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Abstract: Cancer cell survival, function and fate strongly depend on endoplasmic reticulum (ER)
proteostasis. Although previous studies have implicated the ER stress signaling network in all stages
of cancer development, its role in cancer metastasis remains to be elucidated. In this study, we
investigated the role of Gremlin-1 (GREM1), a secreted protein, in the invasion and metastasis of
colorectal cancer (CRC) cells in vitro and in vivo. Firstly, public datasets showed a positive correlation
between high expression of GREM1 and a poor prognosis for CRC. Secondly, GREM1 enhanced
motility and invasion of CRC cells by epithelial–mesenchymal transition (EMT). Thirdly, GREM1
upregulated expression of activating transcription factor 6 (ATF6) and downregulated that of ATF4,
and modulation of the two key players of the unfolded protein response (UPR) was possibly through
activation of PI3K/AKT/mTOR and antagonization of BMP2 signaling pathways, respectively. Taken
together, our results demonstrate that GREM1 is an invasion-promoting factor via regulation of ATF6
and ATF4 expression in CRC cells, suggesting GREM1 may be a potential pharmacological target for
colorectal cancer treatment.

Keywords: Gremlin-1; epithelial–mesenchymal transition; ATF4; ATF6; colorectal cancer

1. Introduction

Colorectal cancer (CRC) is the third most common cancer worldwide and the second
leading cause of cancer-related deaths [1]. CRC has accounted for 10% of malignancies
and its mortality rate remains categorically high. More than half of CRC patients have
metastases at the time they are diagnosed [2]. The current standard of care for CRC
includes surgery, chemotherapy, radiation therapy and targeted therapy, with a 5-year
relative survival rate of 65% for CRC patients, which devastatingly declines to 12% in
patients with stage IV CRC [3].
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Gremlin-1 (GREM1), a secreted glycoprotein, belongs to the DAN/Cerberus pro-
tein family, which is a member of the cysteine knot superfamily that includes, among
others, transforming growth factor-β (TGF-β) and vascular endothelial growth factor
(VEGF) [4]. It is also a BMP antagonist and known to be involved in embryogenesis [4,5],
bone formation [6] and organ development [7]. In pathological states, GREM1 is involved
in processes such as organ fibrosis [8], inflammation [9] and cancer [10,11]. Above all,
GREM1 is known to induce fibrosis of organs, which requires the epithelial–mesenchymal
transition (EMT) process [12,13]. Cancer-associated fibroblasts (CAFs) express GREM1,
which inhibits BMP signaling and accelerates tumor cell proliferation [14]. In patients
with breast cancer or CRC, high expression of GREM1 is usually associated with poor
prognosis [15–17]. GREM1 secreted by glioma cancer stem cells maintains its own stemness
and proliferation, whilst blocking differentiation of glioma cells [18]. Overexpression of
GREM1 in intestinal epithelial cells supports the colorectal premalignant lesions [11,19]. In
contrast, a clinical study showed that high expression of GREM1 was correlated with good
prognosis in CRC [20]. Thus, the functional role of GREM1 in CRC remains elusive.

The endoplasmic reticulum (ER) in eukaryotic cells is involved in a variety of functions
comprising lipid biosynthesis, calcium storage, protein transport and protein folding [21,22].
Stress stimuli disturb ER proteostasis [23,24], which leads to the activation of the unfolded
protein response (UPR). The UPR signaling network is initiated by three ER transmembrane
sensors, IRE1α, PERK and ATF6, and functions either to restore ER proteostasis or to confer
apoptosis depending on the context [25–27]. In recent years, ER stress and UPR signaling
have been extensively studied in various types of cancers, including both tumor cells
per se, and the stromal cells within their microenvironment [28–30]. In the light of these
efforts, targeting the key nodes of the UPR network has been proposed for novel therapeutic
strategies in cancer treatment, and is under rapid translational development [31,32]. Despite
this positive progress, relatively less is known about the implication of ER stress signaling
in cancer metastasis. A recent study revealed that EMT was triggered by activation of the
IRE1a and PERK pathways in lung adenocarcinoma cells A549 and H358 [33]. In pancreatic
adenocarcinoma cells Capan-2 and SW1990, intracellular Ca2+ overload also triggered
EMT through the IRE1a pathway [34]. However, its relevance to CRC metastasis has not
been studied.

In this study, we performed immunohistochemistry (IHC) of GREM1 in CRC clinical
specimens, and found that its expression was associated with poor prognosis. GREM1
activated EMT in CRC cells, which was mediated by the upregulation of ATF6 and down-
regulation of ATF4 pathways of the UPR. Further, our study preliminarily showed that
GREM1 modulated the expression of ATF4 and ATF6 through BMP and VEGF signaling
pathways, respectively. These results suggest that the crosstalk between GREM1 and
the ER stress signaling network may provide a new theoretical basis for the treatment of
advanced CRC.

2. Materials and Methods
2.1. Cell Lines and Culture

Human CRC cell lines (SW480 and HCT116), requested from the “Chinese Academy of
Sciences”, were confirmed fingerprinting using “STR DNA” by Shanghai Biowing Applied
Biotechnology Co., Ltd. (Shanghai, China). A Mycoplasma Stain Assay Kit (Beyotime,
C0296) was used to identify the mycoplasma infection. The HCT116 cell line was cultivated
with RPMI 1640 (Thermo Fisher Scientific, 31870082, Fremont, CA, USA) with 10% fetal
bovine serum (FBS, Thermo Fisher Scientific), 100 µg/mL streptomycin and 100 U/mL
penicillin (Strep/Pen, Thermo Fisher Scientific, 15140148) under the conditions of 5% CO2 at
37 ◦C. Similarly, SW480 cell line was cultivated with Dulbecco’s modified Eagle’s medium
(DMEM, Thermo Fisher Scientific, 11965092) containing 10% FBS, 100 µg/mL streptomycin
and 100 U/mL penicillin (Strep/Pen, Thermo Fisher Scientific, 15140148) in a humidified,
5% CO2 incubator at 37 ◦C.
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2.2. Lentivirus Production and Infection

The shRNA was in the PTSB-SH-copGFP-2A-PURO lentiviral vector (shGREM1). The
GREM1 gene was ligated into a pLV-EF1a-IRES-PURO lentiviral vector to construct the plas-
mid for GREM1 overexpression. To produce lentiviral particles, 1 × 107 HEK293T cells in a
55 cm2 dish were co-transfected with 10 µg lentiviral vector, 5 µg pCMV-dR8.91 (packaging-
expressing plasmid) and 5 µg pMD2.G (envelope-expressing plasmid). The supernatant
containing viral particles was harvested at 48 and 72 h post transfection, and was filtered
through a Millex-GP Filter Unit (0.45 µm pore size, Millipore, SLHV033RB). To infect cancer
cells with lentivirus, cells were infected twice at a 24 h interval with culture medium contain-
ing 2 mL lentivirus, 200 µL FBS and 5 mg/mL polybrene (Sigma, TR-1003, St. Louis, MO,
USA) at 37 ◦C. To increase the overexpression and knockdown efficiency, infected cells under-
went several days of puromycin (Sigma, P8833) selection. For lentiviral infection, a GREM1
expression vector (pLV-GREM1), a pLV-EF1a-IRES-PURO control lentiviral vector (pLV), the
shRNA targeting GREM1 (shGREM1) and a PTSB-SH-copGFP-2A-PURO lentiviral vector
(shNC) were designed and constructed by TranSheepBio Medical Biotechnology Co., Ltd.
(Shanghai, China) The sequence of shRNA oligo-nucleotides against GREM1 (shGREM1)
was: 5′-CCGGGCAGTGTCGTT-GCATATCCATCTCGAGATGGATATGCAACGACACTGC-
TTTTTT-3′. The mRNA and protein expression levels of GREM1 were then analyzed by
qRT-PCR and Western blotting, respectively.

2.3. RNA-Seq and Gene Set Enrichment Analysis (GSEA)

Total RNA was isolated using the Trizol reagent (Invitrogen, 15596026, Carlsbad, CA,
USA). A Bioanalyzer 2100 (Agilent Technologies, Berlin, Germany) was used to monitor
the integrity of the RNA samples. RNA-seq was performed with the Illumina-PE150
sequencer (Illumina, San Diego, CA, USA). The NOISeq method was employed to identify
differentially expressed genes with a 1.5-fold change between two groups (HCT116-pLV-
GREM1 and HCT116-pLV cells) [35]. To clarify the molecular mechanisms underlying the
effect of GREM1 on the biological behavior of colorectal cancer cells, gene set enrichment
analysis (GSEA) was performed as described previously [36], and was used to explore
the enrichment terminology in the pathway of the gene signature Kyoto Encyclopedia of
Genes and Genomes (KEGG) related to EMT, UPR, TGFβ, VEGF and PI3K/AKT/mTOR.
A heatmap was generated from this data using the R heatmap function. A p-value of <0.05
was considered statistically significant.

2.4. qRT-PCR

The total RNA of both cell lines was extracted with protocols provided by Trizol
(Invitrogen, 15596026). According to the manufacturer’s instructions, cDNA was generated
using the PrimeScript RT Reagent Kit with gDNA Eraser (Accurate Biology, AG11706,
Hunan, China). The SYBR Green Premix Pro Taq HS qPCR Kit (Accurate Biology, AG11701)
was then used to quantify mRNA expression according to the manual instructions. For
these experiments, gene-specific and GAPDH primers were employed (Table A1). Data
were analyzed using BioRad CFX Manager Software (BioRad, Hercules, CA, USA). Each
experiment was prepared in triplicate, and data are represented as mean ± SD of at least
three independent experiments. To normalize sample variation, expression of GAPDH was
determined as the internal control.

2.5. Western Blot Analysis

The total lysate was prepared according to the designated processing procedure. CEB
lysis buffer (Invitrogen, FNN0011) was used to harvest the cells. Quantification of proteins
was performed according to the manufacturer’s procedure using Pierce’s BCA Protein
Assay Reagent Kit (Pierce Biotechnology, 23227, Rockford, IL, USA). Protein bands were
visualized using ECL Western blotting substrate (Thermo Fisher, 32132, Rockford, IL, USA)
and the ChemiDoc Imager System (Bio-Rad), and analyzed using ImageJ software. Mem-
branes were blocked with bovine serum albumin (BSA, Sigma–Aldrich, A1933, St. Louis,
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MO, USA) and incubated with one of the following primary antibodies purchased from
Cell Signaling Technology (CST, MA, USA): ZEB1 (Cat. #3195, 1:1000), Snail (Cat. #3879,
1:1000), Slug (Cat. #9585, 1:1000), E-cadherin (Cat. #3195, 1:1000), Vimentin (Cat. #5741,
1:1000), ZO-1 (Cat. #8193, 1:1000), β-catenin (Cat. #8480, 1:1000), ATF4 (Cat. #11815, 1:1000),
IRE1α (Cat. #3294, 1:1000), ATF6 (Cat. #65880, 1:1000), p-PI3K (Cat. #4228, 1:1000), PI3K
(Cat. #4249, 1:1000), p-Akt (Cat. #4060, 1:1000), Akt (Cat. #4691, 1:1000), mTOR (Cat. #2983,
1:1000), p-mTOR (Cat. #5536, 1:1000), Smad1 (Cat. #6944, 1:1000), p-Smad1/Smad5/Smad9
(Cat. #13820, 1:1000), Bip (Cat. #3177, 1:1000) and GAPDH (Cat. #51332, 1:5000). Secondary
antibodies were as follows: anti-rabbit antibody (Proteintech, SA00001-2, 1:5000, Wuhan,
China) and anti-mouse antibody (Proteintech, SA00001-1, 1:5000). Pre-stained protein
molecular weight marker (Thermo Scientific, 26616) was used for protein size calculation.
Each experiment was performed in triplicate and the most representative images were
selected. The relative band intensity was assessed by densitometric analysis of digitalized
autographic images using ImageJ software. To normalize sample variation, expression of
GAPDH was determined as the internal control.

2.6. Invasion Assay

Cells (1 × 105) were plated in serum-free media in the 24-well “Corning Transwell
plate” that was coated with Matrigel (Corning Inc., 354480, NY, USA) for invasion exper-
iments. The lower chamber was filled with DMEM containing 10% FBS. Movements of
SW480 and HCT116 cells were measured with five random visual fields quantified by
microscopy after a 36 h incubation followed by staining with 0.1% crystal violet. Invasive
capacity of cells was assessed with ImageJ software.

2.7. Wound Healing Assay

Cells were inoculated into 6-well plates after centrifugation and digestion with 0.25%
trypsin. When the cell density reached up to 90% or more, 3 vertical lines were scratched
in each well with a 10 µL pipette tip and the floating cells were gently washed away
with 1× PBS. Complete medium was added, and a photo was taken of the scratches at
0 h. Three different fields of view were selected for each well for photography. After
photography, the medium was changed to a serum-free medium. The healing of the wound
was photographed at the same location at the corresponding time of 24 h, 48 h and 72 h
after incubation. The experiment was repeated 3 times. To observe the healing effect of
drugs on the cell wound, the corresponding drugs (Tunicamycin 0.5 µg/mL, Sigma, T7765;
GSK621 30 µM, MCE, HY-100548; CeapinA7 16 µM, Sigma, 2323027-38-7) were added
into the serum-free medium. Afterwards, the wound healing was observed under the
microscope at 0 h, 24 h, 48 h and 72 h and analyzed using ImageJ software.

2.8. Animal Experiments

Animal experimental methods were approved by the Ethical Committee of Sun Yat-
sen University (Institutional Animal Care and Use KY-2021-096-02). Six-week-old nude
mice were purchased from Zhejiang Vital River Laboratory Animal Technology Co., Ltd.
(Hangzhou, China). Mice were kept in specific pathogen-free conditions: 20–24 ◦C, 12/12 h
of dark/light cycle, 60± 5% humidity and plastic cage (four mice/cage). HCT116 cells were
stably transduced with a lentiviral overexpression vector encoding luciferase according
to the manufacturer’s protocol (Shanghai Genechem Co., Ltd., Shanghai, China). Here,
HCT116 pLV-GREM1-luc and HCT116 pLV-luc cells (2 × 106) were intravenously injected
via mouse tails. GSK621 (30 mg/kg) and CeapinA7 (470 µg/kg) were injected intraperi-
toneally into the mice once daily, respectively, until day 12. Lung tumor colonization was
observed by bioluminescence imaging on the 5th day and 12th day.

2.9. Immunohistochemistry

Informed consent was obtained for all specimens collected. The experimental protocol
of this study was approved by the Ethics Committee of the Seventh Affiliated Hospital, Sun
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Yat-sen University. This study abided by the Declaration of Helsinki principles. Immuno-
histochemical staining for GREM1 (1:100 dilution, Biorbyt, orb10741, Cambridge, UK) was
performed on formalin-fixed, paraffin-embedded samples from 55 patients with clinical
stage IV CRC. After dewaxing, hydration and antigen repair, the rest of the experimental
procedures were performed according to the instructions of the SP Immunohistochemistry
Kit (ZSBIO, PV9000, Beijing, China). Finally, after DAB staining, hematoxylin re-staining
and neutral resin sealing, the sections were observed under the microscope for the degree
of staining.

2.10. Statistical Analysis

All experiments were performed in triplicate. GraphPad Prism 8.0 was used for
statistical analysis. Student’s t-test was used to compare the differences between two
groups. Statistical differences of multiple groups were determined by one-way analysis
of variance (ANOVA) followed by Tukey’s post hoc tests. The mean ± standard error of
the mean (SEM) were used to express the data. A p-value of less than 0.05 was considered
statistically significant. *, p < 0.05.

3. Results
3.1. The GREM1 Level Is Associated with Poor Prognosis of CRC

To investigate the clinical relevance of GREM1 in CRC, we first stained patient speci-
mens to determine GREM1 expression via IHC. Compared with normal tissues, GREM1
was significantly upregulated in tumor tissues (Figure 1A). Moreover, RNA-seq of the
CRC dataset in the Human Protein ATLAS (https://www.proteinatlas.org/ accessed on
30 April 2022) showed that GREM1 overexpression was significantly associated with poor
overall survival (OS). The Kaplan–Meier plots were generated as per the best cutoff value
of 5.31, suggesting that a level of GREM1 expression (FPKM) lower than 5.31 was defined
as “Low”, otherwise as “High”(p = 0.046; Figure 1B). Thus, by distinguishing high vs. low
expression of GREM1, we found that the corresponding survival curves between the two
groups were separated significantly. These findings suggest that GREM1 may be associated
with human CRC progression.
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Figure 1. GREM1 expression is correlated with poor survival in CRC patients. (A) Representative
images of GREM1 in para-carcinoma and carcinoma tissues of patients with stage IV CRC. Scale
bar, 250 µm. (B) Kaplan–Meier survival analysis of 597 colon cancer patients stratified by GREM1
expression levels. Kaplan–Meier survival analysis and GREM1 mRNA expression according to FPKM
value 5.31 as a cutoff value in the whole cohort. p = 0.046 by log-rank (Mantel–Cox) test.
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3.2. GREM1 Promotes Invasion, Migration and ER Stress of CRC Cells

To evaluate the functional role of GREM1 in CRC cells, we stably overexpressed or
knocked down GREM1 in human CRC SW480 and HCT116 cells using a lentivirus-based
system including a GREM1 gene vector and its control (pLV-GREM1 vs. pLV), and the
shRNA targeting GREM1 and its control (shGREM1 vs. shNC). The protein expression
levels of GREM1 were detected by Western blotting that showed that GREM1 protein
expression levels were substantially elevated in HCT116 and SW480 cells expressing pLV-
GREM1 compared to GREM1 negative control, whereas GREM1 protein expression levels
were significantly reduced in shRNA-expressing lentivirus-infected cells (Figure 2A).
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Figure 2. GREM1 expression promotes cell invasion and migration of HCT116 and SW480 cells
and ER stress. (A) Overexpression or underexpression of GREM1 was detected by Western blot-
ting. (B) GSEA was performed using our RNA-seq dataset to identify sets of hallmark genes that
were positively associated with GREM1 expression. Enrichment plots showed EMT (NES = 2.0395,
NP = 0.0000) and UPR (NES = 1.7594, NP = 0.0000). (C) The heatmap showed signature genes in-
volving EMT and UPR. (D,E) Wound healing test and Boyden chambers with Matrigel revealed that
GREM1 overexpression promoted HCT116 and SW480 cell migration and invasion. (F–H) Cells were
analyzed after harvesting, for protein and mRNA expression. qRT-PCR and Western blotting analysis
showed expression of mRNA and proteins involved in EMT. (I–K) qRT-PCR and Western blotting
results showed the expression of proteins and mRNA that were involved in UPR and ER stress.

Firstly, to identify candidate genes that are sensitive to GREM1 overexpression, we
performed RNA-seq and the subsequent GSEA analysis revealed remarkable cellular
phenotypes upon GREM1 overexpression, such as enriched gene sets associated with EMT
activation and unfolded protein response (UPR) (NES = 2.0395, NP = 0.0000; NES = 1.7594,
NP = 0.0000, respectively) (Figure 2B). In parallel, the pertinent heatmap derived from the
RNA-seq showed that expression of EMT-inducing genes, such as VEGFA [37], CXCL1 [38]
and JUN [39], were significantly increased, whereas a significant decrease was found in
EMT suppressor genes, such as MCM7 [40], FBLN1 [41,42] and DPYSL3 [43]. Interestingly,
the majority of UPR downstream genes were significantly upregulated, except for the
PERK/ATF4 arm of UPR signaling-associated genes, such as EIF2S1 (EIF-2a) and EIF2S2
(EIF-2b) [44] that were significantly downregulated in HCT116 pLV-GREM1 vs. in HCT116
pLV cells (Figure 2C).
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Further, to investigate the changes in migration and invasion capacity upon GREM1
overexpression or underexpression, we performed wound healing assays which showed
that GREM1-overexpressing CRC cells migrated markedly faster than control cells, in
keeping with the results of the invasion assays. Meanwhile, knockdown of GREM1 by
GREM1-specific shRNA reduced the invasion and migration of HCT116 and SW480 cells
(Figure 2D,E). All these results indicated that GREM1 promoted migration and invasion of
CRC cells. We postulated that these cellular phenotypes might be attributed to EMT and ER
stress presented in our aforementioned transriptomic signature. Consistently, expression of
canonical EMT factors ZEB1, Vimentin, Snail and ZO-1 were significantly upregulated, and
expression of E-cadherin was markedly downregulated at both the mRNA (Figure 2F,G)
and the protein levels (Figure 2H) in GREM1-overexpressing CRC cells. Previous studies
have shown that EMT in a variety of tumor cells is inextricably linked to the activation of
ERS, which could be seen in our study that the canonical ER stress chaperone and sensors
Bip, ATF6 and IRE1a were upregulated whilst ATF4 was downregulated at the mRNA and
protein expression levels in GREM1-overexpressing HCT116 and SW480 cells (Figure 2I–K).
Taken together, these results indicate that GREM1 promotes EMT and regulates ER stress
signaling in CRC cells.

3.3. ER Stress Activator Tunicamycin Inhibits Invasion and Migration of CRC

To further determine the sequential role of ER stress and EMT in CRC progression, we
assessed the influence of ER stress on the motility of SW480 and HCT116 cells that were
treated with a general ER stresser, tunicamycin (TM), and subjected to the wound healing
assay. We found that the treatment group showed slower migration, which filled only
half of the wound region 48 h after injury (Figure 3A). In keeping, qRT-PCR (Figure 3B,C)
and Western blotting (Figure 3D) confirmed that TM treatment reduced the expression
of ZEB1 and Vimentin and increased the expression of E-cadherin. As expected, TM
treatment significantly increased the expression of ATF4 and Bip in these cells, although
ATF6 expression was not affected to a substantial extent (Figure 3D). These results suggest
that activated ATF4 signaling may be involved in inhibition of CRC motility and EMT.
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Figure 3. Tunicamycin inhibits epithelial-to-mesenchymal transition in human CRC cell lines.
SW480 and HCT116 cells were exposed to tunicamycin (0.1 µg/mL, 0.5 µg/mL). (A) Wound healing
test revealed that tunicamycin inhibited HCT116 and SW480 cell migration. (B–D) SW480 and
HCT116 cells were exposed to tunicamycin (0.1 µg/mL, 0.5 µg/mL) for 6 h, and then analyzed for
protein and mRNA expression. qRT-PCR and Western blotting results showed the expression of
proteins and mRNA involved in EMT.
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3.4. GREM1 Promotes CRC Invasion and Migration through Activating ATF6 but Inhibiting the
ATF4 Signaling Pathways

To further delineate the explicit arms of the UPR signaling that might be regulated by
GREM1, we used our RNA-seq data to perform GSEA that presented negative regulation
of PERK (NES = 1.6542, NP = 0.0000) but positive regulation of ATF6 signaling pathways
(NES = 1.3553, NP = 0.0000) (Figure 4A). GSK621, a known AMPK activator, also induces
PERK phosphorylation and activates the downstream eIF2α/ATF4 signaling pathway [45].
CeapinA7 is a selective blocker of ATF6α signaling in response to ER stress [46,47]. To gain
insight into the underlying molecular mechanisms, we used the small molecules GSK621
and CeapinA7 to modulate the activity of these UPR pathways. GSK621 and CeapinA7
caused a significant reduction in cell invasion and migration detected by Transwell assay
(Figure 4B) and wound healing assay (Figure 4C,D). Consistent with this result, the EMT-
related genes (ZEB1, ZO-1 and Snail) were significantly downregulated, and E-cadherin
was significantly upregulated in the GSK621 and CeapinA7 treatment group at both the
mRNA (Figure 5A–D) and protein levels (Figure 5E,F), respectively, suggesting an EMT
suppression role of these two compounds. These results collectively consolidate that ATF6
and ATF4 of the UPR pathways mediate the GREM1-induced CRC invasion and migration
in vitro.
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collections that have positive correlations with GREM1 expression. The negative regulating PERK-
mediated UPR (NES = 1.6542 NP = 0.0000) and ATF6-mediated UPR signaling pathway (NES = 1.3553,
NP = 0.0000) with GREM1 overexpression in HCT116 cells. (B) HCT116 pLV-GREM1 and SW480 pLV-
GREM1 cells were seeded into Matrigel-coated inserts with medium containing CeapinA7 (16 µM) or
GSK621 (30 µM) and incubated for 36 h, followed by the invasion assay. (C,D) Wound healing test
revealed that CeapinA7 and GSK621 inhibited cell migration.
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Figure 5. CeapinA7 and GSK621 reverse EMT in GREM1-overexpressing CRC cell lines. HCT116
pLV-GREM1 and SW480 pLV-GREM1 cells were exposed to CeapinA7 (6 µM,16 µM) or GSK621
(30 µM) for 24 h, respectively. After harvesting, the cells were analyzed for protein and mRNA ex-
pression. (A–D) qRT-PCR analysis revealed the expression of mRNA involved in EMT. (E,F) Western
blotting analysis revealed the expression of proteins involved in the EMT.

3.5. GREM1 Modulates ATF4 and ATF6 via Inhibiting BMP and Activating
VEGF-VEGFR2-PI3K-AKT Signaling Pathways

GREM1 is known as an antagonist of BMP2 to inhibit TGFβ/BMP signaling [48]. In
contrast, activation of the BMP2 signaling pathway promotes the expression of ATF4 [49].
Hence, we postulated that overexpression of GREM1 in CRC cell lines would inhibit ATF4
expression by canonically suppressing the BMP2 signaling pathway. On the other hand,
GREM1 was reported to non-canonically bind VEGFR2 and activate various intracellular
effectors downstream [50]. The PI3K-AKT-mTOR axis, a classical downstream pathway
of VEGF [51], could promote ATF6 expression [52]. We thus hypothesized that GREM1
might activate VEGFR2 and its downstream PI3K-AKT-mTOR axis to elevate ATF6 expres-
sion. In support, GSEA of our in-house RNA-seq dataset revealed the enrichment of the
PI3K/AKT/mTOR, VEGF-VEGFR2 and TGFβ signaling pathways in HCT116 pLV-GREM1
cells (Figure 6A,B). In keeping, the heatmaps derived from the RNA-seq displayed that
genes associated with VEGF/VEGFR2 and PI3K/AKT/mTOR signaling pathways, such as
MAP2K1 (MEK1), MAPK14 (p38), CDC42, [51,53], FOXO4 [54], LDLR [55] and HPRT1 [56],
were upregulated in response to GREM1 overexpression, whilst genes of the TGFβ sig-
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naling pathway were suppressed, such as ID1, ID2 and TGFB1 [57] (Figure 6C). Next, to
validate these findings, we assessed the changes in protein expression levels of the key
downstream molecules involved in these pathways by overexpression or knockdown of
GREM1 in CRC cells. The results showed that overexpression of GREM1 promoted the
activation of the PI3K/AKT/mTOR axis, downstream of the VEGF-VEGFR2 pathway, but
impeded BMP-Smad1/5/9 signaling (Figure 6D,E). On the contrary, knockdown of GREM1
resulted in declined expression of phosphorylated PI3K, phosphorylated AKT and phos-
phorylated mTOR but in elevated expression of phosphorylated Smad1/5/9 (Figure 6D,E).
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Figure 6. GREM1 negatively regulates ATF4 and but positively regulates ATF6 via suppressing
BMP and activating the VEGF-PI3K-AKT signaling pathways. (A,B) GSEA of RNA-seq data showed
enriched gene sets associated with VEGF/VEGFR2, PI3K/Akt/mTOR and TGFβ signaling pathways
annotated in the KEGG by comparing GREM1 overexpression versus negative control CRC cells.
(C) Heatmap showing gene expression differences in the pertinent signaling pathways. (D,E) Western
blotting analysis revealed the expression of proteins involved in the pertinent signaling pathways.



Cells 2022, 11, 2136 11 of 17

3.6. Effects of GREM1, GSK621 and CeapinA7 on CRC Metastasis In Vivo

To further evaluate our findings in vivo, luciferase-encoding lentiviral overexpression
vectors (luc) were successfully transduced into HCT116 cells. HCT116-luc cells (pLV-luc
or pLV-GREM1-luc) were injected into the tail veins of nude mice and tumor progression
was then monitored with bioluminescence imaging. GREM1 overexpression significantly
increased tumor metastasis to the lung. By contrast, treatments by GSK621 which could
activate ATF4 or by CeapinA7, an ATF6 inhibitor, significantly suppressed tumor metastasis
rates (Figure 7A–C). These results further corroborate that GREM1 could promote CRC
metastasis through activating the ATF6 pathway but inhibiting the ATF4 pathway (Figure 8).
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Figure 7. Anti-tumor activity of CeapinA7 and GSK621 in vivo. (A) Animal experimental grouping
and plans. (B) After the injection of different cells (2 × 10 6 cells/nude mouse) via tail vein of nude
mice, the distribution of CRC cells in these mice was detected via a bioluminescence imaging (BLI)
system. The scale to the right of the BLI images describes the color map for the luminescent signal.
(C) Fluorescence intensity of lung metastasis areas in different groups of the CRC cells. n = 21.
* p < 0.05, ** p < 0.01.
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4. Discussion

GREM1, a BMP antagonist, is thought to play a role in organogenesis, body pat-
terning and tissue differentiation [48,58,59]. Canonically, Gremlin1 directly binds and
inhibits BMP2 and BMP4 [48]. Furthermore, GREM1 also participates in the EMT through
regulating the STAT3-MMP3 signaling, in addition to the BMP signaling pathway [60].
Non-canonically, previous studies have demonstrated that GREM1 binds to VEGFR2 and
promotes angiogenesis [50]. The effect of GREM1 on the prognosis of malignant tumors
remains elusive. Some studies have linked high GREM1 expression to poor prognosis in
several malignancies, including ER-negative breast cancer [16], cervical cancer [61], ex-
trahepatic cholangiocarcinoma [62], basal cell carcinoma [63] and renal cell carcinoma [64].
In CRC, high GREM1 protein expression has been associated with low tumor stage and
extended survival [20]. However, our study showed that high GREM1 expression was
significantly correlated with CRC progression.

GREM1 was found to be overexpressed in an array of common neoplasms of cervix [65],
ovary [66], lung [67], stomach [68], breast [15] and kidney [64], and to interact with YWHAH
protein to exert a pro-carcinogenic effect [69]. GREM1 was also overexpressed in malignant
mesothelioma [70], pancreatic neuroendocrine tumors [71] and hepatocellular carcinoma
associated with hepatitis C infection [72]. It was reported that high GREM1 expression
in gliomas and cervical cancers played an important role in maintaining the stemness of
cancer stem cells [65,73]. In our study, we found that GREM1 was highly expressed in
stage IV CRC tissues and was strongly associated with poor prognosis. We also found
that high GREM1 expression promoted EMT in CRC cells. There are sporadic reports
of detailed insights into the molecular mechanisms of GREM1-mediated tumor-igenesis.
GREM1 is associated with AKT/mTOR signaling in lung malignant mesothelioma [18].
GREM1 in breast cancer cells promote ERK activation [74]. GREM1 in Caco2 colon cancer
cells inhibits differentiation by suppressing p21/CKDN1A expression [75]. Several reports
have identified that GREM1 amplifies TGFβ1 signaling to drive EMT in CRC [76] and
esophageal squamous cell carcinoma [77]. Our study illustrated that overexpression of
GREM1 in CRC cells modulated ER stress, through which GREM1 promoted EMT via
activation of the ATF6 and inhibition of the ATF4 pathways.

Protein handling, modification and folding in the endoplasmic reticulum (ER) are
tightly regulated processes that determine cell function, fate and survival [30]. Studies have
shown that the signaling molecules of ER stress affected tumor metastasis by reg-ulating
EMT-transcription factors [78–80]. As Tunicamycin (TM) is widely used as an ER stress in-
ducer in experimental settings due to its inhibitory effect on N-linked glycosylation [81,82],
we used TM to treat CRC cells to observe the effect of ER stress on EMT. The UPR induced
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by ER stress is one of the most important mechanisms regulating cellular adaptation to
an adverse microenvironment [83]. TM treatment in CRC cells profoundly suppressed
the EMT, which is largely due to activation of the PERK/ATF4 arm of UPR. Since we
did not observe a drastic change of ATF6 thereafter, it promoted us to investigate further
how these two signature pathways orchestrate the EMT. We used small molecules to mod-
ulate the activity of these UPR pathways, namely GSK621 to induce PERK-eIF2α-ATF4
pathway [84] and CeapinA7 to block the activation of ATF6α [85]. By those approaches,
our study demonstrated that GREM1 could regulate ER stress and EMT by activating
ATF6 and inhibiting ATF4 signaling pathways. To further explore the intrinsic molecular
mechanism underlying GREM1 regulation of ATF4 and ATF6 signaling, we conducted
transcriptomic analysis and integrated it with previous studies. We observed that GREM1
inhibited TGFβ/BMP signaling, which was possibly through antagonizing BMP2 [48]
and thereby suppressing ATF4 expression [49]. It was reported that GREM1 integrates
with VEGFR2 to activate the PI3K/AKT/mTOR signaling pathway thereby promoting
ATF6 expression [51,52]. We found that GREM1 activated PI3K/AKT/mTOR, a classical
downstream of the VEGF-VEGFR2 signaling pathway that was likely to promote ATF6
expression. Taken together, these results implied that GREM1 induced EMT in CRC cells
by inhibiting ATF4 expression and promoting ATF6 expression through the regulation of
TGFβ/BMP and VEGF/VEGFR2, respectively. Detailed mechanisms as to how ATF6 and
ATF4 divergently regulate CRC cell metastasis are worth further investigation in the future.

In conclusion, our study demonstrated that GREM1 was associated with CRC pro-
gression, and it may play an important pro-metastatic role. This could be mediated, at least
in part, by the divergent regulation of the ATF6 and ATF4 of the UPR pathways through
activation of PI3K/AKT/mTOR and antagonization of BMP2 signaling pathways.
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Appendix A

This article contains supporting information. Table A1: Sequences of the primers
for qRT-PCR.

Table A1. Sequences of the primers for qRT-PCR.

Gene qRT-PCR forward Primer (5′-3′) qRT-PCR Reversed Primer (5′-3′)

GREM1 CTGCTGAAGGGAAAA AGAA GATGGATATGCAACGACACT
E-cadherin ATTTTTCCCTCGACACCCGAT TCCCAGGCGTAGACCAAGA

ZEB-1 CGAGTCAGATGCAGAAAATGAGCAA ACCCAGACTGCGTCACATGTCTT
ZO-1 AGGCGGATGGTGCTACAAGTGA AGAGGACCGTGTAATGGCAGACT
Snail TCGGAAGCCTAACTACAGCGA AGATGAGCATTGGCAGCGAG

Vimentin AGTCCACTGAGTACCGGAGAC CATTTCACGCATCTGGCGTTC
β-Catenin GAGTGCTGAAGGTGCTATCTGTCTG TTCTGAACAAGACGTTGACTTGGA

Hspa5 (BiP) GACGGGCAAAGATGTCAGGA GCCCGTTTGGCCTTTTCTAC
ATF4 ATGACCGAAATGAGCTTCCTG GCTGGAGAACCCATGAGGT
ATF6 AGCAGCACCCAAGACTCAAAC GCATAAGCGTTGGTACTGTCTGA
IRE1a AGTATGTGGAGCAGAAGGAC GTTGTGTGGCTTTAGGTCTC

GAPDH GATTTGGTCGTATTGGGCG TGGAAGATGGTGATGGGAT
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