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Abstract
The cyclic nucleotides cyclic adenosine-3′,5′-monophosphate (cAMP) and cyclic guanosine-3′,5′-monophosphate (cGMP)main-
tain physiological cardiac contractility and integrity. Cyclic nucleotide–hydrolysing phosphodiesterases (PDEs) are the prime
regulators of cAMP and cGMP signalling in the heart. During heart failure (HF), the expression and activity of multiple PDEs are
altered, which disrupt cyclic nucleotide levels and promote cardiac dysfunction. Given that the morbidity and mortality associ-
ated with HF are extremely high, novel therapies are urgently needed. Herein, the role of PDEs in HF pathophysiology and their
therapeutic potential is reviewed. Attention is given to PDEs 1–5, and other PDEs are briefly considered. After assessing the role
of each PDE in cardiac physiology, the evidence from pre-clinical models and patients that altered PDE signalling contributes to
the HF phenotype is examined. The potential of pharmacologically harnessing PDEs for therapeutic gain is considered.
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Abbreviations
[Ca2+]i, Intracellular concentration of calcium
A2R Adenosine A2 receptor
AC Adenylyl cyclase
AngII Angiotensin II
ANP Atrial natriuretic peptide
β-AR Beta-adrenergic receptor
BNP Brain natriuretic peptide
Ca2+ Calcium
CaM Calmodulin
CaMKII Calcium/calmodulin-dependent protein kinase II

cAMP
Cyclic adenosine-3′-5′-monophosphate

cGMP Cyclic guanosine-3′,5′-monophosphate
cMYBPC Cardiac myosin–binding protein C
CNP C-type natriuretic peptide

CO
Cardiac output

cTnI Cardiac troponin I
ECC Excitation-contraction coupling

EPAC Exchange protein activated by cAMP
ERK Extracellular signal–regulated kinase
GAF cGMP-stimulated PDE, Anabaena AC and Fhla

transcription factor
GC Guanylyl cyclase
GSK3β Glycogen synthase kinase 3 beta
HCN Hyperpolarisation-activated cyclic nucleotide
HF Heart failure
HFpEF Heart failure with preserved ejection fraction
HFrEF Heart failure with reduced ejection fraction
HT Hypertension
ICa,L L-type calcium current
ICER Inducible cAMP early repressor
IRI Ischaemia-reperfusion injury
ISO Isoprenaline
K+ Potassium
KM Michaelis constant
LTCC L-type calcium channel
LVH Left ventricular hypertrophy
MI Myocardial infarction
MRP Multidrug-resistant protein
mTORC1 Mammalian target of rapamycin complex 1
NA Noradrenaline
NFAT Nuclear factor of activated T cells
NO Nitric oxide
NOS Nitric oxide synthase
NP Natriuretic peptide
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PAH Pulmonary arterial hypertension
PAP Pulmonary artery pressure
PH Pulmonary hypertension
PDE Phosphodiesterase
PI3Kγ Phosphatidylinositol 3-kinase-gamma
PKA cAMP-dependent protein kinase
PKG cGMP-dependent protein kinase
PLB Phospholamban
PPARα Peroxisome proliferator–activated receptor alpha
RGS Regulator of G protein signalling
RVH Right ventricular hypertrophy
RyR2 Ryanodine receptor
SA Sinoatrial
SERCA Sarcoplasmic/endoplasmic reticulum calcium

ATPase
sGC Soluble guanylyl cyclase
SNS Sympathetic nervous system
SR Sarcoplasmic reticulum
TAC Transverse aortic constriction
TRPC Transient receptor potential cation channel
TSC2 Tuberin
UCR Upstream conserved region
Vmax Maximal catalytic activity
VSMC Vascular smooth muscle cell
WT Wild-type

Introduction

Cyclic adenosine-3′,5′-monophosphate (cAMP) and cyclic
guanosine-3′,5′-monophosphate (cGMP) are cyclic nucleo-
tides that serve as key second messengers within the heart.
As siblings, cAMP and cGMP concurrently preserve cardiac
physiology despite frequently signalling in a contrary fashion.
The cyclic nucleotide phosphodiesterases (PDEs) facilitate
cyclic nucleotide degradation by catalysing the hydrolysis of
the phosphodiester bond of cAMP and/or cGMP. Reducing,
both spatially and temporally, the intracellular concentration
of cyclic nucleotides, PDEs compartmentalise cAMP and
cGMP signalling and are vital for mediating crosstalk between
the two pathways. The expression and/or activity of multiple
PDEs is altered during heart failure (HF). HF affects approx-
imately 37 million people worldwide and is typified by a
chronic deterioration of cardiac function during which the
heart is unable to sustain a cardiac output (CO) sufficient for
the maintenance of tissue homeostasis [1, 2]. Given the influ-
ence of cAMP and cGMP on cardiac contractility, hypertro-
phy, fibrosis and apoptosis, variations in PDE and cyclic nu-
cleotide levels contribute to the cardiac dysfunction character-
istic of HF. Understanding the role of PDEs in HF pathophys-
iology may identify novel targets for pharmacological manip-
ulation and thus tackle the existing shortfall of effective

therapies. Considering that nearly half of all HF patients die
within 5 years of diagnosis [3, 4], this is certainly a pressing
aim.

Cyclic Nucleotides in Cardiac Physiology

Cardiac cAMP synthesis is catalysed by adenylyl cyclases
(ACs) principally in response to beta 1- and beta 2-
adrenergic receptor (β1/2-AR) stimulation by noradrenaline
(NA) [5]. Within the heart, cAMP signals primarily by way
of cAMP-dependent protein kinase (PKA) and exchange pro-
tein activated by cAMP (EPAC, a guanine nucleotide ex-
change factor that binds cAMP) [6]. PKA provokes positive
chronotropic (i.e. heart rate), inotropic (i.e. contractile force),
lusitropic (i.e. diastolic relaxant) and dromotropic (i.e. atrio-
ventricular node depolarisation) cardiac responses by phos-
phorylating a number of cardiomyocyte-localised proteins.
L-type calcium (Ca2+) channel (LTCC) phosphorylation raises
the L-type Ca2+ current (ICa,L) [7], and phosphorylation of the
sarcoplasmic reticulum (SR) ryanodine receptor (RyR2) [8]
increases further the intracellular concentration of Ca2+

([Ca2+]i; although controversy persists regarding the role of
RyR2 phosphorylation in cardiac physiology and HF patho-
physiology) [9, 10]. Ca2+ reuptake is simultaneously promot-
ed via phospholamban (PLB) phosphorylation and
sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA)
activation [11]. Additionally, PKA regulates several cardiac
excitation-contraction–coupling (ECC) proteins including
cardiac troponin I (cTnI) [12], titin [13] and cardiac myosin–
binding protein C (cMYBPC) (Fig. 1) [14].

Production of cGMP is initiated by guanylyl cyclases
(GCs), which are sensitive to either nitric oxide (NO) or na-
triuretic peptides (NPs). NO activates the largely cytoplasmic
or soluble form of GC, denoted GC-1 and GC-2 (formerly
termed sGC) [15]. Conversely, the NPs stimulate the trans-
membrane or particulate GC, with atrial and brain NPs
(ANP and BNP, respectively) activating GC-A, whilst C-
type NP (CNP) binds GC-B [15]. cGMP-dependent protein
kinase (PKG) is the predominant effector of cGMP signalling
in the heart. PKG-facilitated phosphorylation modulates PLB
[16], as well as myofilament components, for instance cTnI
[17], troponin-t [18], titin [19] and cMYBPC [20]. PKG in-
hibits the transient receptor potential cation channel 6
(TRPC6) to counteract the calcineurin-nuclear factor of acti-
vated T cells (NFAT) pathway [21, 22] and activates the reg-
ulator of G protein signalling subtype 4 (RGS4) to offset Gi/q

activation [23]. Hence, PKG is anti-adrenergic. PKG also
phosphorylates tuberin (TSC2), restraining mammalian target
of rapamycin complex 1 (mTORC1) activity [24]. In this way,
PKG regulates basal cardiac contractility, lowering inotropy
and raising lusitropy, and precludes cardiac hypertrophy, fi-
brosis and apoptosis.
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Cyclic Nucleotides in Heart Failure
Pathophysiology

Heart failure develops from an initial insult to the myocardi-
um. Cardiomyocyte death following a myocardial infarction
(MI) [25], pressure overload during hypertension (HT) [26]
and doxorubicin-induced cardiotoxicity [27] are among the
most common causes of myocardial damage. The sympathetic
nervous system (SNS) responds by stimulating chronotropy,
inotropy and lusitropy in a cAMP/PKA-dependent manner.
Initially, this conserves cardiac function, sustaining a CO
and blood pressure necessary to uphold organ perfusion.
However, continual cAMP/PKA signalling elicits maladap-
tive remodelling, comprising left ventricular hypertrophy
(LVH), cardiac fibrosis and cardiomyocyte apoptosis
[28–31]. In contrast, cGMP/PKG mitigates the injurious ef-
fects of repeated cardiac sympathetic activation, precluding

the hypertrophy and fibrosis engendered by NA and angioten-
sin II (AngII, a central component of the renin-angiotensin-
aldosterone system, which is also upregulated in HF) [32, 33].
cGMP also limits adverse remodelling in the wake of
ischaemia-reperfusion injury (IRI) [34–36] and guards against
arrhythmia induction in the wake of infarction [37]. NO bio-
availability and NP signalling are impaired in HF patients,
despite greater circulating NP concentrations, which heightens
hospitalisation and mortality [38–42], whereas greater plasma
concentrations of NA are associated with increased mortality
risk in patients with HF [43].

Cardiac Cyclic Nucleotide Phosphodiesterases

The PDE superfamily is made up of eleven closely re-
lated isozymes (PDE1–11) that are categorised
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Fig. 1 Cyclic nucleotide signalling within cardiomyocytes. Cyclic
adenosine-3′,5′-monophosphate (cAMP) is synthesised from adenosine-
5′-triphosphate (ATP) by the action of adenylyl cyclases (ACs) in re-
sponse to noradrenaline (NA). Cyclic guanosine-3′,5′-monophosphate
(cGMP) is synthesised from guanosine-5′-triphosphate (GTP) by the ac-
tion of guanylyl cyclases (GCs). GC-1/2 is stimulated by nitric oxide
(NO) and is primarily located within the cytosol. Transmembrane GC-
A is activated by atrial natriuretic peptide (ANP) and brain natriuretic
peptide (BNP), and GC-B is triggered by C-type natriuretic peptide
(CNP). cAMP and cGMP act predominantly via activation of protein
kinase A (PKA) and protein kinase G (PKG), respectfully. cAMP also
binds exchange protein activated by cAMP (EPAC). Both PKA and PKG
phosphorylate multiple cardiomyocyte proteins to effect changes in

chronotropy, inotropy and lusitropy, as well as cardiomyocyte hypertro-
phy and apoptosis. Arrows indicate stimulation. Blunt lines indicate in-
hibition. Abbreviations: [Ca2+]i, intracellular concentration of calcium;β-
AR, beta-adrenergic receptor; Ca2+, calcium; CaM, calmodulin;
cMYBPC, cardiac myosin–binding protein C; cTnI, cardiac troponin I;
GPCR, G protein–coupled receptor; LTCC, L-type calcium channel;
mTORC1, mammalian target of rapamycin complex 1; NFAT, nuclear
factor of activated T cells; NP, natriuretic peptide; PLB, phospholamban;
RGS, regulator of G protein signalling; RyR2, ryanodine receptor;
SERCA, sarcoplasmic/endoplasmic reticulum calcium ATPase; SR, sar-
coplasmic reticulum; TRPC, transient receptor potential cation channel;
TSC2, tuberin
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according to the homology of the amino acid sequence
wi thin thei r C-terminal cata lyt ic domains and
distinguished by variations in their N-terminal regulato-
ry regions [44]. Each isozyme is further classified into
subtypes (gene products), of which multiple isoforms
(splice variants) may exist. All PDEs catalyse the hy-
drolysis and inactivation of the 3′-cyclic phosphodiester
bond of cAMP and/or cGMP. Within the heart, PDEs 1,
2, 3, 4, 5, 8 and 9 are expressed. Because PDEs are the
prime regulators of cyclic nucleotides, they are respon-
sible for integrating the often disparate signalling cas-
cades of cAMP and cGMP in the heart (Fig. 2).
Moreover, by controlling when and where hydrolysis
occurs, PDEs confine cAMP and cGMP to separate sub-
cellular compartments, compartmentalising individual
cardiac cyclic nucleotide pools [45]. In view of this, it
is not surprising that changes in PDE expression and/or
activity are liable, somewhat, for the alterations in
cAMP and cGMP during LVH and HF.

Phosphodiesterase 1

Overview

Members of the PDE1 isozyme family are Ca2+/calmodulin
(CaM)-dependent enzymes. Each subtype (PDE1A, PDE1B,
PDE1C) contains at their N-termini two CaM binding do-
mains, two phosphorylation sites and an inhibitory region that
maintains the protein in an inactive configuration when the
[Ca2+]i is low (Fig. 3) [46]. Phosphorylation of PDE1 by either
PKA (for PDE1A and PDE1C) [47, 48] or Ca2+/CaM-depen-
dent protein kinase II (CaMKII; for PDE1B) [49] reduces the
affinity of each subtype for Ca2+/CaM, thereby limiting enzy-
matic activity. Conversely, the binding of CaM to its respec-
tive sites elevates hydrolytic activity by preventing PKA/
CaMKII-mediated phosphorylation, as well as effecting a con-
formational change that raises the maximal catalytic activity
(Vmax) [50, 51]. PDE1 functions as a dual esterase, hydrolys-
ing cAMP and cGMP. Whilst PDE1C hydrolyses each cyclic
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Fig. 2 Phosphodiesterase regulation of cyclic nucleotides within
cardiomyocytes. Phosphodiesterases (PDEs) catalyse the hydrolysis and
inactivation of cyclic adenosine-3′,5′-monophosphate (cAMP) and cyclic
guanosine-3 ′ ,5 ′-monophosphate (cGMP) forming adenosine
monophosphate (AMP) and guanosine monophosphate (GMP), respec-
tively. PDEs 1, 2, 3, 4, 5 and 9 are the principal regulators of cAMP and
cGMP signalling in cardiomyocytes. PDE1 is calcium/calmodulin (Ca2+/
CaM)-dependent and hydrolyses cAMP and cGMP. PDE2 is stimulated
by cGMP binding to its GAF-B domain. PDE2 degrades cAMP and
cGMP, and there is evidence that PDE2 hydrolyses both the natriuretic

peptide (NP) and the nitric oxide (NO) pools of cGMP. PDE3 is a dual
esterase but is inhibited by cGMP, and PDE4 is cAMP-selective. PDE5 is
stimulated by cGMP binding to its GAF-A domain and largely hydroly-
ses NO/cGMP. PDE9 metabolises NP/cGMP. Abbreviations: AC,
adenylyl cyclase; ANP, atrial natriuretic peptide; ATP, adenosine-5′-tri-
phosphate; β-AR, beta-adrenergic receptor; BNP, brain natriuretic pep-
tide; CNP, C-type natriuretic peptide; GAF, cGMP-stimulated PDE,
Anabaena AC and Fhla transcription factor; GC, guanylyl cyclase;
GTP, guanosine-5′-triphosphate; NA, noradrenaline
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nucleotide with comparably high affinity (low Michaelis con-
stant, KM), PDE1A and PDE1B display a lower affinity for
cAMP, hence favouring cGMP hydrolysis [52, 53]. (Readers
interested in exploring the enzymology of PDEs further are
directed to the following excellent reviews) [44, 54].

Cardiac Physiology

Both PDE1A and PDE1C messenger RNAs (mRNAs) are
present in the human heart [53], with PDE1C serving as the
principal subtype [55]. Although the majority of cardiac cyclic
nucleotide hydrolysis is mediated by PDE1 in humans [56,
57], its roles in cardiac physiology are largely unknown.
PDE1C is transcriptionally regulated by peroxisome
proliferator–activated receptor alpha (PPARα) [58]. In
cardiomyocytes, PDE1C shows a predominantly cytosolic
distribution, localising to the M- and Z-lines of the sarcomere,
and is present in microsomal fractions [55]. PDE1A protein is
abundant in rabbit sinoatrial (SA) node cells where it is pur-
ported to moderate pacemaker activity [59], but whether it
functions in an analogous capacity in human hearts is current-
ly unknown. Similarly, whilst PDE1A appears to regulate cell
death in vascular smooth muscle cells (VSMCs) [60], a cor-
responding cardiac-specific role is not established.

Heart Failure Pathophysiology

Phosphodiesterase 1C mRNA and protein are raised in failing
mouse and human hearts [61]. Likewise, PDE1A protein ex-
pression is increased by AngII and the β-AR agonist

isoprenaline (ISO) in isolated cardiomyocytes, as well as fol-
lowing pressure overload (i.e. transverse aortic constriction,
TAC) in vivo [62]. cAMP/PKA signalling is maintained in
PDE1C−/− cardiomyocytes, which moderates AngII- and
ISO-stimulated hypertrophy and apoptosis, and PDE1C−/−

mice exhibit an improved phenotype with TAC relative to
wild-type (WT) animals [61]. AngII promotes PDE1A levels
in isolated rat cardiac myofibroblasts, and PDE1 inhibition
(PDE1i) ameliorates the cardiac fibrosis associated with
ISO-induced HF via cAMP and cGMP [63]. Although
PDE1C is absent from cardiac fibroblasts, PDE1C deletion
is anti-fibrotic, which may be a consequence of either dimin-
ished cardiomyocyte apoptosis or enhanced protective signal-
ling between the two cell types [61]. Although this remains
unclear, multidrug-resistant proteins (MRPs) have been impli-
cated in the efflux of cAMP and cGMP [64, 65]. This could
account for intercellular cyclic nucleotide signalling, and
MRPs constitute prospective drug targets in HF. The hyper-
trophic and fibrotic actions of AngII are blunted by the PDE1
inhibitor vinpocetine in vitro and in vivo [66], and PDE1i
improves cardiac function in failing mouse hearts through
greater proteasomal activity [67]. Indeed, the pharmacological
and genetic ablation of PDE1 was recently shown to enhance
cAMP signalling through the adenosine A2 receptor (A2R),
which is protective in multiple models of HF (including in
larger mammals, e.g. rabbits and dogs), enhancing inotropy
and vasodilation, as well as limiting apoptosis [68, 69]. It has
been proposed that targeting the A2R, rather than the β-AR,
pool of cAMP will circumvent the unfavourable actions of
positive inotropic agents in HF (see below). However, this

N- -CCatalytic Domain

Catalytic Domain

Catalytic Domain

Catalytic Domain

Catalytic Domain

GAF-A GAF-B

GAF-A GAF-B

cGMP

cGMP

CaM CaMI

P P

N-

N-

N-

N-

P P P

UCR1

P

UCR2

P

-C

-C

-C

-C

PDE1

cAMP/cGMP

PDE2

cAMP/cGMP

PDE3

cAMP/cGMP

PDE4

cAMP

PDE5

cGMP

P

Fig. 3 Structures of
phosphodiesterases 1–5.
Phosphodiesterase (PDE) 1 con-
tains two calmodulin (CaM)
binding domains, two phosphor-
ylation sites and an inhibitory (I)
region. PDE2 and PDE5 possess
two cGMP-stimulated PDE,
Anabaena AC and Fhla tran-
scription factor (GAF) domains.
Binding of cyclic guanosine-3′,5′-
monophosphate (cGMP) to GAF-
B and GAF-A stimulates the hy-
drolytic activity of PDE2 and
PDE5, respectively. PDE3 can be
phosphorylated at multiple re-
gions, and PDE4 contains one
phosphorylation site within its
first upstream conserved regions
(UCRs). Abbreviations: C,
carboxyl-terminus; N, amino ter-
minus; P, phosphate

Cardiovasc Drugs Ther (2020) 34:401–417 405



awaits further verification, as do the precise effects of raising
this particular cAMP pool on hypertrophy and fibrosis. The
upcoming clinical trial examining the safety and tolerability of
the PDE1 inhibitor, ITI-214, in HF patients will undoubtedly
illuminate these issues further (Clinicaltrials.gov:
NCT03387215).

Phosphodiesterase 2

Overview

Like PDE1, PDE2 is capable of hydrolysing both cAMP and
cGMP (Fig. 2), displaying comparable maximal rates and low
KM values for each cyclic nucleotide (with a slight preference
for cGMP) [70, 71]. PDE2 is commonly designated as the
cGMP-stimulated PDE since the enzyme possesses a regula-
tory segment at its N-terminus comprising two cGMP-stimu-
lated PDE, AnabaenaAC and Fhla transcription factor (GAF)
domains (Fig. 3). Designated GAF-A and GAF-B, these do-
mains are so called after the proteins in which they were orig-
inally discovered [72]. cGMP selectively binds to the alloste-
ric GAF-B domain with high affinity, altering the conforma-
tion of PDE2 and raising esterase activity by a factor of 30 [73,
74]. It is unlikely that cAMP regulates PDE2 activity in vivo
in the same way given that the affinity of cAMP for the GAF-
B site is approximately 100-fold lower than cGMP [75]. A
single isogene product of PDE2 (PDE2A) exists, and alterna-
tive gene splicing gives rise to three distinct isoforms that are
either soluble (PDE2A1) or particulate (PDE2A2, PDE2A3)
in their distribution [76, 77].

Cardiac Physiology

Phosphodiesterase 2 is expressed in human hearts [78] and
associates with the sarcomere and the plasma membrane in
isolated cardiomyocytes [79]. As is the case for the majority
of investigations pertaining to PDE expression and function,
much of our knowledge concerning PDE2 has been obtained
from in vitro analyses in isolated cardiomyocytes. Though
there are evident shortcomings of such techniques (e.g. dis-
parities between neonatal and adult cells, complications in
integrating in vitro and in vivo physiology), PDE2 is increas-
ingly recognised as an important moderator of cardiac func-
tion despite accounting for only a minor fraction of total car-
diac PDE activity [80]. Indeed, given its activation by cGMP
and its dual substrates, PDE2 occupies a unique position; not
only does it facilitate negative feedback of cGMP signalling, it
also mediates cross-communication between the cGMP and
cAMP pathways. cGMP-induced activation of PDE2 reduces
the ICa,L following greater cAMP hydrolysis and diminished
LTCC phosphorylation by PKA [81–84]. PDE2 also contrib-
utes to the control of cardiac contractility by opposing the

effects of β1/2-AR activation through cAMP degradation
[79]. This appears largely dependent upon activation by NO/
cGMP and β3-AR signalling, which can generate NO via NO
synthase 3 (NOS3; formerly termed endothelial NO synthase/
eNOS) stimulation [85]. Although β3-AR expression within
the myocardium is contentious [86], this corresponds well
with the different actions attributed to NO/cGMP and NP/
cGMP on contractility. That is, whilst NO acts, primarily, as
a negative inotrope, ANP either reduces or has no effect on
inotropy [87, 88]. PDE2 also promotes cardiomyocyte apo-
ptosis [89] and is highly expressed in cardiac fibroblasts
where it regulates myofibroblast formation and fibrosis by
counteracting the increase in cAMP in response to ISO and
β-AR stimulation [90, 91].

Despite sharing a downstream second messenger, NO and
NPs exert distinctive effects in both the heart and the vascu-
lature. PDE2 makes a significant contribution to this by
compartmentalising the cGMP signal in discrete cells and dis-
tinct intracellular regions. For example, in isolated rat
cardiomyocytes, NO promotes the synthesis of a cytoplasmic
pool of cGMP that is hydrolysed specifically by PDE5,where-
as NPs generate a separate juxta-membrane GMP pool that is
regulated by PDE2 [92]. Similarly, PDE2 confines the
membrane-associated pool of cGMP generated via NP/GC-
A signalling within the region of the T-tubules in isolated
cardiomyocytes [93]. However, the role of PDE2 in restricting
the sphere of activity of NP/cGMP can change with disease
[87].

Heart Failure Pathophysiology

Although the activity of myocardial PDE2 is amplified in pre-
clinical models of pressure overload and in human HF [94,
95], its precise role in HF pathogenesis remains controversial.
During HF, desensitisation of β-AR signalling occurs follow-
ing prolonged SNS activation. Indeed, in ventricular
cardiomyocytes from failing human hearts, β1-AR mRNA
and protein expression are severely diminished relative to
non-failing hearts, whereas those of β3-AR are tripled [96].
Consequently, the positive inotropic actions of β1-AR stimu-
lation are hampered, whereas the negative inotropic effects of
β3-AR signalling are maintained. Whether this is beneficial or
detrimental to the failing heart is unclear, and PDE2 may be
protective or harmful depending on this context. Firstly,
cardiomyocyte-specific overexpression of PDE2 lowers the
[Ca2+]i and the ICa,L, guarding against catecholamine-
induced hypertrophy and inotropy in vitro [95]. Similarly,
mice overexpressing PDE2 are resistant to arrhythmias and
their cardiac contractility is maintained following MI [97].
Thus, PDE2 upregulation may well defend against sustained
SNS signalling, and its activation could offer therapeutic ben-
efit in HF. On the other hand, since PDE2 activation via the
β3-AR/NOS3/NO/cGMP pathway abrogates β-AR-induced
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cAMP in cardiomyocytes and PDE2i can at least moderately
restore β-AR responsiveness, PDE2 signalling might be
unfavourable in HF [79]. Thus, inhibition of PDE2 could ben-
efit the failing heart by restoring systolic function; recent work
has given credence to this concept.

Whilst the inhibition of PDE3 and PDE4 elevates the con-
centration of cAMP and fosters hypertrophy in isolated
cardiomyocytes, PDE2i is anti-hypertrophic [98]. This is
thought to occur via an increase in a confined cAMP pool that
promotes PKA activation, limiting pro-hypertrophic NFAT
signalling. Likewise, PDE2i curtails the development of
LVH, compromised contractility and cardiac fibrosis in pres-
sure overload–induced HF. Rather than amplifying cAMP
signalling, inhibition of PDE2 augments cGMP signalling,
which is dependent upon endogenous NO activity and stimu-
lation of GC-1 (rather than NP-activated GC-A) [87]. This
supports previous suggestions that increases in cGMP pro-
duced by PDE2i functions akin to cAMP to curtail fibroblast
to myofibroblast conversion and restrain fibrosis [91].
Pharmacological blockade of PDE2 also exerts favourable
effects in mice with right ventricular hypertrophy (RVH) and
pulmonary HT (PH); although in the right side of the heart,
GC-A, rather than GC-1, plays an obligatory role in mediating
the actions of PDE2i [99].

These disparate observations regarding PDE2 in HF pa-
thology are likely attributable to differences in the concentra-
tions of cyclic nucleotide generated in the varying models, as
well as the different cyclic nucleotide pools that PDE2 regu-
lates. Indeed, it has been postulated that PDE2 favours cGMP
hydrolysis when NO signalling is diminished, whilst biasing
toward cAMP hydrolysis in the setting of intense β-AR acti-
vation [100]. Whilst there are always difficulties translating
pre-clinical observations into patients, the insights offered
from the studies of PDE2 also afford the potential of stratify-
ing treatment and targeting PDE2 selectively, depending on
the nature of pathology. For example, given the positive phar-
macodynamic profile of PDE2i during pressure overload, as
well as the recent observations that blocking PDE2 activity
specifically within cardiac sympathetic neurons may be ad-
vantageous during sympathetic hyperactivity [101, 102],
inhibiting PDE2 may be effective in the context of HF and
HT. Alternatively, enhancing PDE2 activity could perhaps
help the failing heart post-MI. Further study of PDE2 as a
therapeutic target in HF is certainly warranted.

Phosphodiesterase 3

Overview

Phosphodiesterase 3 is the third dual esterase. It hydrolyses
cAMP and cGMPwith high affinity, but the Vmax for cGMP is
ten times lower than that for cAMP [71]. That is to say, whilst

cGMP binds to the catalytic site of PDE3, it is hydrolysed very
slowly, which lessens cAMP metabolism. Hence, contrary to
PDE2, PDE3 is often termed the cGMP-inhibited PDE
(Fig. 2). This positions PDE3 as an important regulator of
cAMP/cGMP crosstalk as cGMP serves as a positive regulator
of cAMP signalling through PDE3 [103, 104]. However,
PDE3 also possess three phosphorylation sites at its N-termi-
nus, and PKA negatively modulates its own signal by phos-
phorylating PDE3, which raises enzymatic activity and cAMP
hydrolysis (Fig. 3) [105, 106]. The two subtypes of PDE3
(PDE3A, PDE3B) are both present in the heart, but PDE3A
predominates in the myocardium where (in conjunction with
PDE4) it accounts for the majority of cAMP hydrolytic activ-
ity [107–109].

Cardiac Physiology

By kerbing cAMP signalling, PDE3 is a key regulator of car-
diac contractility. PDE3A associates with intracellular mem-
branes in isolated rat cardiomyocytes and localises to Z-bands
in human cardiomyocytes where it forms a scaffold with
SERCA and PLB at the SR [80, 110]. PKA-mediated phos-
phorylation of PDE3 potentiates this interaction, and the deg-
radation of cAMP precludes PLB phosphorylation by PKA
and SERCA activation. Hence, PDE3 controls Ca2+ reuptake
into the SR [110, 111]. PDE3 also limits contractility by
curtailing the ICa,L [112, 113]. PDE3A is largely responsible
for this as PDE3A−/−mice, but not PDE3B−/− animals, exhibit
increased chronotropy basally compared to WT [114].
Likewise, the inotropic and chronotropic responses to ISO
are not potentiated by the PDE3 inhibitor cilostamide in
PDE3A−/− mice, but these are in PDE3B−/− animals. PDE3
also reduces spontaneous SA node activity by restricting
cAMP-mediated activation of hyperpolarisation-activated cy-
clic nucleotide (HCN)–activated channels, as well as by re-
ducing the phosphorylation of several pacemaker components
(e.g. LTCC, RyR2, PLB) by PKA [115–117]. PDE3B com-
plexes with phosphatidylinositol 3-kinase-gamma (PI3Kγ) in
the mouse myocardium, which stimulates PDE3B activity,
reducing cAMP levels and cardiac contractility [118].
PDE3B also interacts with PI3Kγ in human arterial endothe-
lial cells and increases endothelial cell proliferation and an-
giogenesis through cAMP degradation and diminution of
PKA [119, 120]. Whether a similar phenomenon occurs with-
in the myocardium is unknown but seems probable given the
associations observed in mouse hearts. Additionally, PDE3A
reduces cardiomyocyte apoptosis by preventing inducible
cAMP early repressor (ICER) expression, which stops the
reduction in pro-survival genes [121, 122].

Phosphodiesterase 3 is differentially regulated by NO/
cGMP and NP/cGMP. GC-1−/− mice exhibit impaired PDE3
expression and activity [123]. Although NO/cGMP is pre-
dominantly negatively inotropic, low concentrations of NO/
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cGMP can inhibit PDE3 [124]. Whilst this increases a partic-
ular cAMP/PKA pool in isolated cardiomyocytes, ANP/
cGMP favours activation of PDE2, which decreases cAMP
and PKA activation [88]. Thus, whilst NO/cGMP can exert
dual effects on cardiac contractility, ANP/cGMP tends to op-
pose inotropy. CNP/cGMP, however, boosts the positive ino-
tropic and lusitropic responses toβ-AR stimulation in isolated
rat cardiomyocytes via PDE3 antagonism, whilst BNP/cGMP
does not [125]. Therefore, PDE3 is also distinctively con-
trolled by different NPs.

Heart Failure Pathophysiology

Both the expression and activity of PDE3A are diminished in
pre-clinical models of pressure overload and in failing human
hearts [121, 126]. Pharmacological inhibition of PDE3 has
been reported to blunt TAC-stimulated hypertrophy and fibro-
sis, an effect recapitulated in PDE3A−/−, but not PDE3B−/−,
mice [127]. Conversely, genetic ablation of PDE3B, but not
PDE3A, counteracts the adverse effects of IRI [128]. This
occurs following PKA-mediated opening of mitochondrial
Ca2+-activated potassium (K+) channels, which reduces reac-
tive oxygen species formation and protects against apoptosis.
Although such findings intimate that PDE3 downregulation
could represent a protective mechanism in HF and that selec-
tive targeting of PDE3 may provide therapeutic benefit to
failing hearts, this is clearly not the case. The diminution of
PDE3 activity is associated with β-AR desensitisation in
LVH, and PDE3i fosters cardiomyocyte apoptosis [121,
126]. Similarly, greater PDE3A expression protects against
IRI and apoptosis in the murine heart by regulating β-AR/
cAMP [129, 130], whilst the formation of a complex between
PDE3B and PI3Kγ guards against TAC-induced cardiac dys-
function [118].

Similar detrimental outcomes have been observed in pa-
tients. It was originally postulated that inotropes would be
beneficial in HF. Indeed, the PDE3 inhibitor milrinone acutely
increases inotropy, chronotropy and stroke volume, whilst re-
ducing MABP in HF patients [131]. However, prolonged
PDE3i is not beneficial to the failing heart since it exacerbates
SNS activity, increasing arrhythmias and mortality [132–135].
This may be accounted for by the adverse effects discussed
above regarding PDE3 blockade and could be attributable to
genetic polymorphism within PDE3 in populations of HF pa-
tients [136]. It has been suggested that these side effects may
be offset by more tailored therapy targeting particular PDE3
isoforms (milrinone is a non-specific PDE3 inhibitor) or by
concomitant administration of PDE3 and β-AR antagonists.
Whilst such a tandem therapy is well tolerated in HF patients,
it fails to improve exercise capacity and mortality [137].
Therefore, positive inotropic agents (including PDE3
inhibitors and β-agonists) are now only used to improve hae-
modynamic status in acute decompensated HF or as a bridge

to heart transplantation [137, 138]. Milrinone may provide
some benefit in the context of HF with preserved ejection
fraction (HFpEF) [139], and an extended release formulation
exhibits early positive effects in advanced HF [140]. HFpEF
may constitute as much as 70% of all HF cases [141, 142], and
unlike those with HF with reduced ejection fraction (HFrEF),
these patients, the majority of whom are older and female, do
not respond as well to routine treatment (e.g. angiotensin-
converting enzyme inhibitors) [143]. Presently, there is no
licenced medication for HFpEF, and targeting PDE3 may af-
ford a novel therapeutic paradigm. For mature women with
HFpEF, this would likely be more efficacious than targeting
PDE5, for example, since the menopause is associated with
impaired NO bioactivity [144] and PDE5 inhibition fosters
NO/cGMP signalling specifically (see below). However, larg-
er, longer-term randomised clinical evaluation of PDE3 block-
ade in HFpEF is necessary.

Phosphodiesterase 4

Overview

The four subtypes of PDE4 (PDE4A, PDE4B, PDE4C,
PDE4D) are highly selective for cAMP, displaying very
low KM values for this cyclic nucleotide [145–147].
Alternative gene splicing produces more than twenty
PDE4 isoforms, which can exist in short and long forms
depending on the presence of so-called upstream con-
served regions (UCRs) within the N-terminus (Fig. 3)
[148]. Short PDE4 isoforms possess a single UCR
(UCR2), whilst long versions contain two (UCR1,
UCR2). PDE4 possesses a phosphorylation site within
UCR1, and PKA-mediated phosphorylation elevates es-
terase activity by precluding UCR1-UCR2 interactions
[149]. An extracellular signal–regulated kinase (ERK)
phosphorylation region at the C-terminus serves as a
negative and positive regulator of long and short iso-
forms, respectfully [150].

Cardiac Physiology

In the heart, PDE4A, PDE4B and PDE4D are expressed
whereas PDE4C is not [151] . In mouse and rat
cardiomyocytes, PDE4 behaves analogously to PDE3 and
perpetuates the main cAMP hydrolytic activity (although
PDE4 constitutes a substantially smaller fraction of total
PDE activity in human hearts) [152]. PDE4 and PDE3 are
the principal PDEs adjusting cAMP levels and ICa,L basally,
whilst PDE4 predominantly contributes to the control of β-
AR–stimulated elevations in cAMP, ICa,L and cardiac contrac-
tility [80, 113]. Indeed, PDE4 is capable of interacting with
β1/2-ARs and the LTCC, and the ICa,L is amplified in PDE4−/−
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cardiomyocytes in response to ISO [153–155]. Additionally,
PDE4 associates with RyR2 and PLB/SERCA [156–158]. By
curtailing cAMP at the SR, PDE4 limits PKA-induced phos-
phorylation of these sites, reducing Ca2+ release/reuptake.
Like PDE3, PDE4 also regulates the pacemaker activity of
the SA node [117, 159, 160].

Heart Failure Pathophysiology

Resembling PDE3A, the expression and activity of PDE4A
and PDE4B, but not PDE4D, declines with pressure overload
in rats as well as in human HF [126]. Consequently, the con-
trol of β-AR–stimulated cAMP by PDE4 is diminished.
Moreover, when PDE4 is knocked out, the heart is rendered
more susceptible to ventricular tachycardia in response to β-
AR agonists, and arrhythmogenesis is exacerbated when
PDE4 is inhibited [155, 159, 161, 162]. PDE4−/− mice expe-
rience more severe HF with MI due to heightened RyR2 phos-
phorylation and defective Ca2+ regulation [156]. This likely
contributes to the cardiac dysfunction in failing human hearts,
also [8].

Phosphodiesterase 5

Overview

Phosphodiesterase 5 is both selective for and activated by
cGMP. Akin to PDE2, PDE5 contains GAF-A and GAF-B
domains within its N-terminus, and its esterase activity is pro-
moted by cGMP binding to the GAF-A site (Fig. 3)
[163–165]. PKG-mediated phosphorylation of PDE5 am-
plifies the cGMP affinity of the GAF-A domain, thereby
stabilising the active enzyme conformation and maintaining
hydrolytic activity [166–168]. Thus, cGMP fosters its own
degradation through negative feedback (i.e. facilitated
hydrolysis).

Cardiac Physiology

The one PDE5 subtype (PDE5A) is alternatively expressed as
three isoforms (PDE5A1, PDE5A2, PDE5A3), although dis-
pute persists concerning the physiological relevance of these
to cardiac physiology. Whilst some studies have reported ei-
ther no or minimal cardiac expression of PDE5 [56, 169–171],
others have detected it within certain cell types [172–174]. In
isolated cardiomyocytes, PDE5 appears restricted to the cyto-
sol where it is anchored to the Z-lines and preferentially hy-
drolyses NO/cGMP (although this may change with disease)
[92, 175, 176]. Inhibition of PDE5 with sildenafil (Viagra)
suppresses the contractile response to β-AR stimulation in
isolated mouse cardiomyocytes and human hearts [175,
177]. This is dependent upon greater NOS3-derived cGMP

and heightened PKG activity and can be enhanced by sGC
stimulation [178, 179]. Sildenafil also enhances the cGMP-
dependent activation of PDE2, which reduces chronotropy via
attenuation of cAMP signalling [180]. PDE5 is expressed in
cardiac fibroblasts and likely participates in cardiac fibroblast
transformation and proliferation [170, 181]. In vascular endo-
thelial cells, PDE5 localises to caveolae where it negatively
modulates NOS3 signalling [182], and PDE5 is abundantly
expressed in VSMCswhere it plays a central role in regulating
vascular tone [56, 183].

Heart Failure Pathophysiology

Since PDE5 knockout models are still lacking, particularly
those of a cell-restricted nature, knowledge of its precise phys-
iological role in the heart remains elusive. However, it is clear
that PDE5 contributes to the pathophysiology of HF. Greater
levels of PDE5 are observed in multiple pre-clinical models of
pressure overload and cardiac ischaemia [184, 185] (although
exceptions have been reported) [170]. Moreover, PDE5 is
upregulated in PH patients with RVH [186, 187] and during
human LVH and HF [184, 188]. Blockade of PDE5 with
sildenafil reduces infarct size and improves cardiac contractil-
ity and survival in mice with MI [189]. This is mediated by
PKG, which diminishes cardiomyocyte apoptosis through the
inhibition of glycogen synthase kinase 3 beta (GSK3β) [190]
and protects the heart via hydrogen sulphide synthesis and the
opening of mitochondrial ATP-sensitive K+ channels
[191–193]. Sildenafil also bolsters the degradation of dam-
aged proteins by the proteasome [194], which may further
benefit the failing heart. Vardenafil and tadalafil, two further
selective PDE5 inhibitors, display similar protective profiles
to sildenafil. Vardenafil maintains diastolic function in rats
with HFpEF associated with diabetic cardiomyopathy [195],
and tadalafil attenuates doxorubicin-induced PKG oxidation
and cardiac dysfunction in mice [196, 197]. Tadalafil has also
been shown to promote contractility in experimental HF by
raising the density of transverse tubules in cardiomyocytes,
thereby improving β-AR responsiveness [198].

The anti-hypertrophic effects exerted by PDE5i appear de-
pendent upon PKG. Sildenafil attenuates NFAT activation by
amplifying PKG-mediated inactivation of TRPC6, which pre-
vents and reverses LVH in mice after TAC [199–201].
Sildenafil also suppresses hypertrophy by promoting the acti-
vation of RGS2 by PKG [202]. These effects are lost in mice
expressing a dysfunctional form of PKG [203], and the hyper-
trophic response of isolated cardiomyocytes to phenylephrine is
lessened following PDE5 gene silencing [176]. However, the
contribution of PDE5 and PKG to cardiac hypertrophy has been
contested. PKG deletion within the myocardium does not alter
basal cardiac function and hypertrophy, nor does it affect the
progression of AngII-mediated LVH- or ISO-induced
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dysfunction [170, 204, 205]. Yet, the loss of PKG in mice does
exacerbate pressure overload-induced HF [204, 206].

Evidently, further research is needed to resolve these con-
flicting observations. Variations in the cellular distribution of
PKG and mechanisms to compensate for the cardiomyocyte-
specific loss of PKG probably contribute, as may the differ-
ences in the type of HF model employed and the possible
concurrent inhibition of PDE1 and PDE5 with high doses of
sildenafil [57, 170]. Nevertheless, even if impaired PKG sig-
nalling within the myocardium does not innately influence
cardiac hypertrophy, it might render the heart more susceptible
to fibrosis. PDE5 may not be detectable in cardiomyocytes in
the wake of pressure overload, but its expression in cardiac
fibroblasts is elevated with TAC [170]. Moreover, the ability
of NP/cGMP to moderate collagen production in isolated car-
diac fibroblasts is supplemented by PDE5i [207], and silden-
afil mitigates fibroblast activation and fibrosis associated with
pressure overload in mice [181]. PKG deficiency also negates
the anti-fibrotic effects of sildenafil [204, 205]. This evidence
establishes that PDE5 can be targeted pharmacologically for
therapeutic gain in HF, even if i ts expression in
cardiomyocytes per se is questionable.

Sildenafil lowers systolic pulmonary artery pressure (PAP)
in HF patients [208, 209] and increases CO and reduces
hospitalisations in HF patients with secondary pulmonary ar-
terial HT (PAH) [210]. Though sildenafil causes a modest
(approximately 10%) reduction in mean PAP in PAH patients
[210], the salutary effects of PDE5 inhibition appear to occur
through additional protection of the RV (e.g. reductions in
RVH) [211]. The effects of PDE5 blockade on cardiac func-
tion in HFrEF are variable with both positive and negative
effects on cardiac function observed [212–214]. Despite
displaying early positive signs in HFpEF [215], sildenafil does
not significantly improve cardiac structure and function or
clinical status in these patients [216–219].

Other Phosphodiesterases

Phosphodiesterases 6 and 11 are not found in the heart [220,
221]. PDE7 mRNA is detectable within the heart [222], but a
cardiac-specific role for this PDE has not yet been recognised.
PDE8 mRNA and protein are expressed in cardiomyocytes,
and this cAMP-selective esterase might play a part in cardiac
excitation-contraction coupling [223]. PDE10 has been impli-
cated in RVH, yet this is presumably due to elevated expres-
sionwithin the pulmonary vasculature during PH [224]. PDE9
is surfacing as a decisive regulator of cGMP signalling. Like
PDE5, it is a cGMP-specific esterase, though myocardial
PDE9 curtails NP-mediated increases in cGMP rather than
hydrolysing the cGMP pool generated by NO/GC-1 [225].
PDE9 is also expressed in VSMCs where, contrary to the
myocardium, it was recently shown to metabolise NO/
cGMP [226]. PDE9 is upregulated during LVH and HF in

mice and humans, and its inhibition slows the progression of
experimental HF [225, 227] by augmenting NP/cGMP-
triggered pathways that are well established to be anti-
hypertrophic and anti-fibrotic [228–230].

Conclusion

The evidence discussed here demonstrates that PDEs occupy a
pivotal position in cardiac physiology and HF pathophysiolo-
gy. PDE expression changes in failing hearts and pharmaco-
logical manipulation of PDE activity ought to amend the ab-
errant cardioprotective cyclic nucleotide signalling character-
istic of cardiac dysfunction (Fig. 4). Future research will aid in
the identification of the interventions that will be most suc-
cessful in realising the necessary, and often divergent, thera-
peutic objectives in the distinct types of HF. For example,
PDE3 inhibition, whilst deleterious in HFrEF, may represent
an effective means of treating HFpEF patients. Moreover, in-
vestigations into different combination therapies, such as the
inhibition of multiple PDEs, or simultaneously activating GC
(e.g. sGC stimulators) and blocking PDEs, should also prove
fruitful. In sum, targeting PDEs will doubtless prove essential
in rectifying the present dearth of effective HF therapies,
thereby curtailing the morbidity and mortality associated with
this disease.

PDE3

PDE1 PDE2

PDE4

PDE5 PDE9

BAY 60-7550ITI-214

Sildenafil

BAY 73-6691

Milrinone

Rolipram

Fig. 4 Changes in cardiac phosphodiesterase expression during heart
failure and pharmacological modulators. Phosphodiesterases (PDEs) 1,
2, 3, 4, 5 and 9 contribute to the pathophysiology of heart failure (HF).
Arrows indicate changes in PDE expression during HF. Blunt lines indi-
cate inhibition with selective pharmacological modulators
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