the highest dose

during the adaptation period. Nonetheless, the model predictions are qualitatively and quanti-

tatively excellent and show that the model can easily extrapolate beyond previously seen Hgb

dynamics.

Model parameters

Model parameters were estimated on a per-subject basis during the adaptation period using

each patient’s individual recordings. The adjusted model parameters, such as RBC lifespan and

endogenous EPO production show a remarkable alignment with previously reported values in

clinical studies in HD patients (Fig 4). Ma and colleagues [30] measured red blood cell lifespan

in 54 HD patients. Their results and the estimated RBC lifespan of the 60 HD patients pre-

sented by us show very similar characteristics (see Fig 4A). The mean RBC lifespan in [30] was

73 ± 18 days (range: 38–116 days) compared to a mean estimated RBC lifespan in our study of

73 ± 20 days (range: 33–137 days). The Kantorovich (Wasserstein) distance between the esti-

mated parameters and the measured literature values is 4.15. To provide the reader with a ref-

erence value we compared the literature data to a uniform distribution on the interval (33,

137), which resulted in a Kantorovich distance of 43.2.

Artunc and Risler measured endogenous EPO concentrations in 500 patients with varying

degrees of anemia and chronic kidney disease (ranging from CKD 1 to CKD5, where CKD 5

includes end-stage renal disease) [31]. Results of the CKD 5 group (n = 39) and patients with

CKD 1 or 2 (n = 45) together with the estimated model parameters of our cohort of 60 HD

patients are presented in Fig 4B. The Kantorovich distance between the two distributions is

6.86. EPO levels of patients with less severe renal insufficiency were substantially higher than

those with CKD 5 (Kantorovich distance: 22.73). This finding can be attributed to increasingly

impaired EPO production in the kidneys with progressing CKD stages [32].
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Further, half-life of Epoetin alfa is reported to be 4–12 hours in dialysis patients [33], which

is very similar to the range of 3.8–13.6 hours (median: 6.3 hours) we estimated in our patient

cohort (see Fig 4C). We are not aware of studies in end-stage renal disease patients that quantify

changes in erythroid precursor cell apoptosis rate or maturation velocity in response to erythro-

poietin levels. Hemodialysis patients have, in general, an impaired bone marrow response com-

pared to healthy subjects [34] and we observed a similar effect in the model’s parameters, when

comparing bone marrow characteristics determined for healthy subjects to values estimated for

individual HD patients. The model parameters for the slope of the apoptosis prevention func-

tion and the maturation velocity for a healthy population was 0.02 and 0.08, respectively, in

[20]. The median parameter values for HD patients for the slope of the apoptosis prevention

function and the slope of the maturation velocity function of precursor cells was 0.0079 (range:

0.0013–0.0208) and 0.029 (range: 0.0007–0.1864), respectively (see Fig 4D and 4E). Taken

Fig 4. Comparison of estimated and clinically measured parameters. Panel A shows the density of estimated RBC

lifespan in 60 HD patients (blue) compared to measurements in a clinical study conducted in 54 HD patients (green)

(data adapted from [30]). Panel B compares estimated endogenous EPO levels in 60 HD patients (blue) and clinical

study data in CKD 5 patients (N = 39, green) and CKD 1 or 2 patients (N = 45, orange) (data adapted from [31]). Panel

C-E depict the densities of the estimated model parameters for EPO half-life, the slope parameter in the apoptosis

function and the slope parameter in the maturation velocity function. Individual parameters are shown as sticks on the

x-axis in all panels.

https://doi.org/10.1371/journal.pone.0195918.g004
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together, a lowered rate of apoptosis inhibition and lower maturation velocity in the model

indirectly reflects a lowered efficiency of the ESA.

Discussion

Our mathematical model of erythropoiesis demonstrated its ability to provide physiologically

reasonable parameter estimates on a patient level. Further, the model accurately predicted

future hemoglobin levels and patterns in individual patients for up to 21 weeks while being

simultaneously capable of reflecting Hgb dynamics in anthropomorphically and clinically very

different patient phenotypes. Moreover, the model can account for bleedings and blood trans-

fusions, which frequently occur in dialysis patients, without requiring a re-adjustment of the

model in its structure or patient-specific parameters.

The presented work provides means to obtain further insights into the underlying causes of

renal anemia without the need of invasive measurements. To the extent that clinical data are

available, the patient-specific estimated model parameters align well with previously reported

values. Our findings clearly indicate that the model parameters have a physiologically mean-

ingful interpretation, which suggests that the presented in-silico estimates are a proxy for

parameters that are otherwise very difficult to quantify. The only information required to

adjust the model and estimate individual patient-specific parameters is the patient’s gender,

height, weight as well as ESA administration over the last five months and corresponding Hgb

levels measured every hemodialysis treatment during this time period. Notably, we did not

rely on Hgb levels measured in blood samples but used a non-invasive measurement method

—CLM—that is standard of care in a substantial number of US dialysis facilities. The availabil-

ity of many observations on each individual (53±7 hemoglobin measurements) allowed us to

use continuous, deterministic optimization techniques to solve the inverse problem to adapt

the individual model parameters. These techniques do not use the information known on

other individuals. In situations where e.g. only bi-weekly or monthly lab measurements are

available for each individual, one should resort to techniques that allow borrowing informa-

tion across subjects, e.g. nonlinear mixed effects models [35–37].

A drawback of the present study is the lack of a standardized follow-up time in the data.

We had access to frequent CLM Hgb measurements in a third of the patients for a period of 8

months, which we split into a five months adaptation- and 3 months prediction-period. The

number of recordings permitting a longer prediction horizon was low, limiting our assessment

of Hgb forecasting performance beyond this point. Further, CLM is currently not widely used

in standard care outside the US. The majority of dialysis clinics still rely on less frequent lab

Hgb measurements only. Thus, a future study should investigate, if a patient-specific adapta-

tion of the model can be performed using temporally sparse laboratory Hgb data.

Lastly, although erythropoietin is the key hormone driving erythropoiesis, the availability of

iron influences bone marrow reaction, which itself is severely impaired by an absolute or func-

tional iron deficiency. While iron homeostasis has not been explicitly incorporated into the

presented model, the influence of iron is indirectly accounted for in the model components

reflecting the effect of erythropoietin on RBC progenitor cells (which is adapted for each

individual).

In practice, clinical anemia therapy is regularly guided by clinical acumen and / or prede-

fined treatment algorithms. However, the long delay between ESA administration and the

manifestation of its treatment effects in the form of altered Hgb levels makes reliable treatment

forecasts and the design of optimal personalized administration regimens infeasible in daily

clinical practice. A better understanding of the genesis of anemia is essential to improve ther-

apy recommendations and guidelines. We have shown that our model can play a crucial role

A personalized mathematical model of anemia in hemodialysis patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0195918 April 18, 2018 11 / 14

https://doi.org/10.1371/journal.pone.0195918


in distinguishing different reasons for a low or non-responsiveness to EPO. The main driver of

EPO hypo-responsiveness can be either a severely shortened RBC lifespan, impaired bone-

marrow reaction, a very low endogenous EPO production, a short half-life of the drug itself or

any combination thereof [25, 32, 38]. In each of these cases, patients will benefit tremendously

from a personalized treatment regimen that is adjusted for the specific individual circum-

stances. Most importantly, numerous administration schemes can be tested for their safety

and efficacy in-silico using the proposed model before a specific ESA regimen is clinically

evaluated.

As a next step, we will test the predictive performance of the presented model in a larger

population. By enrolling virtual and real patients in a large-scale clinical study, model parame-

ters can be correlated to clinical quantities, such as inflammation, fluid status, and others, as

well as demographic and anthropomorphic characteristics. The proposed adaptation method

readily lends itself to investigate differences in the genesis of renal anemia between e.g. race,

gender or age. Moreover, the progress of the underlying causes of the renal anemia in individ-

ual patients as predicted by the model will be rigorously assessed in follow-up treatments over

several months and years. The model will be re-adapted accordingly so that temporal changes

in its parameters represent a dynamic footprint of an individual patient’s status. This will allow

us to use the proposed model as a research and diagnostic tool.

Supporting information

S1 Figs. Comparison of model simulations and empirical data. Pre-dialysis Hgb measure-

ments (magenta) and model output (blue) during the model adaptation period (yellow area)

and prediction period (purple area). Green bars represent the administered ESA doses.
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