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Abstract 

Single-cell gene set analysis (scGSA) provides a useful approach for quantifying molecular functions and pathways in high-throughput transcrip- 
tomic dat a, facilit ating the biological interpret ation of complex human datasets. Ho w e v er, v arious f actors such as gene set size, quality of the gene 
sets and the dropouts impact the performance of scGSA. To address these limitations, we present a single-cell Pathw a y Score (scPS) method to 
measure gene set activity at single-cell resolution. Furthermore, we benchmark our method with six other methods: AUCell, AddModuleScore, 
JASMINE, UCell, SCSE and ssGSEA. The comparison across all the methods using two different simulation approaches highlights the effect of 
cell count, gene set size, noise, condition-specific genes and zero imputation on their perf ormance. T he results of our study indicate that the 
scPS is comparable with other single-cell scoring methods and detects fe w er f alse positiv es. Importantly, this w ork re v eals critical v ariables in 
the scGSA. 
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he increasing availability of single-cell RNA sequencing
scRNA-seq) data has necessitated the development of single-
ell gene set analysis (scGSA) methods for biological interpre-
ation. Although gene set analysis (GSA) approaches initially
esigned for bulk RNA-seq data are often used for scRNA-seq
ata ( 1–4 ), there is a significant shift towards methodologies
pecifically tailored to measure the gene set activities at the
ingle-cell level ( 5–9 ). scGSA methods are rigorously assessed
o address the unique challenges of scRNA-seq data, such as
igh noise levels, high dropout rate and large numbers of cells.
he quantification at single-cell resolution with given gene sets
an (i) improve post-hoc analysis by further clustering the cells
ased on their functionality, (ii) improve interpretation across
ultiple omics assays and (iii) lead to the discovery of novel
athways by minimizing the effect of averaging in heteroge-
eous data. 
The commonly used scGSA methods are based on ranking

r aggregating gene expression profiles. Although these meth-
ds offer valuable insights, they have several limitations, in-
luding sensitivity to the size of gene sets and the sparsity of
he data, affecting the robustness and reproducibility of the
esults. The size of the gene sets varies depending on their
unction and source. In particular, the gene sets are obtained
rom multiple sources, such as databases, high-throughput
ata from the public domain and curation from published
anuscripts, driving variation in gene set size. Moreover, most

enes have low abundance at the single-cell level, and the
anking and aggregation do not always reveal true differences.
ence, in this study, we present a single-cell Pathway Score

scPS) method that improves our previously published single-
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person scoring method ( 10 ) to measure the activity of gene sets
at the single-cell level. scPS uses principal component scores
(PCs) weighted by their variance measured by principal com-
ponent analysis (PCA) and the average gene set expression.
PCs are the eigenvectors of the covariance matrix of the genes
in the gene set and, during computation of the PCs, genes
in the gene set underlying the variation at single-cell resolu-
tion obtain high weights. Hence, scPS can improve biological
relevance by prioritizing the genes in the gene set using PCA
( 11 ,12 ). 

The prevalence of excess zero or near-zero counts in the
scRNA-seq data can obscure true biological signals and im-
pact the gene set analysis. When applying PCA, cells with
high proportions of zero counts may dominate certain prin-
cipal components, distorting the representation of variation.
Near-zero counts can introduce noise and inflate the impor-
tance of genes expressed at a low level, further impacting the
interpretation of scGSA. To address this issue, various impu-
tation methods have been developed, with scImpute being one
of the prominent algorithms for zero imputation ( 13 ). scIm-
pute effectively reduces dropout rates in scRNA-seq data by
employing a sophisticated model that combines gamma and
normal distributions. This model distinguishes between true
zero expressions and technical dropouts, thereby providing a
more accurate representation of actual gene expression levels.
Hence, we also assess the performance of scGSA methods on
scRNA-seq data with zero-preserving imputation. 

Here, we revisit six commonly used scGSA methods:
ssGSEA, UCell, AUCell, JASMINE, AddModuleScore and
SCSE, and compare them with our novel approach, scPS.
Briefly, we describe each method below. ssGSEA, AUCell,
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UCell and JASMINE are ranking-based methods, while Ad-
dModuleScore and SCSE are count-based methods. Single-
sample GSEA (ssGSEA) was initially developed for bulk RNA-
seq data and calculated by the Kolmogorov–Smirnov-like ran-
dom walk statistic ( 14 ). UCell calculates the Mann–Whitney
U statistic ( 15 ). AUCell calculates the area under the curve
(AUC) score among all ranked genes ( 16 ). Jointly Assessing
Signature Mean and Inferring Enrichment (JASMINE) calcu-
lates the enrichment of the signature using the mean rank
of the expressed genes, the proportion of expressed to non-
expressed genes and the proportion of expressed genes in the
gene set ( 17 ). AddModuleScore is a function in Seurat package
and calculates scores for individual cells by aggregating the ex-
pression levels of each gene set, which are then subtracted by
the aggregated expression of control feature sets randomly se-
lected as background ( 18 ). The Single-Cell Signature Explorer
(SCSE) is calculated as a sum of gene expression within gene
sets divided by the sum of gene expression for each cell ( 19 ). 

To compare different methods, we have used two simula-
tion strategies to assess their specificity and sensitivity to dif-
ferentiate cells with distinct gene set activity and detect true
differential gene sets across biological conditions. This is the
first time a detailed comparison of these seven methods has
been performed. In particular, we assess the effect of the size of
the cell counts, the composition of the gene sets, the condition-
specific gene expression and zero imputation. 

Materials and methods 

To measure the accuracy of scGSA methods, we generated sim-
ulated data using two strategies where ground truth is known:
(i) Splatter simulated data (SSD) were generated using the
Splatter package (1.20.0) ( 20 ) based on the estimated parame-
ters derived from the raw counts; and (ii) real-world simulated
data (RWSD) were generated using log-transformed publicly
available data (see below). 

Data simulation and signal assignment 

The 10X sequencing data from GSE164381 were loaded into
R (version 4.2.1) ( 21 ) and processed with Seurat (version
4.2.0) ( 22–24 ) to generate simulated datasets. The data were
normalized, clustered and annotated as described in the origi-
nal paper ( 25 ). All non-detected genes were removed from the
data, and an equal number of cells were randomly grouped
into control and treatment groups. Sample sizes of 20, 50, 200
and 500 cells in each group were evaluated. Four scenarios
of varying signal-to-non-signal ratios (SNRs) were developed.
To model the differential expression, a signal was given to the
chosen genes while other genes were the same between groups.
The signal was defined as a 20% increase in gene expression
in the treatment group compared with the control group. In
scenario 1 (Figure 1 A), the signal was given to at least 500
densely expressed genes, where the densely expressed genes
were defined as the genes expressed in at least 90% of cells in
SSD and 75% in RWSD. This criterion was applied indepen-
dently for 10 replicates in both simulated datasets. In scenario
2 (Figure 1 B), the signal was given to the randomly chosen 550
genes. For these two scenarios, the remaining genes were con-
sidered non-signal genes. To evaluate the zero imputation ef-
fect, we utilized scImpute (version 0.0.9) ( 13 ) with the recom-
mended dropout threshold of 0.5 to mitigate the dropout rates

in RWSD for scenarios 1 and 2. The additional two scenarios 
were designed to investigate the differences in the number of 
genes expressed across groups, which are frequently observed 

in cancer data. We introduced 250 ( ∼2%) more genes into 

the treatment group shown in scenario 3 and scenario 4 (Fig- 
ure 1 C, D). The expression of these added genes in the control 
group was set to 0, and no signal was assigned in scenarios 
3 and 4. These four scenarios simulate the characteristics of 
scRNA-seq data, allowing us to evaluate scGSA performance.

Gene set simulation 

The four scenarios described above allow us to evaluate vari- 
ations in the number of genes responding to the experimental 
condition and the number of cells with that response. In ad- 
dition, gene sets with different variability characteristics were 
simulated. In scenario 1 and scenario 2, we introduced noise in 

gene sets using the non-signal genes (see the previous section 

for details) to evaluate the scGSA performance when a certain 

proportion of genes that are not true functionally related genes 
in the set were present. The gene set sizes ranging from 10 to 

500 were simulated by randomly choosing the signal and non- 
signal genes. For example, to simulate 20% noise, 20% of the 
genes in a gene set are drawn from non-signal genes. The fol- 
lowing noise levels were modeled: 0, 20, 50, 80 and 100%. For 
each noise and gene set size combination, we generated 100 

gene sets. In total, 5000 gene sets were generated per data. In 

scenario 3 and scenario 4, we created gene sets with first-row 

label, second-row label and third-row label genes (condition- 
specific genes) as illustrated in Figure 1 C and D. In the scenario 

3 condition-specific genes shown in the third-row label were 
densely expressed unlike in the scenario 4. Approximately 2% 

of the genes in these gene sets were condition-specific genes.
Note that in scenarios 3 and 4, none of the genes received 

signals. 

scGSA score calculation and comparison 

Single-cell Pathway Score (scPS) 
scPS is a modification of our previously published single- 
person transcription factor score (spTFscore) ( 10 ). To com- 
pute the scPS score, PCA was applied to the gene expres- 
sion matrix of the gene set. The score was then determined as 
follows: 

scPS = μ ×
√ ∑ m 

i =1 (s i − s min ) × v i (1) 

where μ is the mean gene expression of the gene set, s i is the 
unweighted principal component score (PC), s min is the mini- 
mum of the s i among all the cells, v i is the percentage of vari- 
ance explained by the PC and m is the number of PCs at which 

50% cumulative variance is explained. 

scGSA methods for the comparative analysis 
The comparative analysis was performed using seven scGSA 

methods, namely scPS, AddModuleScore (Seurat version 

4.2.0), AUCell (version 1.18.1), JASMINE, SCSE, UCell (ver- 
sion 2.0.1) and ssGSEA (GSVA version 1.44.5). All methods 
(except scPS and AddModuleScore) were calculated using the 
irGSEA package (version 2.1.5). Then the Wilcoxon test was 
applied to the scGSA scores to compute the gene sets with 

differential expression, and the P -values were adjusted for the 
false discovery rate (FDR). A gene set with an adjusted P -value 
< 0.05 was considered statistically significant between the two 

experimental conditions. The recovery rate was calculated by 



NAR Genomics and Bioinformatics , 2024, Vol. 6, No. 3 3 

Figure 1. Data simulation schematics in the control (left) and treatment (right) groups. ( A ) Scenario 1, where the signal was assigned to the densely 
expressed genes. ( B ) Scenario 2, where the signal was assigned to the randomly chosen genes. The expression levels of these signal genes (yellow, 
top-row label) showed a 20% increase in the treatment group compared with the control group, while non-signal genes (white, bottom-row label) show 

no difference between the two conditions. ( C ) Scenario 3, the third-row label genes were densely expressed in the treatment group. ( D ) Scenario 4, the 
third-row label genes were randomly chosen in the treatment group. In C and D, the first-row label and second-row label genes showed no difference 
between the two conditions, while the third-row label genes were expressed only in the treatment group. Ten replicates for each scenario were 
generated. 
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ividing the number of identified gene sets by the total number
f simulated gene sets. 

mplementation of scPS in real data 
he published peripheral blood mononuclear cell (PBMC)
ata from GSE198339 were used for the scPS implementa-
ion. The data were normalized, clustered and annotated as
escribed in the original publication ( 26 ). The updated 2023
EGG (Kyoto Encyclopedia of Genes and Genomes) pathway

rom KEGGREST (version 1.42) and cell type-specific gene
ets of B cells, T cells, natural killer (NK) cells and monocytes
rom Harmonizome (version 3.0) ( 27 ) were used. 

esults 

ffect of the cell count on scGSA performance 

he cell count per group in the clustered scRNA-seq data
ould affect scGSA performance ( 28–30 ). To investigate the
ffect of cell count per group, we measured the recovery rate
f the gene sets consisting of 100 signal genes, all of which
eceived signals in the two scenarios described above (see the

aterials and methods for more details). With an increase in
ell count, the recovery rates of all except ssGSEA increased,
hereas AUCell and JASMINE were minimally affected (Fig-
re 2 ). In scenario 1, when densely expressed genes obtained
he signal, scPS, AUCell, JASMINE and SCSE could identify
t least 90% of gene sets for populations with ≥ 50 cells. In
cenario 2, when the signal was dispersed among randomly
hosen genes, scPS and SCSE were more affected by lower cell
ounts. However, the overall trend of the others remained con-
istent with scenario 1 (Figure 2 A, B). Capturing meaningful
ariance for the PCA to calculate the scPS score was challeng-
ng due to the sparsity in the gene set expression matrix in
cenario 2 ( Supplementary Figure S1 ). However, the recovery
ate of scPS exceeded 90% for clusters including > 200 cells.
Like scPS, the performance of AddModuleScore, SCSE and
UCell improved as the number of cells increased in both sce-
narios, but UCell had a high standard deviation, attributable
to the relatively high variability in the long tail of bottom-
ranking genes. The results in RWSD were better than those
in SSD, which had a higher signal-to-non-signal ratios (SNR)
and relatively lower sparsity ( Supplementary Figure S1 E, F).
All methods except ssGSEA generally showed improved per-
formance with larger cell counts. This improvement was ob-
served because larger cell counts enhanced the robustness of
scGSA by boosting statistical power. 

Effect of gene set size on scGSA performance 

We investigate influence of gene set sizes, which vary based on
their sources, on scGSA performance ( 28 , 31 , 32 ). Gene sets cu-
rated from published omics studies or automated text-mining
of biomedical literature range from a dozen to thousands. To
exclude the effect of cell count, we assessed the recovery rate
with a fixed 200 cells per group when all methods consis-
tently performed well (Figure 2 ). Furthermore, the gene sets
with a noise level of 0% were used here, indicating that all
genes in the gene set received the signal. No gene set should
be recognized if no signal was assigned to the signal genes,
i.e. no difference in gene expression was found in the treat-
ment and control groups ( Supplementary Figure S2 ). When
the signal was assigned a 20% increase in the treatment group,
we found that almost all differentially expressed gene sets be-
tween sizes of 200 and 500 were identified by all methods
except ssGSEA. However, in the zero-inflated data, the high
proportion of zeros within smaller gene sets can affect the re-
sults of these methods. In scenario 1, scPS, JASMINE, AUCell
and SCSE performed well with a smaller gene set and had an
almost 100% recovery rate in all cases except 82.7 ± 11.3%
for AUCell and 64.9 ± 8.2% for SCSE with the gene set size of
10 in SSD (Figure 3 A), and even better in RWSD with a higher

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae124#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae124#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae124#supplementary-data
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Figure 2. Effect of the cell count on scGSA performance. ( A ) Recovery rate of scGSA performance on SSD in scenario 1. ( B ) SSD in scenario 2. ( C ) 
RWSD in scenario 1. ( D ) RWSD in scenario 2. Recovery rate ( y -axis) for varying cell count per group ( x -axis) across the seven methods, with a gene set 
size of 100 and a noise level of 0%. The colors represent seven scGSA methods: AddModuleScore (light blue), AUCell (blue), JASMINE (y ello w), scPS 
(red), SCSE (orange), UCell (purple) and ssGSEA (light purple). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SNR (Figure 3 C; Supplementary Figure S1 E). Furthermore, all
methods except ssGSEA performed better in scenario 1 than in
scenario 2 across all gene set sizes. This improved performance
in scenario 1 can be attributed to the higher median number
of cells expressing signal genes, which was 41.25% (32% for
SSD and 44.5% for RWSD, Supplementary Figure S1 G), com-
pared with a lower median number of cells expressing sig-
nal genes—1.75% ( Supplementary Figure S1 H). Count-based
methods such as AddModuleScore performed well with a gene
set size > 50 while UCell and ssGSEA performed poorly across
all gene set sizes in SSD. However, the performance of UCell
improved in RWSD (Figure 3 C, D). Moreover, AUCell per-
formed slightly better with RWSD in scenario 2, and better
with zero-imputed data in scenarios 1 and 2 ( Supplementary 
Figure S3 A, B). AUCell performed better when the data had
a higher SNR and lower dropout rate upon zero imputation
because AUCell randomly assigned ranks to genes with the
same expression, leading to skewed results. This randomiza-
tion considered technical limitations in detecting genes with
consistently low expression. Unlike AUCell, which relies solely
on the ranking of genes within a set, JASMINE considers the
mean rank of the gene set and the ratio of expressed and 

unexpressed genes within or outside the gene set. This dual 
consideration of both gene set rank and the comprehensive 
gene expression profile led to a higher recovery rate when the 
data had a higher dropout rate, like SSD. All methods had im- 
proved performance when zero imputation was applied, espe- 
cially UCell and ssGSEA ( Supplementary Figure S3 A). Thus,
gene set size can be an essential variable in the scGSA, and the 
results should be carefully interpreted. 

Effect of the noise level on scGSA performance 

Although gene sets are annotated molecular and cellular func- 
tions, they were frequently curated based on specific condi- 
tions ( 33 ,34 ), resulting in a likelihood that certain propor- 
tions of the genes are not always associated with the anno- 
tated biological function. Moreover, due to current technical 
limitations, some genes are not detected at single-cell resolu- 
tion ( 35 ). In other words, not every gene within a given set 
accurately represented the underlying biological processes in 

heterogeneous scRNA-seq data ( 36 ). Therefore, we measured 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae124#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae124#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae124#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae124#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae124#supplementary-data
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Figure 3. Effect of the gene set size on scGSA performance. ( A ) Recovery rate of scGSA performance on SSD in scenario 1. ( B ) SSD in scenario 2. ( C ) 
RWSD in scenario 1. ( D ) RWSD in scenario 2. Recovery rate ( y -axis) for varying gene set size ( x -axis) across the seven methods, with a cell count of 200 
and a noise le v el of 0%. 
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he recovery rate of the gene set across different noise levels.
his analysis utilized the simulated dataset with 200 cells per
roup and a gene set size of 100 in scenario 1 and scenario 2.
cPS, JASMINE, AddModuleScore, AUCell and SCSE exhib-
ted strong performance when applied to gene sets composed
ntirely of signal genes (noise level 0%) (see sensitivity in Table
 ), and they consistently performed well in scenario 1 when
he noise level ranges from 0 to 80% (Figure 4 A, C). All meth-
ds performed better when the sparsity was reduced by apply-
ng zero imputation. scPS performed well at noise level 80%
ith and without zero-imputed data in scenario 1 compared
ith other methods, suggesting that it had an advantage in
istinguishing subtle changes. Surprisingly, AddModuleScore
erforms worse at a noise level of 0% compared with 20%
nd 50% noise levels when using zero-imputed data, but this
as not observed in data without zero imputation. Addition-

lly, the performance of SCSE is significantly affected as the
oise level increases in zero-imputed data, indicating that zero

mputation methods can affect the data distribution and struc-
ure, potentially influencing how scGSA performs. The perfor-
ance of UCell was poor in SSD but improved in RWSD and
pon zero-imputed data, and ssGSEA barely detected any gene
et in all cases ( Supplementary Figure S3 C). 
In scenario 2, the recovery rate declined as the noise level in-
creased across all methods. Nevertheless, scPS, JASMINE, AU-
Cell, SCSE and AddModuleScore were able to identify > 80%
of gene sets with a noise level of 20%. However, AUCell, JAS-
MINE, SCSE and UCell detected gene sets even if the genes
in the gene set did not receive any signal (noise level 100%),
especially in scenario 1 with and without zero-imputed data
(see specificity in Table 1 and Supplementary Table S1 ). De-
spite a decrease in specificity in scenario 2, AUCell and JAS-
MINE still detected random gene sets (Figure 4 B, D). There-
fore, JASMINE and AUCell had superior performance in iden-
tifying the differentially expressed gene set but detected more
false-positive gene sets than other methods. This increased
detection of false-positive gene sets by JASMINE and AU-
Cell can be attributed to their reliance on gene expression
rank without accounting for the magnitude of changes. Ad-
ditionally, their sensitivity to minor variations or noise in the
data further contributes to the false-positive detection. In con-
trast, scPS and AddModuleScore return a few false-positive
gene sets at a 100% noise level in data with and without
zero imputation (see the false-positive rate in Table 1 and
Supplementary Table S1 ), which increases their accuracy and
reliability. 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae124#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae124#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae124#supplementary-data


6 NAR Genomics and Bioinformatics , 2024, Vol. 6, No. 3 

Table 1. The sensitivity and false-positive rate of scGSA performance 

Sensitivity F alse Positiv e Rate 

SSD RWSD SSD RWSD 

Scenario 1 
JASMINE 100.0 ± 0.00 100.0 ± 0.00 74.4 ± 7.68 99.7 ± 0.48 
AddModuleScore 99.3 ± 1.89 100.0 ± 0.00 3.5 ± 1.18 4.9 ± 1.66 
AUCell 100.0 ± 0.00 100.0 ± 0.00 44.6 ± 13.66 100.0 ± 0.00 
scPS 100.0 ± 0.00 99.5 ± 0.53 4.9 ± 2.47 4.1 ± 1.97 
SCSE 100.0 ± 0.00 100.0 ± 0.00 25.6 ± 7.75 40.0 ± 6.51 
UCell 29.6 ± 47.67 100.0 ± 0.00 0.8 ± 1.62 11.8 ± 5.73 
ssGSEA 6.1 ± 19.29 17.3 ± 24.25 0.2 ± 0.63 0.7 ± 1.16 
Scenario 2 
JASMINE 100.0 ± 0.00 100.0 ± 0.00 6.0 ± 2.45 25.0 ± 6.78 
AddModuleScore 90.7 ± 6.04 98.2 ± 2.39 2.7 ± 1.70 2.9 ± 1.52 
AUCell 99.9 ± 0.32 98.7 ± 4.11 2.5 ± 1.65 17.0 ± 3.89 
scPS 93.2 ± 5.29 99.3 ± 0.82 2.5 ± 1.72 3.5 ± 2.32 
SCSE 92.3 ± 5.54 98.6 ± 1.65 2.6 ± 1.26 2.7 ± 1.64 
UCell 30.3 ± 36.25 95.9 ± 5.40 1.3 ± 2.26 1.8 ± 1.99 
ssGSEA 0.0 ± 0.00 1.5 ± 2.59 0.0 ± 0.00 0.0 ± 0.00 

Sensitivity is the recovery rate at a noise level of 0%, whereas false-positive rate is the recovery rate at a noise level of 100% with the gene set size of 100 and 
cell count of 200. 

Figure 4. Effect of the noise le v el on scGSA performance. ( A ) Recovery rate of scGSA performance on SSD in scenario 1. ( B ) SSD in scenario 2. ( C ) 
RWSD in scenario 1. ( D ) RWSD in scenario 2. Recovery rate ( y -axis) for varying noise level ( x -axis) across the seven methods, with a cell count of 200 
and a gene set size of 100. 
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ffect of the condition-specific genes on scGSA 

erformance 

o analyze the effect of the unequal number of detected genes
cross groups on scGSA performance, we developed scenarios
 and 4. Briefly, no gene received any signal in these scenar-
os, indicating that they were not differentially expressed in
ny specific condition. Instead, gene sets were chosen based
n their expression patterns; in scenario 3, genes were densely
xpressed across all the cells, and in scenario 4, genes were
andomly chosen (see the Materials and methods for more
etails). This experiment aimed to test if condition-specific
ariation in expression drove the holistic enrichment results
hen gene set genes might not be differentially expressed.
hese scenarios represented observations across cancer cell

ypes ( 17 ,37 ). It is important to note that none of the methods
ould effectively identify any gene set in the absence of a signal
n scenarios 1 and 2 ( Supplementary Figure S2 ). However, in
cenario 3, all methods except scPS detected gene sets without
ondition-specific genes (Figure 5 A, C). These methods, with
he exception of scPS, always gave a positive result if there
as an imbalance in the number of detected genes per group.
nlike scenario 3, the recovery rate decreased in scenario 4

Figure 5 B, D), although all methods except scPS could still
etect a few random gene sets in RWSD. 
We also analyzed how condition-specific genes influenced

cGSA performance. When a higher proportion of genes ex-
lusively expressed in one condition increased in the gene
et, scPS demonstrated its capability to discern the underly-
ng differences in scenario 3. The performance of ssGSEA
mproved when dealing with unequal numbers of genes be-
ween two groups due to its intrinsic ranking procedures.
early all gene sets without condition-specific genes were
etectable by other methods across different gene set sizes
 Supplementary Figure S3 ), even when there were no differ-
nces between genes in gene sets. In scenario 4, we might re-
uire a higher percentage of condition-specific genes to iden-
ify the differences successfully (2% condition-specific genes
n the gene set). The rising quantity of condition-specific genes
onsistently improved the ability to identify the gene sets by
cPS. In conclusion, scPS will correctly identify gene sets, such
s the cell cycle set, which has condition-specific expression in
ancer samples, whereas other methods will incorrectly iden-
ify gene sets that do not have condition-specific expression. 

nalyses of peripheral blood mononuclear cells 

PBMCs) 

o test the performance of these methods on real scRNA-seq
ata, we used human PBMCs measuring impact of atheroscle-
osis (AS) in HIV-positive individuals ( 26 ). All methods were
sed to annotate cellular populations using cell type-specific
ene sets and to detect functional differences in individuals
ith and without AS by KEGG pathways, respectively. The

ell cluster annotations were compared with those from the
riginal study ( 26 ). scPS successfully identified these cell clus-
ers in a cell type-specific manner ( Supplementary Figures S5
nd S6 ). Notably, T-cell clusters demonstrated the highest scPS
cores when assessed against the T-cell-specific gene set, effec-
ively annotating the cell types (Figure 6 A). Similarly, all other
ethods presented here also identified the cell types correctly

 Supplementary Figures S7 –S12 ). 
The seven scGSA methods identified a few overlapping

EGG pathways to be significantly different between AS-
positive and -negative groups in CD8+ T cells, and the ss-
GSEA identified fewer pathways compared with other meth-
ods (adjusted P -value threshold 0.05 shown in Supplementary 
Figure S13 and 0.01 presented in Figure 6 B). ssGSEA exclu-
sively identified 3 out of the 329 gene sets at an adjusted P -
value < 0.05, one of which was the taste-transduction path-
way, which we used as an example to investigate ssGSEA
scores (Figure 6 C). As a comparison, the hepatitis C path-
way was also evaluated, which was only found by scPS and
in the original paper ( 26 ). The ratio of non-zero genes among
the data was low in both groups (Figure 6 C, top). The size
of the taste-transduction pathway is 86 genes, with only 15
genes expressed in the data, while 117 out of 158 genes from
the hepatitis C pathway are expressed. Furthermore, the av-
erage gene expression of the hepatitis C pathway exhibited a
normal distribution, with most of the cells expressing gene set
genes at the > 0 level, whereas most of the taste-transduction
pathway genes had zero expression following a negative bi-
nomial distribution (Figure 6 C, bottom). Thus, ssGSEA iden-
tified small-size pathways with low expression. Moreover, the
capacity of ssGSEA to accurately identify the significant path-
way diminishes when subjected to a stringent threshold for
the adjusted P -value. In contrast, both scPS and UCell exhib-
ited greater capabilities in this regard (Figure 6 B). Importantly,
the MAPK signaling pathway and the JAK–ST A T signaling
pathway, both of which were identified by the original paper,
were also identified using the scPS, but not by other methods.
Furthermore, several interesting pathways were identified us-
ing the scPS that were not identified in the original analysis.
These pathways include: the adrenergic signaling in cardiomy-
ocytes pathway, the mTOR signaling pathway, the NF- κB sig-
naling pathway and the chemokine signaling pathway. The
identification of these pathways in the context of the CD8+
T-cell cluster from HIV-positive individuals with and without
AS highlights the potential of our method to uncover signif-
icant biological processes that may have been overlooked in
previous studies. For instance, the mTOR and NF- κB signal-
ing pathways are crucial for T-cell function and activation,
which are vital in both HIV progression and the development
of atherosclerosis. The adrenergic signaling and chemokine
signaling pathways are also known to play roles in cardio-
vascular and immune responses, respectively. This reveals that
the scPS can provide deeper insights into the pathophysiology
of HIV and atherosclerosis. Thus, scPS is one of the robust
methods that has applicability to a wider range of datasets. 

Discussion 

Single-cell gene set analysis (scGSA) provides a powerful ap-
proach to unraveling the intricacies of cellular processes and
heterogeneity from high-throughput datasets ( 16 ,38 ). By ex-
amining individual cells, scGSA enables the identification of
gene sets or pathways that might be overlooked in pseudo-
bulk analyses, particularly highlighting the enrichment or de-
pletion of functions in rare cell types ( 39 ,40 ). Integration with
other single-cell omics data enhances the comprehensiveness
of analyses and, by focusing on gene sets, scGSA improves sta-
tistical power, especially in scenarios where individual genes
may not exhibit significant changes but collectively contribute
to specific biological functions ( 2 , 6 , 8 ). Furthermore, scGSA fa-
cilitates personalized medicine by uncovering molecular signa-
tures associated with individual cells, aiding in tailored ther-
apeutic interventions ( 41 ). Overall, scGSA serves as a crucial

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae124#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae124#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae124#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae124#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae124#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae124#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae124#supplementary-data
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Figure 5. Effect of the condition-specific genes on scGSA performance. ( A ) Recovery rate of scGSA performance on SSD in scenario 3. ( B ) SSD in 
scenario 4. ( C ) RWSD in scenario 3. ( D ) RWSD in scenario 4. Recovery rate ( y -axis) for the gene sets without the condition-specific genes (left) and with 
the condition-specific genes (right) across the se v en methods, with a cell count of 200 and a gene set size of 100. For SSD and RWSD, no signal was 
assigned to the signal genes in scenario 3 (densely expressed genes) and scenario 4 (random genes). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tool for advancing our understanding of cellular biology and
disease mechanisms at a finer resolution. Here, we propose a
new method, scPS, and provide a detailed comparison of ex-
isting scGSA methods. 

By capturing cellular heterogeneity and measuring tran-
scripts in large numbers of cells, the scRNA sequencing tech-
nique alleviates concerns about statistical power. As it cap-
tures the diversity of cell types and states, even analyses with a
relatively modest number of cells can yield meaningful insights
into molecular functions defined by gene sets. Even when deal-
ing with smaller sample sizes, the diversity captured at the
single-cell level compensates for the potential loss in statistical
power observed in bulk analyses. All methods, except ssGSEA,
performed well with relatively smaller cell counts, and the re-
covery rates vary with the number of cells expressing the genes
in the gene set. With sparse data below 50 cells, where PCA
cannot provide accurate covariance estimates, scPS is not the
best method, whereas AUCell and JASMINE may be better
choices. 

The large gene sets are beneficial for comprehensive infer-
ence of a biological function, especially for transcription fac-
tor gene sets with thousands of genes involved. However, these
gene sets are generalized, and only a fraction of the genes 
within the gene set may be pertinent to the experimental con- 
ditions in reality. All methods except ssGSEA performed well 
when the gene sets consisted of genes densely expressed across 
the cells (Figure 3 A, C; Supplementary Figure S4 A). How- 
ever, when genes in the gene set are sparsely expressed, scGSA 

performance improved with the gene set size (Figure 3 B, D; 
Supplementary Figure S4 B). All the methods except ssGSEA 

performed well when the gene set size was > 100 in scenario 

1 and scenario 2. We recommend applying AUCell and JAS- 
MINE to any gene set size less than 50 but greater than 10 

for a sparse gene expression matrix of the gene set. Although 

scPS is not optimal for a sparse gene set matrix, in the size 
range from 10 to 50 zero imputation improves the recovery 
rates. Importantly, scPS has a low false-positive discovery rate 
(Figures 4 and 5 ; Supplementary Figure S4 C, D). 

Interestingly, in scenarios 3 and 4, large gene sets, even with- 
out the condition-specific expression, led to a higher false- 
positive discovery rate (Figure 5 ). If there is an unequal num- 
ber of genes between two conditions, methods other than 

scPS have a high false-positive discovery rate. Notably, scPS 
weighs genes using their PCA loadings and thus achieves lower 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae124#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae124#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae124#supplementary-data
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Figure 6. Application of scPS to PBMC data from HIV-positive people with and without atherosclerosis (AS). ( A ) scPS performance of a T-cell 
cluster-specific gene set across all cell subpopulations. Two-sample Wilcoxon signed-rank test, * indicates a P -value < 0.05, while **** signifies a 
P -value < 0.0 0 01. ( B ) KEGG pathways ( y -axis) dysregulated in CD8+ T cells from HIV-positive people with and without AS across the seven methods 
with an adjusted P -value of 0.01. ( C ) The distribution of the sparsity and average gene expression of the gene set in CD8+ T cells from HIV-positive 
people with (red) and without AS (blue). The top panel shows the number of genes ( y -axis) across the gene set’s non-zero gene ratio ( x -axis). The bottom 

panel shows the number of cells ( y -axis) across the average gene expression (log-normalized) of the gene set ( x -axis). 
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false-positive discovery rates in all cases, even when genes
were expressed in a condition-specific manner. The risk lies in
the potential dilution of signal specificity, as several canonical
pathways are generalized collections of genes associated with
biological function without carefully considering the context
of investigation ( 34 ). These gene sets, nevertheless, are cru-
cial in investigating biological function in high-throughput
datasets. Our results show that rank-based methods are sus-
ceptible to detecting false-positive gene sets because they rely
on the relative ranking of genes rather than the magnitude of
changes. Significant variability or noise in the data may lead to
fluctuations in gene rankings, causing these methods to iden-
tify false-positive gene sets. As we discussed before in cases
where the gene set size is large, random variations or noise
may lead to the identification of false positives, especially if
the ranking of individual genes within the gene set is not ro-
bust. scPS used the PCs and their variance to capture the gene
set activity between and within diverse cell populations by ac-
counting for the variations among cells within the gene set
to estimate the biological function comprehensively. Further-
more, the incorporation of actual expression levels contributes
to the biological relevance of the observed enrichments. scPS
not only captures the nuances of cellular heterogeneity but
also enhances the performance of scGSA by navigating the
challenges posed by sparsity, ultimately providing a more ac-
curate portrayal of biological processes at single-cell resolu-
tion. Additionally, with the highest specificity, scPS can iden-
tify the truly active and differently expressed gene sets, lower-
ing the false-positive gene set detection rate. Most importantly,
scPS utilizes Seurat data structures, streamlining implementa-
tion as Seurat is one of the most commonly used packages for
scRNA-seq data analysis. 

In conclusion, this manuscript provides a decisive compar-
ison across scGSA methods with two different types of simu-
lated data and four scenarios representing real biological data.
In particular, four scenarios model varying levels of dropout
events. ssGSEA, a method originally developed for bulk RNA-
seq, did not perform well and has been reported in ( 17 ). In
addition, we show that the application of imputation meth-
ods can improve the performance of all the methods. Thus,
scPS performs best in controlling for false positives, and other
methods specifically developed for single-cell data perform
reasonably well. 

Data availability 

The data used by this study can be accessed in previously pub-
lished studies at GSE164381 ( 25 ) and GSE198339 ( 26 ). All
code and models are available at https:// github.com/ Thakar-
Lab/scPS and https://doi.org/10.5281/zenodo.13620619 . 

Supplementary data 

Supplementary Data are available at NARGAB Online. 
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