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Abstract Random networks with specified degree distributions have been proposed
as realistic models of population structure, yet the problem of dynamically modeling
SIR-type epidemics in random networks remains complex. I resolve this dilemma
by showing how the SIR dynamics can be modeled with a system of three nonlinear
ODE’s. The method makes use of the probability generating function (PGF) formalism
for representing the degree distribution of a random network and makes use of net-
work-centric quantities such as the number of edges in a well-defined category rather
than node-centric quantities such as the number of infecteds or susceptibles. The PGF
provides a simple means of translating between network and node-centric variables
and determining the epidemic incidence at any time. The theory also provides a sim-
ple means of tracking the evolution of the degree distribution among susceptibles or
infecteds. The equations are used to demonstrate the dramatic effects that the degree
distribution plays on the final size of an epidemic as well as the speed with which it
spreads through the population. Power law degree distributions are observed to gen-
erate an almost immediate expansion phase yet have a smaller final size compared to
homogeneous degree distributions such as the Poisson. The equations are compared
to stochastic simulations, which show good agreement with the theory. Finally, the
dynamic equations provide an alternative way of determining the epidemic thresh-
old where large-scale epidemics are expected to occur, and below which epidemic
behavior is limited to finite-sized outbreaks.
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1 Introduction

Contact patterns constitute an important aspect of heterogeneity within a population
of susceptible and infectious individuals, but it has been a difficult factor to incor-
porate into epidemiological models. Compartment models can capture many aspects
of population heterogeneity, such as with respect to heterogeneous susceptibility and
infectiousness [1,9,32], however such models usually assume individuals mix homo-
geneously within each category. In contrast, the contact patterns responsible for the
spread of many infectious diseases tend to be characterized by constant relationships
marked by high levels of heterogeneity in the number of contacts per individual.

An alternative approach is to model a population of susceptibles and infecteds
and the contact patterns among them as a static random network [13,18,26,31]. This
approach has generated a new category of epidemiological models in which epidem-
ics spread from node to node by traversing network connections [2,8,17,19,24,25,
29,30,33]. Random networks with specified degree distributions have been proposed
as a simple but realistic models of population structure. This case has the advantage
of being well understood mathematically. The expected final size of epidemics in
random networks with a given degree distribution has been solved exactly [19,24].
The network approach has the advantage that the mathematics of stochastic branching
processes [4,15,34] can be brought to bear on the problem. This allows for precise
descriptions of the mean outbreak size well as the final size.

A shortcoming of the network model is that it is difficult to describe the explicit
dynamical behavior of epidemics on networks. The mean outbreak size is easy to
calculate, yet the dynamic epidemic incidence, that is the number of new infecteds at
a time t , has been difficult to derive. Simulation has been used in this case [12].

Heterogeneity in the number of contacts within networks makes it difficult to derive
differential equations to describe the course of an epidemic. Nevertheless, several
researchers [5,7,27,28] have been successful modeling many of the dynamical aspects
of network epidemics, particularly in the early stage where asymptotically correct
equations for disease incidence are known. These solutions break down, however,
when the finite size of a population becomes a significant factor. Other work has
focused on pair approximation and moment closure [6,11]. These methods produce
viable approximations to SIR dynamics, but are typically high-dimensional and com-
putationally intensive.

Here we introduce an alternative strategy based on a low-dimensional system of
nonlinear ordinary differential equations. This model can be used to solve for epidemic
incidence at any time, from an initial infected to the final size as well as other quantities
of interest. We treat the simplest possible case of the SIR dynamics with constant rate
of infection and recovery. Section 2 describes the model. Several examples are given
in Sect. 3, and Sect. 3.1 compares the analytical results to stochastic simulations.

2 SIR in random networks

The networks considered here are random networks with an arbitrary degree distribu-
tion pk (pk being the probability of a random node having degree k) [23,26]. Nodes
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can be in any of three exclusive states: susceptible (S), infectious (I), or recovered
(R). The dynamics are as follows. When a node is infectious, it will transmit infection
to each of its neighbors independently at a constant rate r . Infectious nodes become
recovered at a constant rate µ, whereupon they will no longer infect any neighbors.
This will be made precise in the next section.

It is desirable to determine the dynamics of the number of susceptibles and in-
fecteds and to develop equations in terms of those quantities. This, however, turns
out to be intractable due to heterogeneity in the number of contacts. The problem
can be resolved by developing equations in terms of dynamic variables representing
network-based quantities, for example, the number of connections to susceptible or
infectious nodes at a time t . The network- and node-based quantities are defined in
the next section.

To bridge the divide between connection- and node-based quantities, a mathemati-
cal device known as a probability generating function (PGF) [34] is extremely useful.
The PGF has many useful properties and is frequently used in probability theory
and the theory of stochastic branching processes. Given a discrete probability density
pk , the PGF is defined as the series:

g(x) = p0 + p1x + p2x2 + p3x3 + · · · . (1)

The variable x in the generating function serves only as a place-holder. To illustrate
the utility of this device, consider the possibility that the probability of a node being
infected, say λ, is compounded geometrically according the node’s degree. Then, the
probability of a degree k node being susceptible is (1 − λ)k , that is, the probability of
not being infected along any of k connections. If the hazard is identical for all nodes,
the cumulative epidemic incidence (the fraction of nodes infectious or recovered) will
be

J = 1 − [p0(1 − λ)0 + p1(1 − λ)1 + p2(1 − λ)2 + · · · ] (2)

= 1 − g(1 − λ). (3)

Table 1 gives a summary of the parameters used in the model.

2.1 Definitions

An undirected network can be defined as a graph G = {V, E} consisting of a set of
vertices V corresponding to the nodes in the network, and a set of edges E with ele-
ments of unordered pairs of vertices, {a, b} where a, b ∈ V . Two vertices a, b are
said to be neighbors or neighboring each other or simply connected if {a, b} ∈ E .
For the purposes of this model, the terms “vertex” and “node” will often be used
interchangeably.

The networks considered here can be generated by the Configuration Model(CM)
[22]. For our purposes, the important aspect of CM networks is that the probability
of being connected to a node is proportional to the degree of the node. Denote the
degree of a node v ∈ V as dv . Then given an edge {a, x} ∈ E , the probability that
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Table 1 Parameters and dynamic variables for the network SIR model

• r := Force of infection. The constant rate at which infectious nodes infect a neighbor

• µ := Recovery rate. The constant rate at which infected nodes become recovered

• pk := The probability that a node will have degree k

• g(x) := The probability generating function for the degree distribution {pk }
• S := The fraction of nodes susceptible at time t

• I := The fraction of nodes infectious at time t

• R := The fraction of nodes recovered at time t

• J = I + R The cumulative epidemic incidence at time t

•AX Set of arcs (ego, alter) such that node ego is in set X

• MX Fraction of arcs in set AX

• AXY Set of arcs (ego, alter) s.t. ego ∈ X and alter ∈ Y

• MXY Fraction of arcs in set AXY

x = b is db/
∑

i∈V di . Note that this allows multiple edges to the same node as well
as loops from a node to itself, however the existence of multiple edges and loops is
exceedingly rare for large sparse random networks such that results based on this case
can be safely applied to networks without multiple edges. Networks of this type can
be generated by a the following algorithm:

1. To each node v ∈ V assign an i.i.d. degree δv from distribution pk

2. Generate a new set X of “half-edges” with δv copies of node v for all nodes
3. Insure X has an even number of elements, for example, by deleting a uniform

random element if odd.
4. While X is not empty, draw two elements v1, v2 uniformly at random and create

edge {v1, v2}.
At any point in time, a vertex can be classified as susceptible, infectious, or recov-

ered. Let S, I, and R denote the disjoint sets of vertices classified as susceptible,
infectious, or recovered respectively. J = I ∪ R will denote the set of infectious or
recovered nodes. S, I, and R will denote the fraction of nodes in the sets S, I, and R
respectively. The cumulative epidemic incidence will be the fraction of nodes in set
J .

As stated in the previous section, infectious vertices a ∈ I will infect neighbor-
ing susceptible vertices b ∈ S at a constant rate r . Infectious vertices will become
recovered (move to set R) at a constant rate µ.

Although the network is undirected in the sense that any two neighboring verti-
ces can transmit infection to one another, we wish to keep track of who infects who.
Therefore, for each edge {a, b} ∈ E , let there be two arcs, which will be defined to
be the ordered pairs (a, b) and (b, a). Let A denote the set of all arcs in the network.
The first element in the ordered pair (a, b) will frequently be called the ego and the
second element the alter.

AXY will denote the subset of arcs such that ego ∈ X and alter ∈ Y . AX will
denote the subset of arcs such that ego ∈ X . MXY = #{AXY }/#{A} will denote the
fraction of arcs in the corresponding set AXY .
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Table 2 Network-based dynamic variables for the network SIR model

• θ := The fraction of degree one nodes that remain susceptible at time t

• pI := MSI /MS . The probability that an arc with a susceptible ego has an infectious alter

• pS := MSS/MS . The probability that an arc with a susceptible ego has a susceptible alter

Table 3 A summary of the
nonlinear differential equations
used to the describe the spread
of a simple SIR type epidemic
through a random network. The
degree distribution of the
network is generated by g(x)

θ̇ = −r pI θ

ṗI = r pS pI θ
g′′(θ)

g′(θ)
− r pI (1 − pI ) − pI µ

ṗS = r pS pI

(

1 − θ
g′′(θ)

g′(θ)

)

S = g(θ)

İ = r pI θg′(θ) − µI

For example, two variables will be especially important in the derivations that fol-
low. MSS is the fraction of arcs with a susceptible ego and a susceptible alter. MSI

is the fraction of arcs with a susceptible ego and and infectious alter. MS will be the
fraction of arcs with a susceptible ego and an alter of any type.

2.2 Dynamics

Our objective is to develop a deterministic model to describe epidemic dynamics
expressed with a low-dimensional system of differential equations. At first, this goal
may seem incompatible with network-SIR dynamics described in the previous section.
Infection spreads along links in a random network, which implies the epidemic inci-
dence at any time as well as the final size must also be random, depending on the par-
ticular structure of a given random network. This is true, however it is possible to avoid
such considerations by focusing on epidemic dynamics in the limit as population size
goes to infinity. This strategy has been used in previous work to calculate the expected
final size of epidemics in infinite random networks [24] expressed as a fraction of the
total population size. A similar strategy is followed here by considering the fraction
of nodes in sets S, I, and R, after a small fraction ε nodes are infected initially in a
susceptible population.1 The conclusion is the system of equations given in Table 3 in
terms of the dynamic variables given in Table 2. The dynamics predicted by these equa-
tions are compared to stochastic simulations with large but finite networks in Sect. 3.1.

Consider a susceptible node ego at time t with a degree k. Then there will be a
set of k arcs {(ego, alter1), (ego, alter2), · · · , (ego, alterk)} corresponding to ego.
We will assume that for each arc (ego, alteri ) there will be a uniform probability
pI = MSI /MS that alteri is infectious. Then there is an expected number kpI arcs
(ego, alter) such that alter is infectious. In a time dt , an expected number rkpI dt of
these will be such that the infectious alter transmits to ego. Consequently, the hazard
for ego becoming infected at time t is

1 Although it has not yet been proven, there is computational evidence that a continuous-time stochastic
SIR epidemic will converge to our deterministic model in the limit of large population size.
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λk(t) = rkpI (t). (4)

Now let uk(t) represent the fraction of degree k nodes that remain susceptible at time t ,
or equivalently the probability that ego in the previous example is susceptible. Using
Eq. 4,

uk(t)= exp

⎧
⎨

⎩
−

t∫

0

λk(τ )dτ

⎫
⎬

⎭
=exp

⎧
⎨

⎩
−

t∫

0

rkpI (τ )dτ

⎫
⎬

⎭

= exp

⎧
⎨

⎩
−

t∫

0

r pI (τ )dτ

⎫
⎬

⎭

k

. (5)

Subsequently we will use the symbol θ to denote u1 = exp{− ∫ t
0 r pI (τ )dτ }. From

Eq. 5 it is clear that uk = θk .
Given θ , it is easy to determine the fraction of nodes which remain susceptible at

a time t .

S = p0 + p1u1 + p2u2 + p3u3 · · ·
= p0 + p1θ + p2θ

2 + p3θ
3 + · · · = g(θ) (6)

This equation makes use of the generating function g(·) for the degree distribution
which greatly simplifies this and subsequent equations.

The dynamics of θ are dependent on the hazard λ1.

dθ/dt

θ
= −λ1(t) ⇒

θ̇ = −θλ1(t) = −θ r pI (7)

Unfortunately, this does not completely specify the dynamics of θ and by extension S,
which also depends on the variable pI . The derivation of the dynamics of pI follows.

ṗI = d

dt

MSI

MS
= ṀSI

MS
− ṀS MSI

M2
S

(8)

Our goal is to put Eq. 8 in terms of the variables θ, pS, pI and the PGF g(·). MS is
easily placed in terms of these variables.

MS =
∑

k

pk × k × Pr[degree k node susceptible]/
∑

k

kpk

=
∑

k

pkkθk/g′(1) =
[

d

dx
g(θx)

]

x=1
/g′(1) = θg′(θ)/g′(1) (9)
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MSI follows easily.

MSI = MS × MSI /MS = MS pI = pI θg′(θ)/g′(1) (10)

Next consider ṀS . In time dt , −Ṡ nodes become infectious. Since S = g(θ),

Ṡ = d

dt
S = d

dt
g(θ) = θ̇g′(θ) = −r pI θg′(θ). (11)

Calculating ṀSI requires careful consideration of the rearrangement of arcs among
sets ASS and ASI as −Ṡ nodes become infected in a small time interval. Since the
hazard of becoming infected is proportional to the number of arcs to an infectious
alter, a susceptible node will be selected with probability proportional to the number
of arcs from the node to infectious nodes.

To clarify subsequent calculations, I will introduce the notation δXY to represent the
average degree of nodes in set X , selected with probability proportional to the number
of arcs to nodes in set Y , not counting one arc to nodes of type Y . For example, if we
select an arc (ego ∈ X, alter ∈ Y ) uniformly at random out of the set of arcs from
nodes in set X to nodes in set Y (AXY ), and follow it to the node in set X , (ego),
then δXY will represent the average number of arcs (ego, alter ′) not counting the arc
we followed to ego. This is commonly called the “excess degree” of a node [20].
Furthermore, δXY (Z) will be as δXY but counting only arcs from ego to nodes in set
Z , (ego, alter ∈ Z).

To calculate ṀSI we need to first calculate δSI , and for this it is necessary to derive
the degree distribution among susceptible nodes. Considering two arcs (ego, alter1)

and (ego, alter2) with ego ∈ S, we must suppose that the event that alter1 ∈ X is
independant of the event that alter2 ∈ Y .2 A consequence of this is that arcs from a
susceptible ego to nodes in sets S, I,R are distributed multinomially with probabili-
ties pS, pI , and pR = 1 − pS − pI respectively. Let dego(X) be the r.v. denoting the
number of arcs from ego to nodes in set X . Letting c normalize the distribution, and
letting the dummy variables xS, xI , and xR correspond to the number of arcs from
a susceptible ego to an alter in sets S, I,R respectively, the degree distribution for
susceptible nodes will be generated by

gS(xS, xI , xR)=
∑

k≥0

pkuk

∑

i, j |i+ j≤k

xi
S x j

I xk−i− j
R Pr[dego(S)= i, dego(I )= j |pS, pI ]/c.

(12)

2 Although a rigorous proof for this is currently lacking, it is borne out by the success of this model in
predicting epidemic final size and dynamics (see Sects. 3 and 3.1 below). Any topological feature which
creates correlations between arcs would invalidate this derivation. This includes clustering (transitivity).
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Using the multinomial theorem this becomes

gS(xS, xI , xR) =
∑

k≥0

pkθ
k(xS pS + xI pI + xR(1 − pS − pI ))

k/c

= g(θ(xS pS + xI pI + xR(1 − pS − pI )))/g(θ), (13)

where c = ∑
k pkθ

k(pS + pI + (1 − pS − pI ))
k = g(θ) normalizes the distribution.

The degree distribution for susceptible nodes selected with probability proportional
to the number of arcs to infectious nodes will be generated by the following equation.
This distribution is usually called the excess degree distribution. For example, select-
ing a random arc in set ASI , following it to the susceptible node, and then counting the
composition of arcs out of that node (not counting the one we arrived on) would give
rise to this distribution. Note that this equation does not count one arc to infectious
nodes (the one used to select the susceptible node).

gSI (xS, xI , xR)

=
∑

k≥0

pkuk

∑

i, j |i+ j≤k

j × xi
S x j−1

I xk−i− j
R Pr[dego(S) = i, dego(I ) = j |pS, pI ]/

∑

k≥0

pkuk

∑

i, j |i+ j≤k

j × Pr[dego(S) = i, dego(I ) = j |pS, pI ]

=
[

d

dxI
gS(xS, xI , xR)

]

/

[
d

dxI
gS(xS, xI , xR)

]

xS=xI =xR=1

= g′(θ(xS pS + xI pI + xR(1 − pS − pI )))/g′(θ) (14)

Because arcs are distributed multinomially to nodes in sets S, I,R, we have gSS(xS,

xI , xR) = gSI (xS, xI , xR), which is easy to verify by repeating the calculation in
Eq. 14.

A useful property of PGF’s is that the mean of the distribution they generate can be
calculated by differentiating and evaluating with the dummy variables set to one [34].
Now using Eqs. 13 and 14, we have the following results.

δSI =
[

d

dx
gSI (x, x, x)

]

x=1
= θg′′(θ)/g′(θ) (15)

δSI (I ) =
[

d

dxI
gSI (xS, xI , xR)

]

xS=xI =xR=1
= pI θg′′(θ)/g′(θ) (16)

δSI (S) =
[

d

dxS
gSI (xS, xI , xR)

]

xS=xI =xR=1
= pSθg′′(θ)/g′(θ) (17)

As a fraction −Ṡ nodes leave set S in time dt , the fraction of arcs between S and I,
MSI is reduced by the fraction of arcs from infectious nodes to the −Ṡ newly infec-
tious nodes (recall MSI = MI S). Therefore MSI is reduced at rate −ṠδSI (I )/g′(1).
Because δSI (I ) does not count the arc along which a node was infected, MSI is also
reduced at a rate r MSI to account for all arcs which have an infectious ego which
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transmits to the susceptible alter. And in time dt , µI nodes become recovered. The
average number of arcs in AI S per infectious node is proportional to MSI /I . Then
MSI is reduced at a rate µI (MSI /I ) = µMSI .

The quantity MSI is also increased, as new infected nodes have links to susceptible
nodes. A newly infectious node will have on average δSI (S) arcs to susceptible nodes,
so MSI is increased at a rate −ṠδSI (S)/g′(1).

To summarize, MSI decreases at the rates

– −ṠδSI (I )/g′(1)

– r MSI

– µMSI

And MSI increases at the rates

– −ṠδSI (S)/g′(1)

Then applying Eqs. 16, 17, and 11 we have

ṀSI = ((−Ṡ)δSI (S) − (−Ṡ)δSI (I ))/g′(1) − (r + µ)MSI

= r pI (pS − pI )θ
2g′′(θ)/g′(1) − (r + µ)MSI . (18)

Finally, it is necessary to determine the time derivative of MS .

ṀS = d

dt
θg′(θ)/g′(1) = (θ̇g′(θ) + θ θ̇g′′(θ))/g′(1)

= (−r pI θg′(θ) − r pI θ
2g′′(θ))/g′(1) (19)

Now applying Eqs.3 9, 18, and 19 to Eq. 8 we solve for ṗI in terms of the PGF and θ .

ṗI = r pI pSθ
g′′(θ)

g′(θ)
− pI (1 − pI )r − pI µ (20)

This equation makes use of the variable pS which changes in time. Deriving the
dynamics of this variable will complete the model. This calculation is very similar to
that for ṗI .

ṗS = d

dt

MSS

MS
= ṀSS

MS
− ṀS MSS

M2
S

(21)

The calculation for ṀSS is very similar to that for ṀSI . Newly infected nodes have
on average δSI (S) arcs to other susceptibles, so that

3 The normalizing constant g′(1) cancels out and could have been left out these equations.
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ṀSS = −2 × (−Ṡ)δSI (S)/g′(1)

= −2r pI pSθ2g′′(θ)/g′(1), (22)

where the factor of 2× accounts for two arcs per edge.
Now applying Eqs. 9, 19, and 22 to Eq. 21, we have

ṗS = r pI pS

(

1 − θ
g′′(θ)

g′(θ)

)

. (23)

The complete system of equations is summarized in Table 3.
The fraction of infectious nodes can be solved by introducing a fourth dynamic

variable. The infectious class increases at a rate −Ṡ (Eq. 11) and decreases at a rate
µI . Therefore

İ = r pI θg′(θ) − µI. (24)

An advantage of dynamic modeling of epidemics in networks is that the time-evolu-
tion of variables besides cumulative incidence can be calculated. Above it was shown
how to calculate the degree distribution among susceptible nodes (eqn. 13). Addi-
tionally, the degree distribution among nodes which are either infectious or recovered
(set J ) can be calculated by taking the complement.

gJ (x) = (g(x) − g(θx))/(1 − g(θ)) (25)

2.3 Initial conditions

If a small fraction ε of the nodes in the network are selected uniformly at random and
initially infected, we can anticipate the following initial conditions. The fraction of
arcs with infectious ego will also be MI = ε, and since ε is small, there is low chance
of two initial infecteds being connected. Therefore MSI ≈ MI = ε. θ , which can be
interpreted as the fraction of degree one nodes remaining susceptible will be 1 − ε.
We’ll assume that no initial infecteds are connected to eachother, so that MSI = MI .
And MS = 1 − MSI = 1 − ε because there are initially no recovered nodes. Finally,
MSS = MS − MSI = 1 − 2ε. To summarize,

1. θ(t = 0) = 1 − ε

2. pI (t = 0) = MSI /MS = ε/(1 − ε)

3. pS(t = 0) = MSS/MS = (1 − 2ε)/(1 − ε)

2.4 Epidemic threshold

Epidemic dynamics can fall into one of two qualitatively different regimes. Below a
threshold in the ratio r/µ, the final size (I∞) is necessarily proportional to the fraction
of initial infectious nodes: I∞ ∝ ε. But above this threshold, epidemics occur, and
necessarily occupy a fraction of the population even as ε → 0.
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As per Eq. 4, the number of new infections in a small time interval is proportional
to pI . This is in contrast to compartment models in which the number of new infec-
tions is proportional the current number of infectious. If ṗI (t = 0) < 0, an epidemic
will necessarily die out without reaching a fraction of the population. The epidemic
threshold occurs where

ṗI (t = 0) = 0 = r pS pI θ
g′′(θ)

g′(θ)
− r pI (1 − pI ) − pI µ. (26)

Applying the initial conditions above and considering ε � 1 gives

ṗI (t = 0) = r
1 − 2ε

1 − ε

ε

1 − ε
(1 − ε)g′′(θ)/g′(θ) − r

ε

1 − ε

1 − 2ε

1 − ε
− µ

ε

1 − ε

= ε

(

r
g′′(θ)

g′(θ)
− r − µ

)

= 0. (27)

Rearranging yields the critical ratio r/µ in terms of the PGF.

(r/µ)∗ = g′(1)

g′′(1) − g′(1)
(28)

The epidemic threshold in Eq. 28 can also be put in terms of the the transmissibility,
which is the probability that an infectious ego will transmit infection to a given alter.
If ego is infectious for a duration T , the probability of transmitting to a given alter is
1 − e−rT . Integrating over an exponentially distributed duration of infectiousness T ,
the transmissibility τ is calculated to be

τ = E[1 − e−rT ]

=
∞∫

0

(1 − e−rT )(µe−µT )dT = r

r + µ
. (29)

Then rearranging Eq. 28 yeilds the epidemic threshold in terms of τ .

τ ∗ = g′(1)/g′′(1) (30)

This is consistent with previous results based on bond-percolation theory [24].4

3 Examples

The model has been tested on several common degree distributions:

4 Although the original derivation in [24] was slightly flawed, the threshold has subsequently been shown
to be correct [10].
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– Poisson: pk = zk e−z

k! . This is generated by

g(x) = ez(x−1). (31)

– Power-law. For our experiments, we utilize power-laws with exponential cutoffs

κ: pk = k−γ e−k/κ

Liγ (e−1/κ )
, k ≥ 1 where Lin(x) is the nth polylogarithm of x. This is

generated by
g(x) = Liγ (xe−1/κ )/Liγ (e−1/κ ). (32)

– Discrete exponential: pk = (1 − e−1/λ)e−k/λ. This is generated by

g(x) = 1 − e−1/λ

1 − xe−1/λ
. (33)

Figure 1 shows the cumulative incidence for each of the degree distributions
(31), (32), and (33), with a force of infection r = .2 and recovery rate µ = .1. Initially
ε = 10−4 nodes are infected. The parameters of the degree distributions were chosen
so that each network has an identical average degree of 3. That is, the density of con-
nections in each network is the same. Nevertheless, there is widely different epidemic
behavior due to the different degree distributions. Consistent with previous research,
the degree distribution has a great impact on the final size of the epidemic [19,24].
More importantly, the three networks exhibit widely varying dynamical behavior. The
power law network experiences epidemics which accelerate very rapidly. Such epi-
demics enter the expansion phase (the time at which cumulative incidence increases
at its maximum rate) virtually as soon as the first individual in the network is infected.
In contrast, the Poisson network experiences a lag before the expansion phase of the
epidemic. The discrete exponential network has behavior similar to that of the power
law but not as extreme; the expansion phase is early, but not instantaneous, and the
final size is not as great as the power law. These observations are consistent with the
findings in [5] that the timescale of epidemics shortens with increasing contact het-
erogeneity. This has important implications for intervention strategies, as it is often
the case that interventions are planned and implemented only after a pathogen has
circulated in the population for some time. If an epidemic were to occur in the power
law network, there would be little time to react before the the infection had reached a
large proportion of the population.

Recall from Sect. 2.4 that below the epidemic threshold τ ∗, only small, finite-sized
outbreaks will occur. Figure 2 shows the qualitatively different dynamical behavior of
outbreaks below the phase transition for networks with a Poisson distribution. Below
the phase transition, the final size is always proportional to the fraction of initial
infecteds ε.

Something offered by this model and not to the author’s knowledge seen previously,
is an explicit calculation for how the degree distribution of susceptibles evolves over
the course of the epidemic. We expect the degree distribution to become bottom-heavy,
as high degree nodes are gradually weeded out of the population of susceptibles. This
is indeed observed in Fig. 3 for the Poisson trial described above.
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Fig. 1 The number of infecteds (including recovered) is shown versus time for an SIR model on three
networks. Force of infection and mortality are constant: r = 0.2, µ = 0.1. The networks have Poisson
(z = 3), power law (γ = 1.615, κ = 20), and exponential (λ = 3.475) degree distributions. Each of these
degree distributions has an average degree of 3

Fig. 2 The number of infecteds
(including recovered) is shown
versus time for an SIR model on
a Poisson network (z = 3). Each
of these trials are below the
epidemic threshold required to
sustain an epidemic
((r/µ)∗ = 1/2 from Eq. 28).
The outbreak size is reported as
a multiple of the fraction of
initial infecteds in the network.
Mortality is constant, µ = 0.4,
while three different levels of
the force of infection are tried,
r = 0.15, 0.17, 0.18
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Recall that the degree distribution of susceptibles is generated by the multi-variate
PGF (13). The explicit degree distribution can be retrieved from Eq. 13 by differ-
entiation. The following gives the probability that a susceptible node has m links.

pS
m = [ dk

dxk
gS(x, x, x)]x=0/k! (34)

For example, applying this to the Poisson PGF (Eq. (31)) gives

pk = (zθ)ke−zθ

k! (35)

which is simply the Poisson distribution with an adjusted parameter z × θ . Another
example is illustrated in Fig. 3, which shows the degree distribution among suscepti-
bles for the power-law network considered above.
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Fig. 3 The degree distribution for susceptible nodes where the epidemic size is 50, 75, and 100% of the
final size, as well as degree distribution at the beginning of the epidemic. The degree distribution for the
network as a whole is a power law with exponential cutoff (Eq. 32)

3.1 Stochastic simulations

Simulation of SIR on networks presents two challenges: A random network must be
generated with the desired degree distribution. And, the stochastic rules that govern
the transmission of disease at the microscopic scale must be well-defined.

In the deterministic model of the previous sections, we described dynamics using
the quantities S, I, and R to represent the fraction of nodes in each category. The
stochastic dynamics will be described by Sn, In, and Rn which will denote the random
number of susceptible, infectious, and recovered nodes respectively. Below we will
give evidence that the stochastic dynamics match the deterministic dynamics in terms
of time-scale and final size. Future work should provide a formal characterization of
this relationship. We hypothesize that stochastic dynamics converge to the determin-
istic model as the population size grows to infinity, that is, limn→∞ Sn/N = S with
constant ε fraction of initial infecteds [3].

The algorithm proposed by Molloy and Reed [22] was used to generate the random
networks in these experiments. Subsequent research has shown that imperfections can
arise in the networks generated by this algorithm, but such biases should be tolerably
small for these purposes [21].

The simulation dynamics are as follows:

– A random network of size N is generated.
– A node is chosen uniformly at random from the network as an initial infected.
– An infected node v will recover after an exponentially distributed random time

interval �tµ ∼ Exp(µ).
– When a node v is infected, each arc (v, x) has a time of infection �tx drawn from

an exponential distribution Exp(r). If �tx < �tµ, node x is infected after time
�tx . Otherwise x is not infected by v.

This process continues until there are no more infectious nodes.
Figure 4 shows the results of 450 simulations for the Poisson random network con-

sidered in the last section (z = 3) with 104 nodes. The black dotted line represents
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Fig. 4 450 simulation trajectories of the cumulative epidemic incidence J (dotted lines) for a Poisson
(z = 3) random network with N = 104 nodes. The solid line shows the analytical solution (ε = 10−4)

an independent simulation trajectory. The thick, solid line that cuts through the dense
mass of simulation trajectories is the analytical trajectory based on the equations in
Table 3. The initial conditions were chosen as in the previous section using ε = 10−4.

Figure 5 shows a similar series of simulations for the power law degree distribution
considered in the last section. In both cases, the analytical trajectory traverses the
region with the highest density of simulation trajectories. The simulation trajectories
also exhibit significant variability in the time required to reach the expansion phase
and final size. This is largely due to the significant impact of random events early on in
the epidemic. For example, an initial infected with a low average degree, or one which
takes an inordinate amount of time to infect the next infected can markedly delay the
onset of the expansion phase.

Figure 6 shows the median-time incidence for the exponential and Poisson net-
works discussed in the last section. The data points show the median time required
to reach a given cumulative incidence among 450 simulation trajectories. The solid
line shows the analytical trajectory based on the system of equations given in Table 3.
Intuitively, the data points are showing the path of the most central trajectory from the
swarm of simulation trajectories such as in Fig. 4.

4 Discussion

The statistical properties of SIR epidemics in random networks have been understood
for some time, but the explicit dynamics have been understood mainly through simu-
lation. This paper has addressed this shortcoming by proposing a system of nonlinear
ordinary differential equations to model SIR dynamics in random networks.

123



308 E. Volz

Fig. 5 Four hundred and fifty simulation trajectories of the cumulative epidemic incidence J for a power
law (γ = 1.615, κ = 20) random network. N = 104, ε = 10−4. The solid line shows the analytical
solution based on the system of equations in Table 3
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Fig. 6 The median simulation time required to reach a given cumulative incidence J is shown for a Poisson
network (z = 3, circles) and an exponential network (λ = 3.475, triangles). N = 104, ε = 10−4. The
solid line shows the analytical solution based on the system of equations in Table 3

It should be noted that the SI dynamics are a special case of this model (µ = 0), in
which case the ultimate extent of the epidemic is simply the giant component5 of the
network.

5 The giant component of a network, if it exists, is a set of nodes such there exists a path between any two
of nodes, and furthermore occupies a non-zero fraction of the network in the limit as network size goes to
infinity.
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The distribution of contacts, even holding the density of contacts constant, has
enormous impact on epidemic behavior. This goes beyond merely the extent of the
epidemic, but as shown here, the dynamical behavior of the epidemic. In particular,
the distribution of contacts plays a key role in determining the onset of the expansion
phase.

The distribution dynamics from Eq. 13 and shown in Fig. 3 have important implica-
tions for vaccination strategies. Previous work [14,16] has focused on determining the
critical levels of vaccination required to halt or prevent an epidemic. It is usually taken
for granted that contact patterns among susceptibles are constant. Furthermore, most
widespread vaccinations occur only once an epidemic is underway. Future research
could be enhanced by considering optimal vaccination levels when the epidemic pro-
ceeds unhindered for variable amounts of time.

It is hoped that the distribution dynamics described in this paper will find applica-
tions beyond modeling heterogeneous connectivity. The dynamic PGF approach might
be used to capture other forms of heterogeneity, such as of susceptibility, mortality,
and infectiousness.
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