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Abstract

Motivation: ASTRAL is the current leading method for species tree estimation from phylogenomic datasets (i.e. hun-
dreds to thousands of genes) that addresses gene tree discord resulting from incomplete lineage sorting (ILS).
ASTRAL is statistically consistent under the multi-locus coalescent model (MSC), runs in polynomial time, and is
able to run on large datasets. Key to ASTRAL’s algorithm is the use of dynamic programming to find an optimal so-
lution to the MQSST (maximum quartet support supertree) within a constraint space that it computes from the input.
Yet, ASTRAL can fail to complete within reasonable timeframes on large datasets with many genes and species, be-
cause in these cases the constraint space it computes is too large.

Results: Here, we introduce FASTRAL, a phylogenomic estimation method. FASTRAL is based on ASTRAL, but uses
a different technique for constructing the constraint space. The technique we use to define the constraint space
maintains statistical consistency and is polynomial time; thus we prove that FASTRAL is a polynomial time algo-
rithm that is statistically consistent under the MSC. Our performance study on both biological and simulated data-
sets demonstrates that FASTRAL matches or improves on ASTRAL with respect to species tree topology accuracy
(and under high ILS conditions it is statistically significantly more accurate), while being dramatically faster—espe-
cially on datasets with large numbers of genes and high ILS—due to using a significantly smaller constraint space.

Availabilityand implementation: FASTRAL is available in open-source form at https://github.com/PayamDiba/
FASTRAL.

Contact: warnow@illinois.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Species tree reconstruction underlies downstream biological studies
on mechanism and history of evolution for genes and species.
However, biological processes such as incomplete lineage sorting
and gene duplication and loss create discordance between gene trees
(i.e. evolutionary trees on genomic regions) and the species tree, and
make the inference of the species tree challenging (Kubatko and
Degnan, 2007). Incomplete lineage sorting (ILS) (Maddison, 1997),
which can be modeled by the multi-species coalescent model (MSC)
(Kingman, 1982), is believed to be one of the main processes that re-
sult in genome-wide discordance.

A simple but commonly used approach to species tree estima-
tion from sequence alignments of multiple genomic regions is to
infer the species tree from concatenated alignments using, for ex-
ample, methods for maximum likelihood [e.g. RAxML
(Stamatakis, 2014)]. However, this popular method has been pro-
ven to be statistically inconsistent (and even positively misleading)
under the MSC, so that they may converge to the wrong tree with

probability converging to 1 as the number of genes increases
(Roch and Steel, 2015). Furthermore, concatenation analyses can
have poor accuracy in the presence of high ILS levels (Kubatko
and Degnan, 2007; Mirarab et al., 2014b; Molloy and Warnow,
2018). Alternative approaches that are guaranteed to be statistical-
ly consistent have been developed. Perhaps the most accurate
methods are those, such as StarBeast (Ogilvie et al., 2017), that
co-estimate gene trees and species trees from multi-locus inputs
(consisting of multiple sequence alignments for each gene).
However, these are generally computationally too intensive to use
on large datasets, with difficulty analyzing datasets with 100 or
more species, and can even have difficulty with large numbers of
genes (Zimmermann et al., 2014). SVDquartets (Chifman and
Kubatko, 2014; Vachaspati and Warnow, 2018) is another statis-
tically consistent method for species tree estimation, and operates
by computing quartet trees from the input and then combining
the quartet trees using a quartet amalgamation method;
SVDquartets is popular, but not very scalable to large datasets be-
cause of its Xðn4Þ running time.
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Species tree estimation on datasets addressing heterogeneity due
to ILS is usually addressed using methods that take a set of trees
inferred from various genomic regions (conventionally referred to as
gene trees) as input and estimate a species tree by summarizing the
input gene trees. Furthermore, several of these methods, referred to
as ‘summary methods’, are statistically consistent and very accurate
in practice. Summary methods are potentially scalable to large data-
sets and can have high accuracy that is competitive or better than
the major competing methods, while being faster. To date, several
statistically consistent summary methods have been developed
including ASTRAL (Mirarab et al., 2014a; Mirarab and Warnow,
2015; Zhang et al., 2018), ASTRID (Vachaspati and Warnow,
2015), MP-EST (Liu et al., 2010) and NJst (Liu and Yu, 2011).

Among these methods, ASTRAL is the most widely used.
ASTRAL has several theoretical advantages over the other methods.
For example, ASTRAL but not ASTRID, is statistically consistent
under the MSC model when species are missing from gene trees
under an i.i.d. model of missing data (Rhodes et al., 2020).

ASTRAL also has excellent sample complexity (Shekhar et al.,
2018), and matches or improves on the other species tree estimation
methods that address ILS on large datasets. Furthermore, ASTRAL
runs in polynomial time. However, on some datasets, ASTRAL can
be computationally intensive, exceeding the allowed time in some
computing environments (e.g. 24 hours) (Molloy and Warnow,
2019). Moreover, although biological datasets of interest in phylo-
genomic analysis may only have tens or a few hundred species (e.g.
the Avian Phylogenomics dataset had only 48 species), they can eas-
ily have many thousands of genes. As a result, species tree estimation
of datasets with even smallish to ‘moderate’ numbers of species can
be very computationally challenging when the number of genes is
large.

In this study, we focus on ASTRAL and seek to improve its run-
ning time, focusing on addressing the challenge when the number of
genes is large (i.e. the common problem in phylogenomics).
Although ASTRAL runs in polynomial time, its running time is
dominated by the size of a set X of ‘allowed bipartitions’ that it
computes from the input (and the running time is almost quadratic
in jXj). We show that a change to how ASTRAL computes its set X
can be made that substantially reduces its running time without los-
ing statistical consistency. We explore different ways for defining
the set X that rely on subsampling from the input gene trees, and de-
vise an approach that enables high accuracy and low running time,
and still ensures statistical consistency. Our experimental study vali-
dates this approach on both biological and simulated datasets,
including on datasets with gene trees having multiple individuals
and missing data. Our approach, which we refer to as ‘FASTRAL’,
matches or improves on ASTRAL with respect to topological accur-
acy and is much faster, especially on datasets with high gene tree
heterogeneity and large numbers of genes. In particular, FASTRAL
completes in about two minutes on the Avian Phylogenomics project
dataset (Jarvis et al., 2014) of 48 species and 14 446 genes, while
ASTRAL requires approximately 32 h. Thus, FASTRAL is a very
fast alternative to ASTRAL.

2 Materials and methods

ASTRAL: Given an unrooted tree T on leafset S with jSj ¼ n, we de-
fine C(T) to be the set of bipartitions on the leafset of T defined by
the edges of T; thus C(T) will contain n trivial bipartitions (that split
one leaf off from the other leaves) corresponding to the leaves of T
and additional non-trivial bipartitions corresponding to the internal
edges of T. If T is binary, then jCðTÞj ¼ 2n� 3. Given a set G of
gene trees (with leaves taken from S), the quartet support of a tree T
on leafset S is

P
t2G jQðTÞ \QðtÞj, where Q(t) denotes the set of

quartet trees induced by four-leaf trees in t. The input to ASTRAL is
a set G of k gene trees, each leaf-labelled by species drawn from set S
of n species. ASTRAL then uses the input to compute a set X of
allowed bipartitions, and uses a polynomial time dynamic program-
ming (DP) algorithm on the pair ðG;XÞ to find a species tree T on S
that maximizes the total quartet support (with respect to the input
gene trees) subject to CðTÞ � X. This is the Constrained Maximum

Quartet Support Species Tree (Constrained-MQSST) problem.
ASTRAL’s DP algorithm operates by implicitly calculating the
MQSST criterion score without needing to explicitly examine all
Hðn4Þ quartets. Furthermore, ASTRAL can also take a pair ðG;XÞ as
input and then apply its DP algorithm to that pair, thus allowing the
user the flexibility of computing the constraint set using other
techniques.

The most recent version of ASTRAL, referred to as ASTRAL-III,
runs in OðDjXj1:726Þ where D denotes the number of distinct ‘tripar-
titions’ in the input gene trees G (where a tripartition is defined for
each node in each gene tree, and is produced by deleting the node
and its incident edges from the gene tree, thus splitting the leafset
into three parts). The default way that X is defined in ASTRAL is
guaranteed to include all the bipartitions in G, and the first design
for ASTRAL (i.e. ASTRAL-I) used only these bipartitions. Hence, in
the simplest case, jXj is O(nk). However, as ASTRAL continued to
be refined, it expanded the set X to add additional biparititions, but
requiring that it not violate the jXj ¼ OðnkÞ condition. This guaran-
tees that the final running time of ASTRAL-III is OðDðnkÞ1:726Þ.
Furthermore, ASTRAL-III is guaranteed statistically consistent,
since X always contains the bipartitions from the input gene trees
(Theorem 2 from Mirarab et al. (2014a)).

FASTRAL: By design, the size of X dominates the running time
of ASTRAL, and can make ASTRAL computationally intensive. The
key observation that led to the design of FASTRAL is that we can
ensure statistical consistency by having X be the bipartitions found
in a set of estimated species trees, rather than the gene trees, pro-
vided that the set of estimated species trees are computed using stat-
istically consistent methods. Therefore, from a purely theoretical
perspective, we can replace the default way that ASTRAL computes
X by a set of species trees we can compute using fast and statistically
consistent methods. Here we describe how FASTRAL operates,
which depend on how it sub-samples from the input set G of gene
trees (Step 1) and the choice of a method M for computing species
trees on each sub-sample (Step 2):

1. Step 1: Construct a collection of sub-samples of the gene trees in

G.
2. Step 2: For each sub-sample, run M to obtain a tree on S.

3. Step 3: Let X be all bipartitions appearing in any tree obtained

in Step 2.

4. Step 4: Run ASTRAL on the pair ðG;XÞ.

As we now show, we can define sub-sampling strategies and
choices for M that ensure statistical consistency and polynomial
time, and that also provide very good empirical accuracy.

FASTRAL builds set X from bipartitions of species trees or
supertrees inferred from the input genes by any auxiliary method of
choice M. To increase the diversity among species trees and yet uti-
lizing the full resolution of the input gene trees, FASTRAL divides
the input gene trees into m>1 overlapping sets, so that the ith sam-
ple contains ti � k gene trees (Fig. 1). There are numerous ways to
draw the m sub-samples fed to the auxiliary method. Here, we ex-
plore two simple sampling strategies where sub-samples are drawn

Fig. 1. The FASTRAL pipeline. FASTRAL creates m sub-samples from the input set

G of gene trees, constructs an ASTRID tree on each sub-sample, and uses the biparti-

tions from the m ASTRID trees for the constraint set X. ASTRAL is then run on in-

put ðG;XÞ
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uniformly at random without replacement. In one approach (i.e.
same-size sampling), we limit the sub-samples to a specific size (i.e.
25% of input gene trees), while in the other approach (i.e. variable-
size sampling), we allow the sub-samples to be of variable sizes.
Then a species tree is inferred for each sample using the auxiliary
method M. FASTRAL aggregates all unique bipartitions among the
m species trees and uses it as the set X of allowed bipartitions. If pol-
ytomies (i.e. nodes of degree greater than three) are present in any of
the trees constructed by method M, FASTRAL resolves them using a
UPGMA tree built from G, which is similar to ASTRAL-III’s ap-
proach for resolving polytomies. However, in contrast to ASTRAL-
II (Mirarab and Warnow, 2015) and ASTRAL-III (Zhang et al.,
2018), FASTRAL does not further expand this set X. It is worth
mentioning that trees generated by method M are only used to con-
struct the set X, and do not impact ASTRAL’s analysis otherwise
(e.g. they are not used to define the quartet support criterion or the
tripartition weighting performed in ASTRAL).

Here, we used ASTRID (Vachaspati and Warnow, 2015), which
is statistically consistent under the MSC and one of the few methods
that can run on very large datasets (thousands of genes and species).
ASTRID uses a distance-based approach where the first step com-
putes an ‘average internode distance matrix’ (i.e. matrix of pairwise
distances averaged across the gene trees, using the number of intern-
al nodes on the path as the distance), and the second step computes
a tree from the distance matrix. As shown by Allman et al. (Allman
et al., 2018), the average internode distance matrix converges to an
additive matrix for the true species tree with probability converging
to 1, and so ASTRID [when used with methods such as FastME
(Lefort et al., 2015) or Neighbor Joining (Saitou and Nei, 1987)] is
statistically consistent under the MSC.

Prior studies comparing ASTRID and ASTRAL shows that both
have better accuracy on datasets with large numbers of species than
other statistically consistent methods, and the relative performance
between them is mixed: in some cases they are tied, sometimes
ASTRAL is more accurate and sometimes ASTRID is more accurate
(Vachaspati and Warnow, 2015).

2.1 Statistical consistency

Theorem 1.Assume that the random sampling step of FASTRAL gener-

ates m sub-samples, such that there is at least one subsampleSj whose

size also increases to infinity with the number of genes

(i.e.jSjj ¼ dfjðjGjÞe where fj : R! Rþ is a real valued increasing function

satisfying limnfjðnÞ ¼ 1). Assume also that M is a summary method

(i.e.M takes as input a set of unrooted gene tree topologies and estimates

a species tree) that is statistically consistent under the MSC. Then,

FASTRAL is statistically consistent under the MSC model when used

with M and this sampling strategy.

Proof. Under the conditions of the theorem, as the number k of genes

in G increases to infinity, the number of genes in sub-sample Sj also

increases to infinity, and so the tree obtained using M on Sj will con-

verge to the true species tree with probability converging to 1.

Furthermore, since tree topologies are discrete objects, for every � > 0

there is a number k� of genes so that the probability that M returns the

true species tree topology for sub-sample Sj given k� genes is at least

1� �. Therefore, as the number k of genes in G increases, with prob-

ability converging to 1, the set X constructed by FASTRAL will include

all the bipartitions that are present in the true species tree. Hence, for a

sufficient number of genes, the true species tree will be a feasible solu-

tion to the Constrained-MQSST optimization problem solved by

ASTRAL. Note that the proof for Theorem 2 from Mirarab et al.

(2014a) that establishes ASTRAL to be statistically consistent under the

MSC using its default technique for computing X (which sets X to the

bipartitions from the input gene trees) only depends on X containing,

in the limit, all the bipartitions from the species set; hence, the same ar-

gument ensures that FASTRAL is statistically consistent under the

MSC. h

2.2 Asymptotic running time
On each sub-sample Si of G containing ti � k gene trees on n taxa,
ASTRID runs in Oðtin

2 þ n3Þ. After aggregating the bipartitions of
ASTRID’s species tree into set X, ASTRAL takes OðDjXj1:726Þ to
run where D is the number of distinct tripartitions in the input set G
of gene trees and jXj ¼ OðmnÞ when generating m sub-samples.
Therefore, the total asymptotic running time of FASTRAL will be
Oðmkn2 þmn3 þDðmnÞ1:726Þ.

Theorem 2.When used with ASTRID for computing species trees on the

sub-samples, FASTRAL runs in Oðmkn2 þmn3 þDðmnÞ1:726Þ, where n

is the number of species, k is the number of genes, D is the number of

distinct tripartitions in the input gene trees, and m is the number of sub-

samples it analyzes. When k> n (which is typical for phylogenomic data-

sets), the running time simplifies to Oðmkn2 þDðmnÞ1:726Þ.

Comments. Note that when using a sampling strategy in which
m is much smaller than k (even when m ¼ k=c for some constant
c>1, such as we explore in this study), FASTRAL’s asymptotic run-
ning time is much faster than the asymptotic running time for
ASTRAL, which is OðDðnkÞ1:726Þ, and this good running time
would still hold if ASTRID was replaced by another method that
ran in Oðn3Þ time. With respect to statistical consistency, FASTRAL
depends on its algorithmic parameters: how it selects M (i.e. the
method for computing trees on subsets of the genes) and its sub-
sampling strategy, and the conditions under which FASTRAL is
guaranteed statistically consistent under the MSC are very modest
(i.e.M is a statistically consistent summary method and the sub-
sampling strategy includes at least one sub-sample whose size
increases to infinity as the number of genes increases to infinity).
However, empirical performance (i.e. accuracy on data) can be
impacted by the choices for M and sub-sampling strategy, and in
ways that are more complex. For example, picking only one sub-
sample will mean that FASTRAL is identical to M on the sub-
sample, which is clearly not a good strategy. More generally, what is
wanted is a large enough number m of sub-samples that the set X
that is created does not constrain the search space too much, but
when m is very large then the running time will increase. Therefore,
while the theorem regarding statistical consistency holds for many
random sampling strategies and choices of M, for accuracy and run-
ning time considerations, each must be chosen with care.

3 Experimental study

Overview. In our design and evaluation of FASTRAL, we chose
ASTRID as the method M to compute trees on the sub-sampled col-
lections of genes. Therefore, the remaining algorithmic parameter to
determine is the sub-sampling strategy, and its impact on species
tree error. we computed species tree error using the FN error rate,
which is the fraction of the number of bipartitions that appear in the
true species tree but not in the estimated species tree [this is identical
to the Robinson-Foulds (Robinson and Foulds, 1981) error rate
since the species trees are binary]. We performed three experiments.
In Experiment 1, we compared two sampling strategies to evaluate
the impact on species tree accuracy, and selected one for further ana-
lysis. In Experiment 2, we compared FASTRAL to ASTRAL on
simulated datasets where each gene tree has a single leaf for each
species. In Experiment 3, we compared FASTRAL to ASTRAL on
simulated datasets where the genes have multiple individuals per
species, and some genes may be incomplete (i.e. may be missing spe-
cies). In Experiment 4, we compared FASTRAL to ASTRAL on the
Avian Phylogenomics project dataset with 48 birds and 14 446
genes (Jarvis et al., 2014).

Datasets. We used biological and simulated datasets from prior
studies (Table 1). We selected three model conditions from the
ASTRAL-II (Mirarab and Warnow, 2015) simulated datasets; the
estimated gene trees for these model conditions were obtained from
https://sites.google.com/eng.ucsd.edu/datasets/astral/astral-ii. Using
the nomenclature for these models from ASTRID, MC1, MC6 and
MC11 have 1000 genes and either 200 (for MC1 and MC6) or 1000
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(for MC11) species, and there are 50 replicates per model condition.
MC6 has low ILS [i.e. AD¼9%, where AD denotes the average dis-
cordance, measured using normalized Robinson-Foulds (Robinson
and Foulds, 1981) distances between true gene trees and true species
trees], MC11 has moderate ILS (AD¼35%), and MC1 has high ILS
(AD¼69%). Also, we used the D2 model condition of simulated
datasets from the ASTRAL-multi (Rabiee et al., 2019) study (the
estimated gene trees were obtained from https://maryamrabiee.
github.io/ASTRAL-multi/). The D2 model condition (50 replicates)
has 1000 genes and 200 species with five individuals per species,
and high ILS (AD¼48–53%). The avian biological dataset (with 48
species and 14 446 estimated gene trees) was obtained from https://
gitlab.com/esayyari/ASTRALIII/-/blob/master/ml.tar.gz. The ana-
lysis reported in Jarvis et al. (2014) on this avian dataset suggests
that it has very high ILS, as all of the estimated gene trees were dif-
ferent from the species tree computed on the datast using ExaML
(Kozlov et al., 2015). We used the gene trees for these model condi-
tions, which were estimated using RAxML (Stamatakis, 2014).
Since the gene trees are estimated, they all have some gene tree esti-
mation error.

Methods. ASTRAL: Version 5.7.3 was used with default param-
eters for all the arguments (Zhang et al., 2018).

ASTRID: The linux version of ASTRID-1.4 (https://github.com/
pranjalv123/ASTRID-1) was used with the ‘auto’ mode for distance
matrix calculations. Since the internode distance matrix does not
have any missing entries, the ‘auto’ mode uses FastME (Lefort et al.,
2015) with Nearest Neighbor Interchanges (NNI) as the distance
method for tree estimation.

FASTRAL: Version 1.0.0 was used (https://github.com/
PayamDiba/FASTRAL). For intermediate estimation of species trees,
we used ASTRID-1.4 (with the same setting as described above) for
the MC1, MC6, MC11 model condition datasets and the avian bio-
logical dataset, and ASTRID-2 (https://github.com/pranjalv123/
ASTRID) for the D2 datasets (since ASTRID-1.4 does not support
the multi-individual mode). ASTRID-2 was used with the ‘auto’
mode for distance matrix calculations. The intermediate species
trees found by ASTRID were fed to ASTRAL (flag ‘-f’) for construct-
ing set X, and expansion of set X with heuristics was disabled (flag
‘-p’ set to 0). Moreover, we modified ASTRAL Version 5.7.3 in
order to restrict set X to only the union of the bipartitions of the
intermediate species trees (i.e. to prevent the inclusion of input gene
trees’ bipartitions in set X). This modified version of ASTRAL 5.7.3
is distributed with FASTRAL package. In this study we ran
FASTRAL with two different general settings: (i) variable-size sam-

pling: we generate 51 samples, one of which contains all of the gene
trees, 10 samples containing 50% of the gene trees, 20 samples con-
taining 25% of the gene trees and 20 samples containing 10% of the
gene trees, and (ii) same-size sampling: We generate 51 samples each
of which contains 25% of the gene trees. In each case, gene trees are
sampled uniformly at random without replacement.

False negative error rate: We computed the number of false nega-
tive (FN) branches (i.e. edges in the reference species tree not
appearing in the estimated trees) using a script obtained from
https://github.com/redavids/phylogenetics-tools/tree/master/compar

etrees. We obtain the FN rate by dividing this by n—3, the number
of internal branches in a binary tree on n leaves.

4 Results

4.1 Results from experiment 1
We evaluated the impact of sampling strategy (same-size and
variable-size sampling, see Methods) on FASTRAL on two model
conditions (MC6 and MC11). FASTRAL achieves comparable ac-
curacy under both sampling strategies, but there is a small advantage
to using the variable-size sampling (Supplementary Fig. S1).
Therefore, we selected the variable-size sampling strategy
(FASTRAL_51S_varT) for future analyses. We conjecture that the
improvement of variable-size sampling over same-size sampling is
due in part to the inclusion of the sample that contains all the gene
trees, but future work is needed to fully explore the impact of sam-
pling strategy.

4.2 Results from experiment 2
Tree error. As seen in Figure 2, for all three model conditions,
increasing the number of genes results in decreases in error for all
methods, with the biggest decrease occurring between 100 and 500
genes, and then a smaller decrease between 500 and 1000 genes.
Results under the model conditions are somewhat different, and so
are discussed separately.

For the MC6 model condition, which has 200 species and low
ILS (AD¼9%), ASTRAL and FASTRAL are essentially tied for ac-
curacy at all numbers of genes, but ASTRID has higher error. For
the MC11 model condition, which has 1000 species and moderate
ILS (AD¼35%), ASTRAL and FASTRAL have the best accuracy at
100 genes, and then essentially tie with ASTRID for 500 and 1000
genes. For the MC1 model condition, with 200 species and high ILS
(AD¼69%), ASTRID has variable accuracy, but FASTRAL is
strictly better than ASTRAL at 500 and 1000 genes and ties with
ASTRAL at 100 genes. These trends indicate that the number of
genes and ILS level affects both the absolute and relative accuracy of
species tree estimation methods, and that FASTRAL has an advan-
tage for accuracy under the high ILS condition.

We evaluate the statistical significance (P-value < 0.05) of the
difference in species tree error between ASTRAL and FASTRAL
(Supplementary Table S1). Under the MC6 and MC11 conditions,
ASTRAL and FASTRAL do not have statistically significant differ-
ences in species tree accuracy for any model condition and number
of genes (P-value > 0.05). Under the MC1 condition, FASTRAL has
a statistically significant advantage over ASTRAL for the 1000-gene
case, and is almost statistically significantly better on the 500-gene
case. Thus, under high ILS, FASTRAL can be significantly more ac-
curate than ASTRAL, and under lower ILS conditions the differen-
ces in accuracy between the two methods are not significant.

Running time. The running times on these model conditions
show very large differences between methods, but ILS level, number
of genes, and number of species impact the time usage (Fig. 2 and
Supplementary Table S2). Under all model conditions and numbers
of genes, ASTRID is the fastest method, finishing in just seconds,

Table 1. Characteristics of the datasets used in this study

Dataset No. taxa No. genes ILS (AD %) Other

MC1 (Mirarab and Warnow, 2015) 200 1000 69 No. gens.: 500 K, spec. rate: 1e-6

MC6 (Mirarab and Warnow, 2015) 200 1000 9 No. gens: 10 M; spec. rate: 1e–7

MC11 (Mirarab and Warnow, 2015) 1000 1000 35 No. gens: 2 M; spec. rate: 1e-6

D2 (Rabiee et al., 2019) 200 1000 48-53 No. gens: 0.5 M; spec. rate 1e-6

Avian (Jarvis et al., 2014) 48 14446 N/A Unknown true gene and species trees

Note: The MC1, MC6, MC11 and D2 model conditions are simulated, and their statistics are taken from the cited papers; each has 50 replicates. The avian

dataset is biological. For the simulated datasets, the number of generations controls the ILS level (fewer generations results in smaller species tree height and

higher ILS) and the speciation rate controls whether the speciation is towards the root (1e7) or towards the leaves (1e6). The ILS level is reported using the

Average Discordance (AD) between true gene trees and true species trees, computed using the normalized Robinson-Foulds distance to produce a value between 0

and 1. Thus, MC1 is very high ILS, D2 is high ILS, MC11 is moderate ILS and MC6 is low ILS.
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and its running time is not noticeably impacted by the number of
genes. A comparison between ASTRAL and FASTRAL shows differ-
ent trends. On the low ILS model condition (MC6) with 200 species,
ASTRAL is faster than FASTRAL given 100 genes, somewhat
slower given 500 genes, and again slower given 1000 genes (approx.
371 s compared to approx. 182 s). Thus, FASTRAL is faster than
ASTRAL given 500 or 1000 genes, but the ratio is not substantial
(2.04), and both methods are very fast under this low ILS condition.

However, under moderate or high ILS, the running times in-
crease and the difference in running time between the methods also
increases, so that FASTRAL is faster than ASTRAL for all numbers
of genes. Both methods have their highest running times on the
MC11 condition with 1000 genes, indicating that the number of
species (1000) for this condition has a substantial impact on running
time. On the moderate ILS 1000-species MC11 condition with 1000
genes, ASTRAL uses 20125 s on average and FASTRAL uses 2191 s
(i.e. ASTRAL is 9.19 times slower than FASTRAL). On the high ILS
200-species MC1 condition with 1000 genes, ASTRAL uses 4293 s
and FASTRAL uses 153 s, a ratio of 28.06 in running time. Thus,
both methods running times are impacted by the ILS level, number
of taxa and number of genes, and FASTRAL’s running time advan-
tage over ASTRAL ranges from modest (e.g. a ratio of 2.04 on the
MC6 low ILS condition with 200 species) to very large (a ratio of
28.06 on the high ILS MC1 condition).

To understand the different impact of ILS level on the ASTRAL
and FASTRAL running times, recall that increases in ILS lead to
increases in topological heterogeneity across the gene trees, and this
automatically increases the size of jXj as ASTRAL computes it.
However, FASTRAL computes its set X from the ASTRID trees
computed on sub-sampled sets of gene trees, which ameliorates the
impact of increasing numbers of genes on the size of X (and even
results in decreases in the size of X as we will discuss next).

Overall, we see that FASTRAL has a substantial running time
advantage over ASTRAL, but especially when there is moderate to
high ILS or when there is a large number of genes or species.

MQSST scores and properties of the constraint set X. To under-
stand these trends, we examine the size of the set X computed by
FASTRAL and the density of the true species tree bipartitions in X
(i.e. the ratio between jTPj and jXj, where TP denotes the true posi-
tives in X, or the species tree bipartitions in X). Figure 3 shows
results for this analysis on the MC11 datasets, and shows that our
approach significantly improves search space efficiency on MC11
datasets (Supplementary Fig. S2 suggests similar improvements on
MC1 and MC6). As expected, the constraint set X increases in size

for ASTRAL as the number of genes increases. Interestingly, the con-
straint set X produced by FASTRAL decreases in size as the number
of genes increases, which can be explained by the ASTRID trees on
the subsets becoming topologically more similar to each other. The
decrease in the size of jXj improves the running time, since
ASTRAL’s running time depends almost quadratically on the size of
its search space; hence, the gap in running time between ASTRAL
and FASTRAL increases with the number of genes (Fig. 2E).
Furthermore, the high density of the true species tree bipartitions
shows that we achieve this running time improvement without sacri-
ficing species tree accuracy (Supplementary Fig. S2 suggests similar
trends and improvements on MC1 and MC6). We also examined
the Maximum Quartet Support Supertree (MQSST) scores produced
by ASTRAL and FASTRAL, as the two methods differ only in how
they constrain the search space. FASTRAL and ASTRAL are nearly
identical on the three model conditions (Supplementary Fig. S3),
showing that the change in the constraint space used by FASTRAL
is not detrimental.

4.3 Results from experiment 3
Next, we compare FASTRAL to ASTRAL on a challenging simu-
lated dataset containing five individuals per species, and where there
can be species missing from gene trees under an i.i.d. missing data
model (25% of species are missing in 25% of genes). As seen in
Figure 4, FASTRAL and ASTRAL have nearly the same accuracy
under all the tested conditions (and the differences are not statistical-
ly significant, with a P-value of 0.07 and 0.26 for 0% and 25%
missing data respectively), and FASTRAL is much faster than
ASTRAL. Thus, the relative performance of FASTRAL and
ASTRAL for multi-individual datasets is similar here to that
observed for the other experiments, even in the presence of i.i.d.
missing data.

4.4 Results on the avian biological dataset
As illustrated by the results on simulated datasets, FASTRAL’s main
advantage as compared to ASTRAL is the decreased run-time on
datasets with large number of genes. In order to examine the extent
of this speed-up on genome-wide biological datasets, we ran both
ASTRAL and FASTRAL on the avian biological dataset (Jarvis
et al., 2014) and compared the resulting trees and the corresponding
run-time and optimization scores. Table 2 shows the running time
and MQSST optimization score for both methods (higher scores
show higher consistency of the inferred species tree with the quartets

Fig. 2. Experiment 2: Comparison between ASTRAL, ASTRID and FASTRAL, with varying numbers of gene trees. Species tree error is shown in (A), (B) and (C) for low

(MC6), moderate (MC11) and high (MC1) ILS model conditions, respectively; running time is shown in (D), (E) and (F) for the same model conditions. Note that the y-axis

ranges for the running time differ between the three subfigures. Error bars indicate the standard error from mean
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of the input gene trees). FASTRAL runs �800 times faster that
ASTRAL-III, indicating a great improvement in running time. It is
worth mentioning that 71% of FASTRAL’s run time (� 104 s) was
consumed for building set X (i.e. running ASTRID on sub-samples)
and only 29% of its run time (� 42 s) was used for running
ASTRAL. This shows the huge improvement in ASTRAL’s running
time when operates under an optimal constraint search space (42 s
versus 32 h). Furthermore, their inferred species trees (Fig. 5) differ
in only three bipartitions. Comparing the resulted trees, we observe
that as opposed to ASTRAL, FASTRAL places Red-crested turaco
and Houbara bustard close to Common cuckoo. This assignment
seems to be in agreement with previously published trees in Jarvis
et al. (2014) computed using ExaML (Kozlov et al., 2015) or MP-
EST combined with statistical binning (Mirarab et al., 2014c).
Interestingly, the trees inferred by both ASTRAL and FASTRAL dif-
fer in particular branches from the trees inferred from non-coding
data [e.g. the intron MP-EST tree in Jarvis et al. (2014) and the nu-
cleotide trees in Houde et al. (2019) and Reddy et al. (2017)]. Such

datatype-dependent discordances have been previously reported in
the literature (Braun and Kimball, 2021). See Supplementary Figure
S4 for the ASTRID tree inferred from these data.

5 Summary and conclusions

Accurate species tree estimation in the presence of incomplete lin-
eage sorting (ILS), as modeled by the multi-species coalescent
(MSC), is computationally and statistically challenging. ASTRAL is
the leading species tree estimation that is statistically consistent
under the MSC model and that can analyze large datasets; however,
when given large numbers of genes, ASTRAL can be computational-
ly challenging. Specifically, ASTRAL operates by solving an NP-
hard optimization problem (MQSST) within a constrained search
space, based on a set X of ‘allowed bipartitions’ that it computes
from the input. When the input set of gene trees is large or there is
substantial heterogeneity between gene trees, ASTRAL’s set X can
become very large, making the running time in some cases excessive-
ly large.

Here, we have presented FASTRAL, which uses a generalizable
and flexible technique for constructing the set X of allowed biparti-
tions (compared to how ASTRAL constructs this set) and in so doing
improves on ASTRAL. By design, FASTRAL is much faster than
ASTRAL because the set of allowed bipartitions is much smaller
than ASTRAL’s. However, importantly, FASTRAL maintains statis-
tical consistency, is polynnomial time, and is as accurate (and in
some cases more accurate) than ASTRAL. The improvement of
FASTRAL over ASTRAL in terms of accuracy is most noteworthy
when there is high ILS and a large number of genes, but FASTRAL

Fig. 3. Understanding the impact of FASTRAL’s strategy on the constrained search. A: Comparing size of set X between ASTRAL and FASTRAL on MC11 datasets with 1000

genes (note that the y-axis is logarithmically scaled). B: The density of the true species tree bipartitions in the set X (i.e. space efficiency) for ASTRAL and FASTRAL on MC11

dataset with 1000 genes and 1000 species. Error bars represent standard error

Fig. 4. Experiment 3: Comparing FASTRAL with ASTRAL on a multi-individual dataset in both presence and absence of missing data. A: Comparison between tree error rates

(averaged over 50 replicates) ASTRAL and FASTRAL for the ASTRAL-multi D2 dataset (200 species, 1000 genes). B: Comparison between running time of ASTRAL and

FASTRAL for the ASTRAL-multi D2 dataset with 200 species and 1000 genes. Error bars represent standard error

Table 2. Running time (in hours) and optimization score (propor-

tion of quartet trees satisfied) achieved by FASTRAL and ASTRAL

on the avian biological dataset from Jarvis et al. (2014) with 48 spe-

cies and 14,446 genes

Method Time (h) Optimization score

ASTRAL �32 0.50038

FASTRAL �0.04 0.50024
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is almost always much faster than ASTRAL. Thus, this simple ap-
proach provides a new and very fast technique to estimate species

trees from multi-locus datasets that matches the accuracy of the cur-
rent leading method, ASTRAL and uses a fraction of the time.

Future work should explore variants of this approach where
other fast methods (besides ASTRID) are used to construct trees on
the sub-sampled genes, and other sub-sampling strategies should

also be explored. Future work should also evaluate performance
(running time and accuracy) on additional simulated and biological

datasets to evaluate how FASTRAL performs under a variety of cir-
cumstances, and include comparisons to other methods for species
tree estimation, including methods such as RevPoMo (Schrempf

et al., 2016) not established to be statistically consistent under the
multi-species coalescent model at this time. Finally, constrained op-
timization is a basic technique in many phylogenomic analyses [e.g.

SVDquest (Vachaspati and Warnow, 2018) and FastMulRFS
(Molloy and Warnow, 2020)], and so this approach could be used

in other contexts as well.
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