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IQ motif-containing GTPase-activating proteins (IQGAPs) are a class of scaffolding
proteins, including IQGAP1, IQGAP2, and IQGAP3, which govern multiple cellular
activities by facilitating cytoskeletal remodeling and cellular signal transduction. The role
of IQGAPs in cancer initiation and progression has received increasing attention in recent
years, especially in hepatocellular carcinoma (HCC), where the aberrant expression of
IQGAPs is closely related to patient prognosis. IQGAP1 and 3 are upregulated and are
considered oncogenes in HCC, while IQGAP2 is downregulated and functions as a tumor
suppressor. This review details the three IQGAP isoforms and their respective structures.
The expression and role of each protein in different liver diseases and mainly in HCC, as
well as the underlying mechanisms, are also presented. This review also provides a
reference for further studies on IQGAPs in HCC.
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1 INTRODUCTION

IQ motif-containing GTPase-activating proteins (IQGAPs) are a family of evolutionarily conserved
proteins found in eukaryotic cells, ranging from yeast to humans, and consist of three closely related
homologs; IQGAP1, IQGAP2, and IQGAP3. These homologs comprise multiple domains involved
in regulating a broad spectrum of biological processes such as cytoskeleton remodeling, cytokinesis,
protein trafficking, cell adhesion, proliferation, migration, and tumorigenesis (1–6). Aberrant
IQGAP expression has been extensively reported in a range of malignancies, including liver,
gastric, lung, breast, and colon cancers, and is highly related to poor clinical characteristics and
prognosis (7–10).

Globally, liver cancer is a significant public health threat with increasing prevalence. By 2025,
liver cancer is anticipated to affect more than one million individuals annually (11). Hepatocellular
carcinoma (HCC), the most common subtype of primary liver cancer, which is the sixth most
frequently diagnosed type of cancer and the third most common cause of cancer-related mortality
worldwide in 2020 (12). Several imperative risk factors such as chronic Hepatitis B and C virus
(HBV and HCV) infections, alcoholic and non-alcoholic liver diseases, e.g., non-alcoholic fatty liver
disease (NAFLD) and the advanced state of NAFLD termed as non-alcoholic steatohepatitis
(NASH), and hereditary hemochromatosis have been described for HCC (13). Apart from these
risk factors, any other causes leading to liver cirrhosis, including HBV and HCV, are also identified
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as crucial risk factors for HCC (11, 14). Over the last decade, the
discovery of novel biomarkers and innovation in imaging
technologies have led to tremendous progress in the
management and therapy of HCC. Hepatectomy and liver
transplantation have been the mainstays of treatment for
patients with HCC (15). Additionally, alternative adjuvant
therapies such as radiofrequency ablation, transarterial
chemoembolization, and immunotherapy have dramatically
improved patient prognosis (11).

IQGAPs are important molecular factors that play a
comprehensive and distinctive role in HCC initiation and
progression. IQGAP1 is overexpressed in HCC and contributes
to cancer development and advancement (16, 17). IQGAPs have
complex interactions with several different factors at the
molecular level and thus play a vital role in cancer progression.
Likewise, IQGAP1 can bind to the cell cycle regulators and might
boost cell division and enhance the invasive and migratory
abilities of HCC cells, as shown for the Huh-7 cell line (18).
Moreover, IQGAP1 also interacts with certain transcription
factors and co-activators and affects the signaling pathways
involved in apoptosis and survival processes (19). Additionally,
IQGAP1 has been shown to render anoikis resistance and
metastasis in HCC (19, 20). Similar to IQGAP1, IQGAP3 is
considered an oncogene in HCC, where it supports intrahepatic
and distant metastasis and epithelial-to-mesenchymal transition
(EMT) (21, 22). In contrast to isoform 1 and 3 of IQGAP,
IQGAP2 is considered a tumor suppressor in HCC since its
expression coincides with patient prognosis and is decreased in
HCC tissues (23). Furthermore, IQGAP2-deficient mice were
more prone to spontaneously growing HCC (24). Therefore, all
these findings indicate that IQGAPs are potential therapeutic
targets in HCC. This review details the three IQGAP isoforms
and their distinct structures. In addition, we compare the
characteristics of IQGAPs and summarize their expression and
functions in different liver diseases and mainly in HCC, as well as
their associated mechanisms.
2 THE ISOFORMS OF IQGAPS

Although IQGAPs share a similar domain composition, they
differ in tissue expression, subcellular localization, and function.
IQGAP1, the most extensively investigated isoform among
IQGAPs, has gained considerable attention since its discovery
in 1994 (25). IQGAP1 is a ubiquitously expressed scaffold
protein involved in various vital cellular functions (4, 5).
IQGAP1 has been postulated to maintain matrix homeostasis
via collagen phagocytosis in physiological tissue remodeling (26).
Furthermore, IQGAP1 appears to be an exceptionally attractive
therapeutic target because it acts as a hub for signaling pathways
involved in cancer progression (20, 27–29).

IQGAP2 was initially identified in 1996 as a large cytoplasmic
scaffold protein that is predominantly expressed in the liver but
also in the prostate, kidney, stomach, testis, and platelets (30).
IQGAP2 is a tumor suppressor, as a decreased expression has
been observed in human breast cancer and HCC (23, 31).
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Moreover, IQGAP2-mutant mice are susceptible to developing
HCC. Additionally, IQGAP2 inhibits EMT and angiogenesis and
promotes apoptosis in breast cancer. Thereby, low expression
levels of IQGAP2 results in a poor prognosis for patients (7, 31).

IQGAP3 has received scant attention despite its discovery in
2007 (32) and its detection in various organs, including the liver,
stomach, ovaries, prostate, breast, pancreas, and lung (8, 33–38).
IQGAP3 is mainly expressed in brain (39) and is critical for
regulation of neurite outgrowth of the neurons (32). In addition
to regulating mitosis progression, genome integrity, and stability,
IQGAP3 is necessary and sufficient for proper cell proliferation
and migration (35, 40). Accordingly, IQGAP3 is classified as an
oncogene owing to its intimate association with tumorigenesis
and metastasis. Its expression is inversely linked with clinical
characteristics and survival in most cancers (8, 38, 41, 42).
3 THE MOLECULAR DOMAINS
OF IQGAPS

IQGAPs have a high degree of amino acid sequence homology
and a comparable domain structure (Figure 1), with IQGAP1
having 62% and 59% amino acid sequence identity to IQGAP2
and IQGAP3, respectively (43, 44). IQGAPs contain six distinct
functional domains depending on the amino acid sequence.
These diverse domains allow them to bind to a variety of
partners and modulate the spatiotemporal distribution of
various signal transduction complexes (9, 45).

Starting from the N-terminus, IQGAPs comprise a
calmodulin homology domain (CHD) that mediates actin-
binding (46). For instance, the interaction between the CHD of
IQGAP1 and actin filaments governs the cytoskeleton
modulation to facilitate actin binding and polymerization, thus
further regulating cell division, cell migration, and the stability of
cell-cell contacts (47). Moreover, it has been shown previously
that IQGAP1 dynamically contributes to the formation of the
spine head in the cultured rat hippocampal neurons through
CHD (48).

Following the CHD is the coiled-coil (CC), also known as
heptad domains, which are characterized by the presence of
repetitive hydrophobic and charged amino acids (49). The CC
repeat sequence enables IQGAP1 and IQGAP2 to bind to the
ERM protein family (ezrin, radixin, and moesin) that crosslinks
actin-based cytoskeletons to plasma membranes and participates
in multiple intracellular signaling pathways, reinforcing the role
of IQGAPs as cytoskeletal regulators and signal transduction
hubs (50, 51). Additionally, the CC repeat region of all IQGAPs
isoforms st imulates neural development and spine
morphogenesis via interaction with valosin containing protein
(VCP) which also suggests a crucial role of IQGAPs in the
pathophysiology of neurodegenerative diseases (52).

The polyproline protein-protein (WW) domain contains two
functionally conserved tryptophans, W, which interacts with
other proteins, including proline-rich regions. WW domain of
IQGAP1, through a polyproline motif, binds to classical MAP
kinases (MAPK) and activates downstream signaling pathways
June 2022 | Volume 12 | Article 920652
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and advances tumor development, growth, and invasion (53, 54).
Likewise, interruption of IQGAP1-kinase- connections by
ectopic expression of WW peptide in mice selectively
suppressed Ras-MAPK -mediated oncogenesis and tumor
invasion. Moreover, this effect also remarkably improves the
life span of tumor-bearing mice (54). However, a later study
reported contradictory findings that the WW domain of
IQGAP1 was neither sufficient nor essential for binding to
MAPK, whereas the IQ domain that immediately follows WW
domain was both adequate and necessary for high-affinity
IQGAP1-kinase interaction (55).

IQ domain comprises of four tandem isoleucine-glutamine
(IQ) motifs. This domain interacts with calmodulin, a calcium-
sensing protein capable of binding to and regulating a diverse
array of target proteins (56). The IQ domain also interacts with
protein kinases and cell surface receptors such as epidermal
growth factor receptor (EGFR) (55, 57–60). The IQ domain of
IQGAP1 activates MAPK signaling cascade by binding to EGFR,
which is associated with epidermal cancer progression and
invasion (61). Subsequently, IQGAP1-IQ motif decoy peptide
supplementation in vivo inhibited the oncogenic signaling
pathway and carcinogenesis without compromising normal
epidermal proliferation or differentiation (61).

The IQ domain is followed by a GTPase activation-related
structural domain (GRD) that is responsible for the
nomenclature of IQGAPs (49). This domain is highly
homologous to the functional components of Ras GTPase-
activating proteins (GAPs) and interacts with small GTPases
(3, 9, 62). The crystal structure of GRD showed that threonine
replaces the catalytic “arginine finger” required for GTP
Frontiers in Oncology | www.frontiersin.org 3
hydrolysis; thus, it does not have GAP function, failing to
hydrolyze GTP but rather stabilizing the GTP-bound protein
in its active state (63). Such interaction between GRD domain of
IQGAP2 and small GTPases is mechanistically crucial for the
polymerization of actin filaments during cancer progression
(64, 65).

Finally, IQGAPs contain a RasGAP C-terminal (RGCT)
structural domain that significantly contributes to cell-cell
adhesion, cell polarization, and directional migration by
binding to a variety of proteins, including E-cadherin and b-
catenin (66–69). Furthermore, IQGAP1 enhanced extracellular
matrix (ECM) degradation by binding to the exocyst subunits via
RGCT domain to prime tumor cell metastasis and invasion,
while the elimination of the exocyst binding site abrogated the
enhancement of IQGAP1-induced ECM degradation (70, 71).
This indicates that IQGAP1-regulated cytoskeletal remodeling
plays an aggressive role in tumor progression. Likewise,
mutations of the RGCT can severely impair the interaction of
IQGAP1 with small GTPases; therefore, complying that the
domains adjacent to GRD are also crucial for the binding of
IQGAPs with small GTPases of Rho family proteins (72–75).
4 THE RELATIONSHIP BETWEEN IQGAPS
AND LIVER DISEASES

As delineated above, IQGAP scaffold proteins are crucial for a
variety of vital cellular processes, and their molecular
interactions with other biological molecules are very important
for the development and progression of cancer. Likewise, role of
FIGURE 1 | Schematic illustration of the domain organization and amino acid homology of the IQGAPs family and the binding partners of the respective domains.
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IQGAPs has been quite extensively explored in various cancers
including HCC. However, the investigations for the implications
of IQGAPs in other liver diseases such as fatty liver disease,
fibrosis, and cirrhosis are still too scarce and need more scientific
research to explore the role and importance of these scaffold
proteins in liver diseases (76–79).

4.1 Fatty Liver Disease
Fatty liver disease is a chronic liver disease also worthy of
attention, affecting more than 25% of the population globally
(80). Moreover, studies have shown that IQGAPs play an
essential role in fatty acid and glucose metabolism (76–78).
Likewise, a recent study demonstrated that in IQGAP1 knock
out mice (Iqgap1–/–), fatty acid oxidation and ketogenesis were
significantly reduced compared to the wild type (WT)
counterparts. Moreover, livers from Iqgap1–/– mice showed
pale appearance and exhibited microsteatosis under a high-fat
diet, concomitant with elevated levels of hepatic triglyceride than
WT mice implying the compromised roles of peroxisome
proliferator-activated receptor alpha (PPAR-a) and
mammalian target of rapamycin (mTOR), essential regulators
of fatty acid b-oxidation in livers of Iqgap1–/– mice (76). In
addition, a previous study by Chawla and colleagues showed that
IQGAP1 null mice exhibited impaired glucose tolerance and
were unable to clear glucose as efficiently as WT mice. The
defective glucose homeostasis might be due to impaired insulin
signaling in the absence of IQGAP1 (77). These data imply that
IQGAP1 plays a significant role in the complex metabolic
regulatory pathways, especially that of fatty acid, glycogen, and
insulin signaling in the liver (76, 77). Likewise, the role of
IQGAP2 in metabolic homeostasis was demonstrated by
Vaitheesvaran and colleagues. IQGAP2 null mice fed with a
standard laboratory diet displayed impaired glucose and fatty
acid metabolism, suggesting that IQGAP2 deletion results in a
pre-diabetic hepatic environment paving the way for the NAFLD
manifestation. Moreover, Iqgap2-/- mice had high blood glucose
levels and were overweight compared to the WT mice (81).
However, another previous study showed that abrogation of
IQGAP2 protects against diet-induced hepatic steatosis due to
compromised uptake of fatty acid. Hepatocytes from Iqgap2-/-

mice fed with high-fat diet displayed selective loss of the
facilitated phase of long-chain fatty acids (LCFA) uptake and
retention of the intact passive phase of LCFA uptake.
Additionally, Iqgap2-/- livers expressed remarkably lower de
novo synthesis of lipids in the hepatocytes than the WT
counterparts. Similarly, livers from IQGAP2 null mice depicted
improved sensitivity to insulin. These findings suggest the
fundamental role of IQGAP2 in the coordination of metabolic
physiological processes involved in the cellular uptake of
functional fatty acid and lipid, lipid synthesis and processing,
and, plausibly, regulating glucose levels (78). Apart from the
delineated roles of IQGAP1 and IQGAP2, additional research is
required to further explore the role of IQGAPs in the
pathophysiology of fatty liver disease.
Frontiers in Oncology | www.frontiersin.org 4
4.2 Fibrosis
Fibrotic liver occurs in most types of chronic liver ailments, e.g.,
chronic HBV and HCV infections and alcoholic fatty liver
disease, and is characterized by the excessive buildup of ECM
proteins including collagen. Fibrosis is an aberrant tissue
restoration process in response to long-term and persistent
liver injuries that may further develop into liver cirrhosis,
failure, or cancer if left untreated. Hitherto, chronic liver
diseases coupled with fibrotic liver have resulted in remarkable
worldwide morbidity and mortality (82–84). Since IQGAP1 is
one of the vital scaffolding proteins that have established pivotal
roles in cytoskeleton remodeling and rearrangements of cellular
networks and various vital cellular processes. It implies that
IQGAP1 might have a potential role in the modulation of liver
fibrosis. Likewise, in a recent study, mRNA and protein levels of
IQGAP1 were shown to be significantly elevated in CCl4-induced
liver fibrosis mice and TNF-a-treated hepatic stellate cell (HSC)
line, LX-2 cells, which might be related to the development and
advancement of liver fibrosis. Furthermore, the overexpression
of IQGAP1 in activated LX-2 cells promoted the secretion of
inflammatory cytokines. These findings suggest the putative role
of IQGAP1 in liver inflammation and fibrogenesis (85). The
increased levels of IQGAP1 in fibrotic liver were also confirmed
by Ma and colleagues, who further demonstrated the cell type
fraction responsible for such increase (79). IQGAP1 expression
was found to be remarkably elevated in non-parenchymal cells
and myofibroblasts during murine liver fibrosis (79).
Sphingosine 1-phosphate (S1P) mediated bone marrow
mesenchymal stromal cells (BMSCs) migration from bone
marrow to the injured liver is one of the primary sources of
myofibroblasts (86). Likewise, Ma and colleagues showed that
IQGAP1 mediated SIP-induced BMSC migration and motility
(79, 86). S1P induces membrane translocation of IQGAP1 and
promotes the interaction between IQGAP1 and Cdc42/Rac1 to
facilitate BMSCmigration to the liver. Moreover, the knockdown
of IQGAP1 significantly reduced cell viability and migratory
capacity in BMSC cells (79).
4.3 Viral Hepatitis
Viral infections of liver, especially HBV and HCV infections, are
one of the top infectious diseases and are responsible for the
demise of 1.4 million people per annum worldwide (87, 88).
IQGAP2, mainly expressed in the liver, is shown to have a novel
role in the innate antiviral response. The functional analysis
revealed that IQGAP2 regulates many of the interferon (IFN)
required anti-hepatitis C viral genes together with RelA subunit
of nuclear factor kB (NF-kB). Following IFN treatment, IQGAP2
physically interacts with RelA to mediate the early activation of
RelA and the downstream targets of NF-kB, which ultimately
protects against HCV infection (89). Several studies have also
suggested the involvement of IQGAPs in HBV-induced HCC, as
detailed in the section “Action mechanisms of IQGAPs in HBV-
caused HCC”.
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4.4 Hepatocellular Carcinoma
IQGAPs have attracted increasing interest in cancer research
because of their fundamental contribution to cytoskeletal
remodeling and signal transduction. Numerous studies have
shown an association between IQGAPs and HCC initiation,
metastasis, and recurrence, as well as poor prognosis in
patients with HCC (10, 16–24, 29, 81, 90–98) (details in Table 1).

IQGAP1 is considered an oncogene in HCC as its mRNA and
protein levels are elevated in human HCC tissues compared to
para-tumor and normal liver tissues. Moreover, high IQGAP1
expression is associated with poor clinical outcomes (16, 17, 23,
91). In HCC tissues, IQGAP1 expression is positively correlated
with tumor size, number, stage, and HBV surface antigen
(HBsAg) and alpha-fetoprotein (AFP) expression but inversely
correlated with tumor differentiation (16, 23). IQGAP1 promotes
Frontiers in Oncology | www.frontiersin.org 5
microvascular invasion and distant metastasis in HCC,
accounting for the higher postoperative recurrence rate and
shorter disease-free survival and overall survival of patients
with elevated IQGAP1 expression (16). IQGAP1 expression is
also upregulated in HBV-induced HCC and is linked to poor
prognosis (20).

Consistent with the predominant expression of IQGAP2 in
the liver, convincing evidence supports a tumor suppressor role
for IQGAP2 in HCC. Decreased IQGAP2 expression is observed
in most patients with HCC and is associated with larger tumor
size, advanced tumor stage, and poorer tumor differentiation, as
well as shorter postoperative tumor-free survival and overall
survival after hepatectomy (23, 91). Both low IQGAP2 and high
IQGAP1 levels have been reported as independent prognostic
risk factors for poor postoperative survival in patients with HCC.
TABLE 1 | Summary of the role of IQGAPs in tumor oncogenesis and related function/clinical characteristics.

Year
(refs)

Species* Pathway Function/Clinical characteristics of IQGAPs

2008
(24)

M Wnt-b-catenin-cyclin D1 IQGAP1 hepatocarcinogenesis↑
IQGAP2 cancer initiation↓

2008
(90)

H – IQGAP3 hepatocarcinogenesis↑

2010
(17)

H/M/C IQGAP1-PI3K-AKT IQGAP1 cell proliferation↑

2010
(91)

H/C – IQGAP1 hepatocarcinogenesis↑
IQGAP2 cancer initiation↓

2013
(92)

H/M/C Bile acid-IQGAP1-YAP1 IQGAP1 cell proliferation↑; cellular adhesion↓; hepatocarcinogenesis↑

2013
(93)

H/M Wnt-b-catenin IQGAP2 cancer initiation↓

2014
(81)

M – IQGAP2 maintain redox equilibrium; cell proliferation↓

2014
(23)

H – IQGAP1 tumor size↑; TNM stage↑; tumor differentiation↓; disease-free survival↓; overall survival time↓
IQGAP2 tumor size↓; TNM stage↓; tumor differentiation↑; disease-free survival↑; overall survival time↑

2015
(94)

H/C IQGAP1-b-catenin IQGAP1 tumor differentiation↓; cell proliferation↑; migration↑

2015
(95)

M IQGAP1-Ras IQGAP1 hepatocarcinogenesis↑

2016
(96)

H – IQGAP3 tumor size↑; intrahepatic metastasis↑; HBsAg↑; TNM stage↑

2016
(97)

C IQGAP1-Ras IQGAP1 cell growth↑; proliferation↑; invasion↑; apoptosis↓

2017
(16)

H/C – IQGAP1 intrahepatic metastasis↑; microvascular invasion↑; tumor recurrence risk↑; mortality↑; cell
migration↑; invasion↑; EMT↑

2017
(22)

H/M/C IQGAP3-TGF-b IQGAP3 cell migration↑; invasion↑; EMT↑; TNM stage↑; tumor size↑; intrahepatic metastasis↑; overall
survival↓

2017
(18)

C HBx-CDC42-IQGAP1 IQGAP1 cell proliferation↑; migration↑; apoptosis↓

2019
(21)

H/M/C E2F1-IQGAP3-PKCa-PI3K-AKT IQGAP3 tumor size↑; HBsAg↑; intrahepatic and distant metastasis↑; overall survival time↓; cell
proliferation↑

2020
(20)

H/M/C HBV-ROS-IQGAP1-Rac1-Src/FAK IQGAP1 tumor size↑; HBsAg↑; AFP↑; intrahepatic metastasis↑; BCLC stage↑; overall survival↓; cell
migration↑; invasion↑; anoikis↓

2021
(98)

C AMD1-IQGAP1-FTO-NANGO/SOX2/
KLF4

IQGAP1 stemness↑

2021
(29)

M/C IQGAP1- YAP1- NUAK2 IQGAP1 cell proliferation↑; tumor growth↑

2021
(19)

C IQGAP1-MST2/LATS1-YAP1;
IQGAP1-AKT/ERK

IQGAP1 cell proliferation↑; cell apoptosis↓; tumorigenesis↑

2022
(10)

M IQGAP1/NF-kB IQGAP1 hepatocarcinogenesis↑
*H, human; M, mice; C, cell.
The symbol “↑, ↓” mean increase and decrease, respectively.
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Furthermore, patients with IQGAP1+/IQGAP2- tumors have the
worst prognosis, whereas those with IQGAP1-/IQGAP2+ tumors
have the best prognosis (23). Thus, positive IQGAP1 and
negative IQGAP2 are substantially related to HCC progression,
validating the distinct functions of IQGAP1 and IQGAP2
in HCC.

IQGAP3, like IQGAP1, is also considered an oncogene in
HCC. IQGAP3 is overexpressed in HCC tissues. Its expression is
associated with larger tumor size, advanced tumor stage, and
poor tumor differentiation (22, 96). IQGAP3 promotes
intrahepatic and extrahepatic metastasis in HCC, which
dramatically shortens patient survival time (21, 22).
Furthermore, IQGAP3 is a novel biomarker for HCC screening
and diagnosis and is superior to AFP for detecting small HCCs
(96). IQGAP3 can be used as a complementary biomarker of
AFP to improve the accuracy of AFP-negative HCC. The
combination of AFP, IQGAP3, and chaperonin containing
TCP1 complex subunit 3 (CCT3) significantly enhanced the
discriminatory ability of HCC compared to AFP alone (96).
5 ACTION MECHANISM OF IQGAPS
IN HCC

Aberrant activation of multiple signaling pathways in HCC, such
as the Wnt/b-catenin, Hippo, transforming growth factor b
Frontiers in Oncology | www.frontiersin.org 6
(TGF-b) , receptor tyrosine kinase (RTK)-act ivated
phosphatidylinositol 3-kinase/AKT/mTOR (PI3K/AKT/
mTOR), and Ras/Raf/MEK/ERK (also known as the MAPK/
ERK) pathways, leads to uncontrolled cell division,
differentiation, proliferation, motility, and apoptosis (Figure 2).
Mounting studies have shown that dysregulated IQGAP
expression promotes HCC progression and plays a crucial role
in HBV-induced HCC.

5.1 IQGAPs Influence Multiple Key
Oncogenic Pathways in HCC
5.1.1 Wnt/b-Catenin Signaling Pathway
The canonical Wnt/b-catenin signaling pathway is involved in the
maintenance of cellular homeostasis and proliferation (99, 100). In
the absence of Wnt, b-catenin is trapped in the cytoplasm by a
destructive complex resulting in its ubiquitination and eventual
degradation. Furthermore, Wnt binds to the transmembrane
receptor Frizzled and low-density lipoprotein receptor-related
protein 5/6 (LRP5/6) to trigger phosphorylation and activation of
Dishevelled family of proteins. This results in the prevention of b-
catenin destruction, leading to its release and accumulation,
followed by translocation to the nucleus, where it binds to
transcription factors and activates the transcription of
downstream target genes and ultimately leads to aberrant cell
proliferation and neoplasm formation. Scaffold proteins have been
shown to upregulate Wnt/b-catenin signaling in human HCC,
FIGURE 2 | Schematic diagram of IQGAPs-mediated signaling pathways involved in the pathogenesis of hepatocellular carcinoma.
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thereby contributing to the malignant progression of HCC (101).
Interestingly, b-catenin expression and signaling activity in HCC
tissues is positively correlated with IQGAP1 expression and
inversely correlated with IQGAP2 expression (24, 93).
Furthermore, these studies showed upregulation of IQGAP1 and
downregulation of IQGAP2 exceptionally activate the Wnt/b-
catenin signaling pathway. Increased Wnt/b-catenin signaling is
strongly implicated in increased HCC cell proliferation, migration,
and EMT, which is clinicopathologically correlated with the degree
of tumor malignancy (94). However, the elucidation of the precise
mechanisms of how IQGAPs activate the Wnt/b-catenin signaling
pathway warrants further study.

5.1.2 Hippo Signaling Pathway
The Hippo signaling pathway is evolutionarily conserved and
governs organ development and homeostasis by regulating cell
proliferation, apoptosis, cell fate, and stem cell self-renewal (102,
103). The core components of Hippo signaling include kinases
MST1/2 and LATS1/2, transcriptional cofactors yes-associated-
protein-1 (YAP), and transcriptional coactivator with PDZ-
binding motif (TAZ). Upon activation of the Hippo kinase
cascade, phosphorylated YAP/TAZ is retained in the cytoplasm
and then degraded by ubiquitination. Alternatively, the
inactivation of upstream kinases results in YAP/TAZ
translocation to the nucleus, where they interact with various
transcription factors to induce target gene expression (104).
Accordingly, the dysregulated Hippo pathway may be involved
in cancer initiation and progression by increasing tumor cell
proliferation and migration and inhibiting apoptosis (103, 105).

Delgado et al. and Anakk et al. demonstrated that IQGAP1 is
an upstream regulator of the Hippo pathway and promotes HCC
by activating YAP (29, 92). IQGAP1 can bind to LATS1 and
MST2 through the IQ domain and scaffold the MST2-LATS1
complex. However, it inhibits the kinase activity of MST2 and
LATS1 and negatively regulates the MST2-LATS1 pro-apoptotic
signal (19). Furthermore, bile acids act as promoters of hepatic
tumorigenesis and upregulate the Hippo pathway in an
IQGAP1-dependent manner (19, 92). In the absence of
IQGAP1, bile acids fail to promote cell proliferation because of
the reduced levels of IQGAP1-activated YAP (19, 92). Delgado
et al. also reported that IQGAP1 activated the YAP-NUAK
family kinase 2 (NUAK2) positive feedback loop to promote
HCC cell proliferation and growth and accelerate HCC
tumorigenesis and growth in mice (29). The inhibition of
NUAK2 was shown to attenuate YAP-dependent cancer cell
proliferation and liver tumor growth (106). These results suggest
that activation of the Hippo signaling pathway by IQGAP1 is
essential for hepatocarcinogenesis and progression and may be a
promising therapeutic target for liver cancer.

5.1.3 TGF-b Signaling Pathway
The TGF-b signaling pathway affects cellular homeostasis by
influencing cell replication, growth, differentiation, and
migration (107, 108). Activated TGF-b binds to TGF-b
receptor II (TbRII) and recruits the TbRI receptor to form a
receptor complex, followed by phosphorylation and activation of
a group of related intracellular proteins Smad2/3. Activated
Frontiers in Oncology | www.frontiersin.org 7
Smad2/3 interacts with Smad4 and forms the Smad2/3/4
complex, which translocates to the nucleus and binds to DNA
modulating gene expression. During the initial stages of tumor
development, TGF-b can induce cancer cell cycle arrest and
apoptosis to exert tumor suppressor effects. As tumors progress
and cancer cells become resistant to TGF-b-induced apoptosis,
TGF-b converts to a tumor-promoting role to enhance cancer
cell proliferation, migration, and EMT. TGF-b is highly
expressed in HCC, in which cancer-associated fibroblasts
(CAFs) derived from stromal cells or hepatocytes are the
principal source of TGF-b (109). TGF-b upregulates the
expression of transcription repressor Snail and downregulates
E-cadherin in HCC to promote EMT, as well as tumor invasion
and metastasis, supporting the role of TGF-b in tumor
progression and poor patient prognosis (110).

Shi et al. reported that IQGAP3 overexpression amplified
TGF-b activity and promoted its translocation into the nucleus,
while the expression levels of phosphorylated Smad2, Smad3,
and downstream proteins of the TGF-b signaling pathway were
also elevated (22). IQGAP3 was also shown to enhance the
invasion and migration of HepG2 and HCCLM3 cells.
However, these effects were abolished by silencing or
knockdown of IQGAP3, silencing Smad3, or treatment with
the TGF-b inhibitor SB431542 indicating the important role of
the TGF-b signaling pathway in the promotion of IQGAP3-
induced invasion and metastasis in HCC (22).

Although IQGAP1- and IQGAP3-activated TGF-b pathways
have been shown to promote HCC onset and progression, in
another study IQGAP1-induced activation of the TGF-b
pathway plays the opposite role in hepatic metastatic
carcinoma whereby myofibroblastic differentiation is inhibited
(111). The study showed that in colon and lung cancer liver
metastases, IQGAP1 binds to TbRII and suppresses TbRII-
mediated signaling to prevent HSC differentiation in the tumor
microenvironment and constrains metastatic tumor growth.
Moreover, in an experimental liver metastasis model, Iqgap1-/-

mice showed higher levels of TGF-b receptor and HSC
activation, which promoted metastatic tumor growth (111).
Further investigation into signaling interactions between the
TGF-b pathway and IQGAPs will provide further insight into
how the TGF-b pathway and IQGAPs contribute to primary
HCC and hepatic metastatic carcinoma.

5.1.4 PI3K/AKT/mTOR Signaling Pathway
The PI3K/AKT/mTOR signaling pathway plays an important
role in cell cycle regulation and is involved in cell metabolism,
proliferation, apoptosis, and carcinogenesis (112, 113).
Numerous cell surface RTKs are involved in the pathways,
including insulin receptor (InsR), EGFR, platelet-derived
growth factor receptor (PDGFR), hepatocyte growth factor
receptor (HGFR), discoidin domain receptor (DDR), leukocyte
tyrosine kinase (LTK), and others, which have high affinity for
numerous polypeptide growth factors, cytokines, and hormones
and are activated by them (114). Activated RTKs phosphorylate
and activate downstream kinases leading to the activation of
AKT. Subsequently, AKT activates mTOR, causing the increased
translation of genes involved in angiogenesis and cell cycle
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progression, thereby inhibiting apoptosis and promoting cell
growth and migration. Additionally, activated mTOR complex
2 (mTORC2) can phosphorylate AKT, causing excessive
activation of AKT. Dysregulated RTKs activate the PI3K/AKT/
mTOR signaling pathway in HCC and amplify tumor
progression, metastasis, and invasion (115, 116).

IQGAP1 was shown to promote HCC cell growth and
proliferation through the PI3K/AKT signaling pathway and
facilitate the binding of mTORC2 and AKT to accelerate AKT
phosphorylation on Ser-473 (17, 19). Ablation of IQGAP1 either
by knockdown or mutation of IQGAP1, or treatment with the
PI3K inhibitor LY294002 in cells overexpressing IQGAP1 slowed
HCC cell proliferation (17). mTOR was also recently shown to
activate S-adenosylmethionine decarboxylase proenzyme
(AMD1), which phosphorylates obesity-associated protein
(FTO) and subsequently increases the expression of a number
of transcription factors that participate in cancer genesis,
progression, and stemness (98, 117). In HCC, the interaction
of IQGAP1 with FTO increases the phosphorylation and
expression of FTO and enhances the stem cell-like properties
of HCC cells (98, 117, 118). In addition, IQGAP3 interacts with
protein kinase C d (PKCd) to competitively inhibit the
interaction between PKCd and PKCa, freeing and activating
PKCa, and triggering PI3K/AKT signaling pathways to enhance
HCC cell proliferation (21). Similarly, PI3K/AKT activity is
increased by binding of IQGAP1 to Rac1, which activates the
Src/FAK pathway and can promote HCC cell migration,
invasion, and anoikis resistance (20, 119). These results
confirm the important role of the PI3K/AKT signaling
pathway in the IQGAP-induced HCC progression.

5.1.5 MAPK/ERK Signaling Pathway
The MAPK/ERK signaling pathway plays an important role in
cell growth, proliferation, differentiation, and apoptosis (120).
Activated RTKs subsequently activate both the PI3K/AKT/
mTOR and MAPK/ERK pathways. RTK converts Ras-GDP to
Ras-GTP, leading to Ras activation and subsequent activation of
Raf, possibly via the Src-family tyrosine kinase. Overall, Raf
activation promotes phosphorylation and activation of ERK1/2
and triggers downstream signaling pathways in the cytosol, as
well as transcription factors in the nucleus to drive cell
proliferation and growth. Aberrant activation of the MAPK/
ERK signaling pathway was recently shown to promote tumor
growth, migration, invasion, and metastasis while also causing
resistance to targeted therapies (121, 122).

IQGAP1 and the Ras gene family have been implicated in
HCC induction. In the diethylnitrosamine (DEN)-induced
mouse liver cancer model, mRNA expressions of IQGAP1 and
the Ras gene family were highly elevated in HCC cells compared
to normal hepatocytes, and their expression increased in
response to the dosage of DEN (95). However, the mRNA
expressions of members of Ras gene family significantly
decreased after IQGAP1 silencing, which was accompanied by
reduced proliferation and invasion ability of HCC cells (97). In
addition, ERK and AKT may be involved in IQGAP1-induced
elevation of NF-kB, promoting tumorigenesis, metastasis, and
resistance to apoptosis (10, 123, 124). These results suggest that
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IQGAP1 may activate the MAPK/ERK signaling pathway by
upregulating Ras gene family expression to promote
hepatocarcinogenesis and progression.

5.2 Action Mechanisms of IQGAPs in HBV-
Mediated HCC
Chronic HBV infection is etiologically responsible for more than
half of all HCC cases, particularly in HBV epidemic regions
where the rate can reach up to 80% (13). Compared to the non-
infected population, chronic HBV carriers have a 10- to 25-fold
increased risk of HCC throughout their lifetime (125). Hepatitis
B virus X protein (HBx) has been implicated in HBV-related
hepatocarcinogenesis and is considered to be a key oncogenic
factor (126–128). HBx transgenic mice developed HCC
demonstrating the potential independent carcinogenic effects
of HBx (129). Therefore, the specific role of HBx in the
development of HCC has attracted widespread interest. Xu
et al. reported that HBx upregulates Cdc42 expression and
activity. The accumulating active Cdc42 interacts with the
GRD domain of IQGAP1 and stimulates the proliferation and
inhibition of apoptosis of HCC cells (18). In addition, HBV
augmented the association between IQGAP1 and Rac1, leading
to increased intracellular levels of reactive oxygen species that
subsequently accelerated Src kinase phosphorylation which
ultimately activates FAK signaling and promotes anoikis
resistance, migration, and invasion of HCC cells (20).
5.3 Putative Explanation for Opposite
Functions of IQGAP1/3 and 2 in HCC
Given that IQGAPs share a similar domain structure and
sequence homology, the paradoxical phenomenon that
IQGAP1/3 and 2 play contrasting roles in HCC may be due to
their different protein binding partners, regulated signaling
pathways, subcellular localization, and diverse tissue
expression. The Rho family of small GTPases mainly includes
Cdc42, Rac, and Rho, which cycle between GTP-bound active
and GDP-bound inactive states and regulate multiple cellular
processes (130). For example, active Cdc42 stimulates cell
proliferation, adhesion, migration, polarity, and dynamic
changes in the cytoskeleton (131). Besides, RhoA and RhoC
are oncogenic and associated with cancer cell proliferation,
invasion, and metastasis, while RhoB is tumor suppressive and
promotes apoptosis (132). IQGAP1/3 appear to bind selectively
to active GTP-Cdc42 and GTP-Rac1 through the GRD domain,
while IQGAP2 binds indiscriminately to both GTP- and GDP-
bound forms (40, 43, 133). Casteel et al. found that IQGAP1
interacts directly with active RhoA and RhoC via the GRD
domain, but not with RhoB (134). Therefore, the differential
predisposed binding of IQGAPs to GTPases may lead to their
opposite effects in HCC.

In addition to protein binding partners, IQGAPs also regulate
different signaling pathways and have opposite effects on the
same signaling pathway (Figure 2). IQGAP1 exerts oncogenic
effects by promoting PI3K/AKT/mTOR, MAPK/ERK, and Wnt/
b-catenin signaling pathways while inhibiting the Hippo
signaling pathway (17, 19, 94). IQGAP3 also acts as an
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oncogenic agent by promoting TGF-b and PI3K/AKT/mTOR
signaling pathways, while IQGAP2 suppresses carcinogenesis by
inhibiting the Wnt/b-catenin signaling pathway (21, 22, 93).
Furthermore, IQGAPs are involved in carcinogenesis by
regulating the mitosis of mammalian cancer cells (135). Adachi
and coworkers revealed that IQGAP1 was distributed uniformly
throughout the cell cortex, and IQGAP3 was specifically
localized in the equatorial cortex at anaphase in Hela cells,
whereas IQGAP2 was not detected throughout the cell (135).
Moreover, the role of IQGAP1/3 in mitosis was further
confirmed by suppression of IQGAP1 and IQGAP3 which
impaired the localization of anillin and RhoA to the contractile
ring and inhibited cytokinesis (135). The foregoing
interpretations might lead to distinct roles of IQGAPs in HCC,
but the concrete mechanisms still warrant further investigation.
More in-depth studies on the molecular structures and
mechanisms would contribute to providing precise remedy
with IQGAPs as targets for cancer therapy.
6 CONCLUSION

This review described the structures of the three members of the
IQGAP family and their expression and diverse roles in different
liver diseases and mainly in HCC. The signaling pathways
associated with IQGAPs and the functional mechanisms in
HCC were also presented. Although IQGAPs are promising
therapeutic targets for HCC, some issues need to be addressed.
For example, IQGAP1 plays distinct roles in primary HCC and
hepatic metastatic carcinoma, as well as the concrete mechanism
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of inter-regulation between IQGAP families. Furthermore, the
oncogenes IQGAP1 and IQGAP3 play critical roles in
cytoskeletal remodeling of the liver and bile ducts, and in liver
regeneration after liver injury, respectively (136–138). Thus, the
inhibition of IQGAP1 and IQGAP3 may disrupt the integrity of
the liver and bile ducts and affect liver regeneration after liver
injury. Future detailed studies on the mechanistic roles of
IQGAPs in the cytoskeleton and HCC could promote more
precise targeted therapy for HCC while avoiding disruption of
the normal physiological functions of IQGAPs. Likewise, it is
equally important to explore the role of these fundamental
scaffolding proteins in other liver diseases such as fatty liver
disease, fibrosis, and cirrhosis to unravel the functional
relationship of these proteins with chronic liver diseases which
if left untreated ultimately lead to HCC.
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