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Abstract

This study was designed to explore the effects of tobacco smoke on gene expression
through bioinformatics analyses. Gene expression profile GSE17913 was downloaded from
the Gene Expression Omnibus database. The differentially expressed genes (DEGs) in
buccal mucosa tissues between 39 active smokers and 40 never smokers were identified.
Gene Ontology (GO) and pathway enrichment analyses of DEGs were performed, followed
by protein-protein interaction (PPI) network, transcriptional regulatory network as well as
miRNA-target regulatory network construction. In total, 88 up-regulated DEGs and 106
down-regulated DEGs were identified. Among these DEGs, cytochrome P450, family 1,
subfamily A, polypeptide 1 (CYP1A7) and CYP1B1 were enriched in the Metabolism of
xenobiotics by cytochrome P450 pathway. In the PPI network, tyrosine 3-monooxygenase/
tryptophan 5-monooxygenase activation protein, zeta (YWHAZ), and CYP1A1 were hub
genes. In the transcriptional regulatory network, transcription factors of MYC associated
factor X (MAX) and upstream transcription factor 1 (USF1) regulated many overlapped
DEGs. In addition, protein tyrosine phosphatase, receptor type, D (PTPRD) was regulated
by multiple miRNAs in the miRNA-DEG regulatory network. CYP1A1, CYP1B1, YWHAZ
and PTPRD, and TF of MAX and USF1 may have the potential to be used as biomarkers
and therapeutic targets in tobacco smoke-related pathological changes.

Introduction

There are approximately 1.3 billion people who smoke cigarettes in the world. Tobacco is an
important risk factor for multiple human malignancies, which causes almost 5 million prevent-
able deaths every year [1, 2]. More than 100 tumor promoters and carcinogens have been iden-
tified in tobacco [3]. Tobacco combustion products contain polycyclic aromatic hydrocarbons
(PAHs), which have been suggested to be carcinogenic [4]. A variety of cancers such as lung
cancer, oral cavity cancer, esophageal cancer and liver cancer are attributed to cigarette smoke
[5]. In addition, smoking can reduce the efficacy of targeted anticancer therapies by stimulating
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metabolic clearance [6, 7]. A better understanding of the mechanisms underlying these diseases
may lead to more effective treatments for cancer patients.

Previous studies have suggested that tobacco smoke causes a field of injury in the oral
mucosa epithelial cells, which are among the most important physiological barriers against sev-
eral exogenous stimuli [8]. Tobacco smoke has been found to affect gene expression in many
tissues and cells, including epithelial cells [9]. Some studies have reported that histologically
normal large airway epithelial cells of smokers display allelic loss [10] and p53 mutations [11].
An in vitro study by Pickett et al. [12] found that when a single source of human airway epithe-
lial cells was exposed to the same dose of cigarette smoke condensate from 10 different ciga-
rettes, 21 genes were altered by 9 of the 10 cigarettes. In addition, based on the transcriptome
profiling, Spira et al. [13] have indicated that smoking induces the expression of genes involved
in redox stress and xenobiotic metabolism in the large airway epithelial cells. Theoretically, the
development of a transcriptome-based biomarker to identify high-risk smokers may provide a
basis to protect against the carcinogenic effects of cigarette smoke. However, related studies are
far from being enough.

In the current study, we downloaded the microarray data GSE17913 and identified the dif-
ferentially expressed genes (DEGs) in buccal mucosa tissues between 39 active smokers and 40
never smokers. We performed pathway enrichment analysis and protein-protein interaction
(PPI) network construction. The transcriptional regulatory network and the miRNA-target
regulatory network were constructed. We aimed to define the effects of smoking on the oral
epithelial cells. The findings of this study may provide new insights into the carcinogenic
effects of smoking and then develop useful preventive strategies.

Data and Methods
Affymetrix microarray data

The microarray data GSE17913 [14] was downloaded from the Gene Expression Omnibus
(GEO, http://www.ncbi.nlm.nih.gov/geo/) database based on the platform of the Affymetrix
Human Genome U133 Plus 2.0 Array (Affymetrix Inc., Santa Clara, California, USA). The
dataset consists of 79 samples, including 40 samples of buccal mucosa from never smokers

(< 100 cigarettes per lifetime; 20 never smoker females; 20 never smoker males) and 39 sam-
ples of buccal mucosa from active smokers (> 15 pack year exposure; 19 smoker females; 20
smoker males). The demographic characteristics of never smokers and smokers were shown in
Table 1.

Data preprocessing and differential expression analysis

The original array data were preprocessed with background correction and quartile data nor-
malization by robust multiarray average (RMA) [15]. Then, the probes were mapped to the

Table 1. Demographic characteristics of never smokers and smokers.

Female (N = 20) Male (N = 20) P value
Never smokers
Age (years) median 45 45 0.51
Age (years) range 26-66 30-55
Smokers
Age (years) median 43 455 0.87
Age (years) range 27-63 30-54
Pack-year median 25 32.5 0.37
Pack-year range 15-66 15-60

doi:10.1371/journal.pone.0143377.t001
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gene symbols based on the microarray annotation information in R Bioconductor package
hgul33a2.db, and the expression values of multiple probes for a given gene were reduced to a
single value by taking their median expression value.

The paired t-test based on the limma package [16] in Bioconductor was used to identify the
DEGs between active smokers and never smokers. The Benjamini & Hochberg method was
used to decrease the false positive rate of the p-value, and the false discovery rate (FDR) was
calculated. FDR < 0.05 was considered the cutoff value.

Gene ontology and pathway enrichment analyses

The clusterProfiler (available at http://bioconductor.org/packages/release/bioc/html/
clusterProfiler.html) [17] package in R is used to automate the process of biological term classi-
fication and the enrichment analysis of gene clusters. To analyze the DEGs at the functional
level, Gene Ontology Biological Process (GO BP) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses were performed using the clusterProfiler tool.
P-value < 0.05 was set as the threshold value. In addition, the pathway figure was described
using pathview (available at http://bioconductor.org/packages/release/bioc/html/pathview.
html and at http://Pathview.r-forge.r-project.org/) [18] in the R Bioconductor package.

PPI network construction

The Search Tool for the Retrieval of Interacting Genes (STRING) database (http://string-db.
org/) [19] is a precomputed global resource used to evaluate PPI information. In this paper, the
STRING online tool was applied to analyze the PPI of DEGs, and only experimentally validated
interactions with a combined score > 0.4 were selected as significant. The PPI network was
constructed using cytoscape [20].

Transcriptional regulatory network construction

The ENCyclopedia Of DNA Elements (ENCODE, http://genome.ucsc.edu/ENCODE/) Project
aimed to provide comprehensive annotations of candidate functional elements in the human
genome for scientific and medical communities [21]. In this study, we extracted all the human
transcription factor (TF) binding sites were extracted from the ENCODE database. Next, the
repeatability of each TF binding site was analyzed, and the TF binding site that appeared in at
least 2 independent samples was selected for further analysis. Then, combining with the anno-
tation data of genetic transcription area, we screened out all the TFs located in the gene pro-
moter regions (1 kb upstream of the transcription start site (TSS) to 0.5 kb downstream of
TSS). The TF-gene pairs were then constructed. Finally, we extracted the TF-DEG pairs from
the TF-gene pairs and constructed the DEG-associated transcriptional regulatory network.

miRNA-target regulatory network construction

The starBase v2.0 (http://starbase.sysu.edu.cn/) database provides the RNA-RNA and protein-
RNA interaction networks from 108 CLIP-Seq (PAR-CLIP, HITS-CLIP, iCLIP, CLASH) data
sets generated by 37 independent studies [22]. It also contains the miRNA-target regulatory
networks which are verified by experiment and predicted by 5 algorithms (TargetScan,
miRanda, Pictar2, PITA and RNA22). In our study, we screened out the miRNA-target pairs
that were not only verified by at least 1 experiment but also predicted by at least 3 algorithms.
Then the miRNA-target regulatory network was constructed.
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Results
Identification of DEGs

A total of 394 DEGs were identified between active smokers and never smokers, of which 288
were up-regulated and 106 were down-regulated (S1 Table). The results are shown in the heat-
map (Fig 1).

GO and pathway enrichment analyses of DEGs

After pathway enrichment analysis, 3 pathways were obtained, namely the Metabolism of
xenobiotics by cytochrome P450, Osteoclast differentiation, and Chemokine signaling pathway
(Table 2). The Metabolism of xenobiotics by cytochrome P450 pathway was enriched by sev-
eral DEGs including cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1AI) and
CYP1BI. Specifically, the DEG distribution in the pathway of Metabolism of xenobiotics by
cytochrome P45 was shown in Fig 2. Additionally, the DEGs were mainly enriched in GO BP
terms related to biological processes, cellular processes and single-organism processes.

All GO BP and KEGG pathways for the DEGs were shown in S2 Table.

PPI network construction

The constructed PPI network was shown in Fig 3. The PPI network consisted of 139 nodes and
183 edges (S3 Table). Among these gene nodes, tyrosine 3-monooxygenase/tryptophan
5-monooxygenase activation protein, zeta (YWHAZ), NCK adaptor protein 1 (NCK1) and
cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1I) had the highest degrees of 9.
Moreover, YWHAZ and NCK1 were slightly down-regulated, and CYP1A1 was significantly
up-regulated.

Transcriptional regulatory network of DEGs

The DEG-associated transcriptional regulatory network was shown in Fig 4. The network con-
sisted of 2 TFs, 101 target DEGs and 131 edges (S4 Table). Fig 4 showed that the TF MYC asso-
ciated factor X (MAX) was down-regulated and upstream transcription factor 1 (USF1) was
up-regulated, with many overlapped DEGs regulated by the 2 TFs.

miRNA-DEG regulatory network

In total, 210 miRNAs, 2 TFs and 118 genes were included in the miRNA-DEG regulatory net-
work (S5 Table). Almost every miRNA regulated two DEGs, but several DEGs were also regu-
lated by multiple miRNAs, such as mesoderm induction early response 1, family member 3
(MIER3), cysteine-rich hydrophobic domain 1 (CHICI) and protein tyrosine phosphatase,
receptor type, D (PTPRD).

Discussion

The identification of DEGs between smokers and never smokers is important to understanding
the mechanisms underlying the carcinogenic effects of smoking. In this study, 288 up-regulated
DEGs and 106 down-regulated DEGs were identified. Among these DEGs, CYPIAI and
CYP1BI were mainly enriched in the pathway of Metabolism of xenobiotics by cytochrome
P450. In the PPI network, YWHAZ, NCKI and CYP1A1 were hub genes. In the transcriptional
regulatory network, the TFs MAX and USF1 regulated many overlapping DEGs. In addition,
PTPRD was regulated by multiple miRNAs in the miRNA-DEG regulatory network.
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Fig 1. Heatmap plot of differentially expressed genes across all samples. Upper color bar represents sample classes; red represents smoker group;

green represents non-smoker group.

doi:10.1371/journal.pone.0143377.g001

Cytochrome P450 enzymes can catalyze the biotransformation of various xenobiotic com-

pounds to form ultimate toxicants [23]. Mutations in certain CYP genes contribute to clinically
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Table 2. Pathway enrichment result for differentially expressed genes (DEGs).

ID Description P-value = Gene Symbol
hsa00980 Metabolism of xenobiotics by cytochrome 2.80E- CYP1B1/CYP1A1/ALDH3A1/GSTA3/AKR1C2/AKR1C4/GSTM4/AKR1C3/
P450 05 GSTM3
hsa04380 Osteoclast differentiation 2.61E- NCF4/PPARG/SOCS3/TNFRSF11A/BLNK/AKT3/TYK2
02
hsa04062 Chemokine signaling pathway 2.76E- CCL5/CCL26/CCL18/CCR2/AKT3/JAK2/CCR7/CCL22/JAK3
02

doi:10.1371/journal.pone.0143377.1002

relevant diseases including malignancy [24]. In this study, Metabolism of xenobiotics by cyto-
chrome P450 was a significant pathway and was enriched by several DEGs, including CYP1BI
and CYPIA1. As mentioned above, the combustion products of tobacco contain PAHs, which
can be converted into reactive metabolites via CYP1A1. These reactive metabolites may be
involved in the initiation of carcinogenesis via the formation of bulky PAH-DNA adducts [25,
26]. In the human lung, high expression of CYP1AI has been associated with increased lung
cancer risk [27]. Additionally, CYP1BI can also activate various carcinogens: for instance,
CYP1BI can catalyze the formation of dihydrodiols of specific PAHs and their subsequent oxi-
dation into carcinogenic dihydrodiol epoxides [28]. CYP1BI is also commonly overexpressed
in human malignancies [29]. Our result was consistent with the findings above, and therefore,
CYPIAI and CYPIBI may be potential targets in smoking-mediated malignancies.

In the PPI network, YWHAZ was one of the hub genes with the highest degree. Its encoded
proteins are involved in many vital cellular processes such as signal transduction, metabolism,
cell cycle regulation and apoptosis. YWHAZ protein expression is well known to be related to
advanced disease grade and poor clinical outcome in lung cancer patients [30]. Research has
found that YWHAZ is a potential regulator of the function of B-catenin, which is a central
effector of Wnt signaling in tumorigenesis and metastasis [31]. In particular, tobacco smoke
exposure may lead to the translocation of B-catenin via cooperation with interleukin-1 [32].
Taken together, YWHAZ may be a marker gene in tobacco smoke-related pathological
changes.

Furthermore, in the transcriptional regulatory network, the TFs f MAX and USF1 regulated
many overlapped DEGs. MAX is a member of the basic helix-loop-helix leucine zipper
(bHLHZ) family of transcription factors. It can form heterodimers with other family members,
including MYC, which is an oncoprotein implicated in cell growth, proliferation, differentia-
tion and apoptosis [33]. The dysregulated expression of MYC has been reported in a wide
range of human malignancies [34]. On the other hand, USF1 also encodes a member of the
bHLHZ family and functions as a cellular transcription factor that regulates the expression of
numerous genes involved in cellular proliferation and the cell cycle [35, 36]. Importantly, Wu
et al. [37] have demonstrated that nicotine, a component of tobacco smoke, can enhance USF1
translocation from the cytoplasm to the nucleus. As a result, we speculated that tobacco smoke
might induce cancer by targeting genes such as MAX and USFI.

In the miRNA-DEG regulatory network, several DEGs were regulated by multiple miRNAs,
such as PTPRD. The protein encoded by PTPRD is a member of the protein tyrosine phospha-
tase (PTP) family, signaling molecules that regulate cell growth, differentiation, and oncogenic
transformation [38]. PTPRD mutations have been found in lung cancer and other malignancies
[39]. Currently, there are few reports about the relationship between tobacco smoke and the
dysregulated expression of PTPRD. Thus, we speculated that PTPRD might be a potential bio-
marker associated with the carcinogenic effect of tobacco smoke.
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Fig 2. Differentially expressed gene (DEG) distribution in metabolism of xenobiotics by cytochrome P450 pathway. Red represents DEGs, and color
shade represents log FC variation.

doi:10.1371/journal.pone.0143377.9002
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Fig 3. Protein-protein interaction (PPI) network constructed by the differentially expressed genes (DEGs). Node size represents node degree; a
larger size indicates a larger degree. Red represents up-regulation, and green represents down-regulation.

doi:10.1371/journal.pone.0143377.9003

In conclusion, we have used a bioinformatics approach to identify the marker genes related
to the carcinogenic role of tobacco smoke. These DEGs, such as CYP1A1, CYP1B1, YWHAZ
and PTPRD, and TF of MAX and USF1, may have the potential to be used as biomarkers and
therapeutic targets in tobacco smoke-related pathological changes. The findings in this study
may contribute to our further understanding of the underlying molecular mechanisms that are
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doi:10.1371/journal.pone.0143377.g004

modulated by tobacco smoke. Further genetic and experimental studies with larger sample
sizes are still needed to confirm the results.
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