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Methods: To deal with this problem several methods for imputation of zeros for

scRNA-seq have been developed. However, it is not clear how these processing steps
affect inference of genetic networks from single cell data. Here, we introduce Biomod-
elling,jl, a tool for generation of synthetic scRNA-seq data using multiscale modelling of
stochastic gene regulatory networks in growing and dividing cells.

Results: Our tool produces realistic transcription data with a known ground truth
network topology that can be used to benchmark different approaches for gene regu-
latory network inference. Using this tool we investigate the impact of different imputa-
tion methods on the performance of several network inference algorithms.

Conclusions: Biomodelling,jl provides a versatile and useful tool for future develop-
ment and benchmarking of network inference approaches using scRNA-seq data.

Keywords: Gene regulatory networks, Network inference, Imputation, scRNA-seq,
Benchmarking, Stochastic simulation

Background

A gene regulatory network (GRN) or genetic network (GN) refers to a collection of
interacting genes in a cell which regulate each other indirectly through interaction of
their protein expression products and regulatory parts of DNA and with other signalling
systems in the cell, thereby governing the rates at which genes in the cell are transcribed
into mRNA [1]. GRNs can be represented as graphs or networks, where the nodes of
the network are genes and the edges between nodes represent gene interactions through
which the products of one gene affect those of another. These interactions can be acti-
vating, with an increase in the expression of one leading to an increase in the other, or
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inhibiting, with an increase in one leading to a decrease in the other. Learning the struc-
ture and behaviour of GRNs is a fundamental problem in biology since many cellular
processes, such as the cell cycle, cellular differentiation, and apoptosis are tightly con-
trolled by GRNs. Hence the elucidation of these GRNS is of critical importance in many
fields such as medicine and systems biology, however progress in deciphering them has
been slow.

In recent years, high-throughput sequencing methods have revolutionised the entire
field of biology. The opportunity to study entire transcriptomes in great detail using
RNA sequencing (RNA-seq) has catalysed many important discoveries and is now a rou-
tine method in biomedical research. However, RNA-seq is typically performed in “bulk’,
and the data represent an average of gene expression patterns across thousands to mil-
lions of cells. This averaging obscures biologically relevant differences between cells and
limits the possible downstream analyses. Single-cell RNA-seq (scRNA-seq) represents
an approach to overcome this problem [2]. By isolating single cells, capturing their tran-
scripts, and generating sequencing libraries in which the transcripts are mapped to indi-
vidual cells, scRNA-seq allows assessment of fundamental biological properties of cell
populations and biological systems at unprecedented resolution.

Unlike traditional profiling methods that assess bulk populations, scRNA-seq offers an
insight into biologically relevant cell-to-cell variations in gene expression. This includes
understanding the tumour microenvironment [3] by revealing complex and rare popula-
tions [4], facilitating the tracking of trajectories of cell lineages [5] and providing insights
into heterogeneity of stress response in microbes [6]. As we will explore in this paper, it
can facilitate the inference of GRNs [7]. Nevertheless, many factors contribute to the rise
of analysis challenges when dealing with scRNA-seq data, such factors can be divided
into two main classes: technical variation (e.g. batch effect, cell specific capture effi-
ciency, amplification bias and dropout events) and biological variation (e.g. stochastic
gene expression, cell differentiation, environmental niche and cell cycle).

Over the last decade many inference methods have been developed to harness the
available high-throughput data such as the RNA-seq data to uncover regulatory inter-
actions in GRNs. GRN inference is usually performed on measurements of gene-gene
correlation, mutual information or regression models that can be obtained from bulk
RNA-seq data across multiple conditions or perturbations or scRNA-seq across many
cells. If a co-expression between two genes is detected, while considering the expres-
sion of all others genes (conditional information), these genes are said to have a regula-
tory relationship. Several methods have been developed specifically for scRNA-seq [8, 9]
but some reviews and benchmarking studies have shown that both bulk and single cell
methods perform poorly on scRNA-seq data [10, 11]. For more accurate GRN recon-
struction several authors have remarked that preprocessing the data is important, mostly
due to the sparse nature of the data [12, 13]. Among different preprocessing steps, nor-
malisation and imputation is of particular importance. In order to distinguish between
biological and technical zeros (drop-out events), several imputation methods have been
developed [14-19] and compared in benchmark studies [20, 21]. The imputation step
is often integrated with normalisation and other downstream analysis as implemented
in these methods [19, 22]. However, how imputation affects gene-gene correlations
is not entirely clear although there have been some studies that have suggested that
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performing imputation improves the estimation of gene-gene correlations [18, 23]. So,
there seems to be some potential for using imputation methods to improve GRN infer-
ence from scRNA-seq data.

While many methods have been developed for inference of gene regulatory networks,
evaluating the performance of these methods remains challenging due to lack of appro-
priate benchmarks. In general, there are three main strategies to generate benchmark
networks. A first strategy consists in evaluating network predictions made by reverse
engineering algorithms on well-studied in vivo pathways from model organisms [24, 25].
However, those networks are incomplete maps of the physical interactions in the cell
that are responsible for cellular functions and using them as benchmarks will inevitably
lead to errors when evaluating network predictions. Another strategy consists of geneti-
cally engineering synthetic in vivo networks [26, 27]. The main drawback of this strategy
is that only a few small networks are available. The third strategy consists of develop-
ing in silico gene regulatory networks that can be simulated to produce synthetic gene
expression data that can be used in benchmarking. The simulation of in silico networks
has the advantages of being fast, easily reproducible and less expensive than biological
experiments and the ground truth is exactly known. However, for the synthetic data to
be useful, it should have a realistic assumptions and statistical properties for the under-
lying GRN topology and gene expression.

Benchmark synthetic data generators such as “artificial gene networks” [28] aim to
produce in silico gene networks exhibiting topological properties observed in biologi-
cal networks using Erdgs-Renyi, Watts-Strogatz (small-world) or Albert-Barabdsi (scale-
free) random graph models. Other approaches have been taken in SynTReN [29] and
[30] where general network structures were created by extracting parts of known in vivo
regulatory network structures. These approaches have the advantage of capturing several
structural properties observed in in vivo network structures. In order to produce tempo-
ral gene expression data, the generated structures are often made using dynamical mod-
els of gene regulation. Systems of non-linear ordinary differential equations (ODEs) are
widely used [31]. As current high-throughput technologies that simultaneously monitor
protein expression are limited, some benchmark generators consider mRNA as a proxy
for protein expression and thus do not model translation independently of transcription
[29, 30]. Protein expression in general does not correlate well with mRNA expression in
many biological systems [32]. To overcome this, several benchmark synthetic data gen-
erators have accounted for transcription and translation explicitly such as RENCO [33],
GeNGe [34] and GRENDEL [35]. GeneNetWeaver has become a commonly used tool
in recent years to generate gene expression data and GRN model evaluations [36]. For
instance, it was selected to generate the “gold standard” networks for the DREAM4 and
DREAMS5 network inference challenges, as well as other publications that conducted
comparisons of network modelling approaches [37-39]. GeneNetWeaver uses chemi-
cal langevin equations to simulate stochastic gene expression and allows for both inde-
pendent (‘additive’) and synergistic (‘multiplicative’) interactions. Among methods that
creates statistically realistic synthetic scRNA-seq data generation method is splatter
[40]. Splatter implements six different simulation models ranging from a simple nega-
tive Binomial model to a more sophisticated gamma-Poisson hierarchical model, how-
ever, it assumes no correlation in expression among different genes. Finally, MeSCoT
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was released recently which is a synthetic data generator developed in MATLAB for the
detailed simulation of genes’ regulatory interactions for variable genomic architectures
which can also produce a complete set of transcriptional and translational data together
with simulated quantitative trait values [41]. So, while there are several in silico meth-
ods available for simulating gene expression data, currently no method produces syn-
thetic scRNA-seq data with realistic expression statistics as expected by stochastic gene
expression and scRNA-seq protocols.

In this paper, we propose a novel in silico tool written purely in Julia [42] to generate
synthetic scRNA-seq data suitable for benchmarking GRN inference methods, Biomod-
elling jl*!. Our method uses an agent-based method to couple stochastic simulations
of realistic GRNs in a population of growing and dividing cells. We couple cell size to
transcription as has recently been observed in different cellular systems [43] and include
translation, binomial partitioning of molecules upon cell division and capture efficiency
of the scRNA-seq steps. Here, we used Biomodelling.jl to systematically benchmark
the impact of different imputation methods on the performance of network inference
algorithms.

The format of this paper is as follows. We begin in sect. "Methods" by introducing our
method of synthetic data generation as well as the different imputation methods and
network inference methods we wish to assess. We then begin sect. "Results" by present-
ing a toy 5 gene example as an exemplar of our method and use it to illustrate the cen-
tral problem of overcoming the negative impact of downsampling on network inference.
Next we show that the network inference methods perform better on sparser data before
going onto show how the different imputation methods and network inference meth-
ods perform using realistic scale-free topologies. We show that multiplicative regula-
tion is the most challenging for accurate network inference. We then show that the best
choice of imputation method for accurate inference depends on the choice of inference
method. Finally we show that the number of combination reactions (where a gene has
multiple regulators) considered rather than the size of the network determines overall
performance for most of the algorithms presented. We end with a discussion in sect.
"Discussion” and make some recommendations for how best to pre-process scRNA-seq
data for network inference.

Methods

Biomodelling.jl

Biomodellingjl is a tool for multiscale agent-based modelling of scRNA-seq data that
simulates stochastic gene expression in a population of single cells that are growing and
dividing, written in the Julia programming language. The unique feature of Biomodelling.
jl is that it can generate synthetic sScRNA-seq from a known underlying gene regulatory
network including global transcription-cell volume relationships. In Fig. 1, we describe
the main steps in order to generate synthetic ground truth (GT) data using Biomodelling.
jl, which is available to the community as open source software. The gene-gene correla-
tion that is exhibited in the Biomodelling.jl synthetic data provides benchmarking data

! *https://github.com/ayoublasri/Biomodelling.jl
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for testing the efficiency of network inference methods. Details about each step are given
in the following sections.

Network topology, sparsity and simulation

In this study, we considered two different types of topology. The first one consists of
random connections allowing genes to be regulated by at most one other gene. This
topology is referred to in the manuscript as random one regulation (ROR). The second
topology considered in this study is a scale free (SF) network topology [44]. Growing
evidence has suggested that gene regulatory networks follow a scale free topology [45,
46]. The function static_scale_free() from LightsGraphs Julia Package (v1.3.5) was used to
generate SF topologies. Introducing this more realistic topology means that genes may
be regulated by multiple other genes; we allowed for at most four regulators for each
gene. In this study, 20-gene and 50-gene regulatory networks were considered.

GRNs are known to be sparse [47—-49] and characterised by a relatively small fraction
of regulatory links between genes. In order to evaluate the effect of network sparsity on
the performance of inference methods, we considered different levels of sparsity in the
simulated networks defined as percentages of all possible links in the GRN excluding
self-regulation. Specifically, we used sparsities corresponding to 2.5%, 5% and 10% of
possible connections for 20-genes network and 1%, 2% and 4% for 50-genes network. We
note that by choosing these sparsity levels we make sure that the percentage of possible
connections is kept the same for both networks. Though the graphs used as our ground
truth GRNs are directed, when assessing the performance of the inference methods, we
only used undirected information since the network inference methods only predict this
undirected links (except for GENIE3). As an example, 2.5% of possible links in a 20-gene
network corresponds to 5 links that were simulated using the two topologies mentioned
in the previous paragraph.

Several chemical reactions stochastic simulation methods have been implemented
in Biomodellingjl, the stochastic simulation algorithm (SSA), tau leaping, adaptive tau
leaping and non negative poisson tau leaping [50-52]. For the purpose of this paper, only
tau leaping or SSA have been used to simulate the chemical reactions. Our single cell
level model simulates gene transcription at a rate which depends on the cell volume,
with the transcription rate of a gene in cell i being

kii =kiV;

where V; is the volume of cell i and k; is the basal transcription rate. This kind of tran-
scription scaling has been reported in mammalian and yeast cells [8, 43, 53], where the
authors showed that the numbers of constitutive and inducible mRNAs scale with cell
size. We also simulate translation, mRNA decay, protein decay, activation and inhibition
as shown in Fig. 1 (I).

Types of reactions simulated
Activation and inhibition reactions were modelled as Hill functions f.; and f;,;, respec-
tively and defined as follows for a given activator/inhibitor X
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with #n represents the Hill coefficient and K being the microscopic dissociation con-
stant. If gene Y is activated or inhibited by gene X its transcription rate becomes
ki, = k1 Vifi(X) for i = act or inh. In the case where a gene X is regulated by multiple
genes, we considered two scenarios, the first one is independent or additive (where we
sum the regulators’ Hill functions) and the second scenario is synergistic or multiplica-
tive (where we take the product of the regulators’ Hill functions). By allowing a gene
to have multiple regulators, we considered three types of combination reactions which
we refer to as combined activation, combined inhibition and combined action. Com-
bined activation refers to the case where all regulators are activating the gene, combined
inhibition refers to the case where all regulators are inhibiting the gene and combined
action refers to the case where some of the regulators activate the gene and some of
them inhibit the gene.

For example, if Y activates X and Z inhibits X then the transcription rate of X becomes
in the multiplicative case (multiplicative combined action)

kii = k1 Vifact (Y)finn(2),
or can be written for the additive case (additive combined action) as follow

kii = k1 Vi(fact (Y) + finn(2)).

Parameters for mammalian cells

In [54], the authors simultaneously measured absolute mRNA and protein abundance
and turnover by parallel metabolic pulse labelling for more than 5000 genes in mam-
malian cells and reported data for protein and mRNA numbers as well as half-lives,
transcription and translation rates. To select realistic parameters for accurate GRN
simulations, we fitted multivariate Log Normal distributions to data extracted from the
aforementioned study using maximum likelihood estimation technique and presented
the results in Fig. 2. Samples of Protein decay, transcription and translation rates are pre-
sented in Fig. 2 panels (B), (C) and (D) respectively. We found little correlation between
any of the parameters and that the marginal distributions are positively skewed mean-
ing that the majority of the data consists of lower values and the majority of outliers are
higher values. To avoid computations taking too long, we also excluded parameter sets
that resulted in protein numbers greater than 100,000.

Furthermore, we constrained the choice of the remaining parameters to be realis-
tic and in accordance with experiments. Cell numbers were uniformly sampled from
[2000, 3000] which is consistent with typical scRNA-seq experiments [55]. We note that
breakthroughs in technology have allowed even higher numbers of cells to be studied
[56]. The cell growth rate was fixed to correspond to a 50 hours doubling time, though
we note that we tried a range of doubling times between 24 and 50 hours, which is

consistent with mammalian cell doubling times but did not find any consequence for
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Fig. 2 Density plots, scatter plots and correlations of 1000 parameter sets sampled from a multivariate
normal distribution fitted to experimental data [54]. Diagonals show distributions of protein decay rates,
mMRNA decay rates, transcription and translation rates respectively. Lower left scatter plots show relationships
between parameter values and upper right plots show Pearson correlation values

network inference performance. The Hill coefficient n was sampled from a log uniform
distribution with lower bound 1 and upper bound 10 and the microscopic dissocia-
tion constant K was chosen to be proportional to the mean value of the steady-state of
the regulator in absence of regulation. Finally, we note that the exponent of the power-
law degree distribution was sampled from the uniform distribution with bounds [2, 3],
which is consistent with [57]. For reproducibility purposes, a list of the 100 parameter
sets used can be found here*?.

Cell population: growth, division and partitioning

Without loss of generality, cells were assumed to grow from approximately V =1 at
birth to V' = 2 at division with cell growth rates chosen to correspond to biologically
feasible doubling times as explained above. Cell growth was modelled to be exponential

2 *https://github.com/ayoublasri/Biomodelling jl/tree/master/parameters.
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dvi(t)
dt

= i) Vi(t), (1)

where 1;(£) is the growth rate at time ¢ in cell i.

To model division noise we adopt the approach of [58, 59] where the final volume
of the cell at generation n was found to follow a noisy linear map, i.e., the final vol-
ume VF of a given cell was assumed to follow

VE=aVi+b+mn, (2)

where V7 is the initial volume of the cell, 2 and b are linear function parameters, we note
that a and b have the same value for all cells, and 57 is the final volume noise. The value
of parameter a defines the size control strategy of the cell. It is known that many cell
types, including mammalian cells show a so-called adder behavior giving a value ofa = 1
[60]. For simplicity, n1 was set to 0 in this study. Given the value of 4 and the birth size of
about V' = 1, the value of b is also set to be 1.

A dividing cell of volume VF is assumed to divide into two daughter cells with vol-
umes Vj, and V;, defined by

V]l = VF X N2, (3)
and
Vi, = VE x (1 —1n2), (4)

where 1, represents division noise and is sampled from AN'(0.5, 02). We assumed the
contents of the cell are binomially distributed (using 77) between daughter cells upon
division [61]. We note that 7 and 7 embed both intracellular stochastic phenomena and
also the stochastic influence of extracellular signals. As in [62—-64], in order to keep the
population size capped, after a cell division event the new offspring displaces another
cell in the population picked at random. Simulating a capped sized population is com-
putationally cheaper than simulating a growing population and leads to more accurate
results than using an isolated lineage based approach [65].

To couple the reactions with the exponential growth equation, we ran the stochas-
tic simulation algorithm for a fixed time step before updating the volumes of cells
and checking for cell division. This was typically set to 7 = 0.1 h but we note that we
tried smaller time steps as far as ¢ = 0.01 h and found no observable consequences
on the simulation output.

Genes tracking and ground truth data

Following the modelling approach described above, genes in the regulatory network
were tracked for a given simulation time and data were saved in typical scRNA-seq
format (where rows represent genes and columns represent cells). We refer to these
data as ground truth (GT) data. In addition, our modelling approach does not only
simulate gene expression, it also tracks protein levels in a single cell and stores cell
volumes (which are used in data scaling).
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Downsampling, scaling and imputation

Given a GT data set and in order to mimic scRNA-seq experiment, as in [19, 66] we
assume that the number of transcripts observed in a cell j follows a Binomial model
with probability §; (the cell’s specific capture efficiency), which represents the prob-
ability of original transcripts in a cell being captured by the sequencing method
[66]. In order to simulate downsampling of GT data, the cells’ specific capture effi-
ciencies were obtained from a log-normal distribution centred in B, where § €
{0.03,0.1,0.2,0.3, 0.5}, with a variance set to 0.2, this is consistent with values reported
in [67]. The downsampled data from a given capture efficiency B is referred to as noisy
data (ND-B).

In order to perform data scaling, we define the scaling factor (6) for a cell i as follows
i

V,
0; = Bi X ,

max

where V; is cell i volume, V};,,4 is the maximum volume in the cell population and ; is
cell i capture efficiency. The scaled data (SD-f) are obtained by dividing the noisy data
by the cell’s specific scaling factor. Our scaling approach is similar to a global-scaling
normalisation strategy, where the expected value of the read count for a gene in a cell is
proportional to a gene specific expression level and a cell specific scaling factor [68]. The
cell specific scaling factor in the data will be proportional to the cell size and cell specific
capture efficiency, which motivates the form chosen for 6. In the following we describe,
briefly, the imputation methods that are considered in this study.

bayNorm [19] is a Bayesian approach to perform imputation. bayNorm generates for
each gene in each cell a posterior distribution of original expression counts, given the
observed scRNA-seq read count for that gene and the cell specific capture efficiency
assuming a binomial model for transcript capture in the RNA-seq process. The result-
ing posterior distribution of the original counts relised on emperical based method of
estimating a prior on each gene by pulling information across all cells. To perform impu-
tation on ND-B, we used bayNorm() function from bayNorm R package (v1.6.0). The
output data are referred to as BD-8.

MAGIC [18] shares information across similar cells, via data diffusion, to fill in missing
transcripts. This is achieved in four steps: (1) building a nearest neighbor graph based on
cell-cell expression distance, (2) defining an affinity matrix by applying a Gaussian kernel
on the principal components of the graph, (3) applying a diffusion process on the simi-
larity matrix to obtain a smoothed affinity matrix, (4) computing the new expression of
each gene as a linear combination of the same expression in similar cells, weighted by
the similarity strength obtained in the previous steps. To perform imputation on ND-g,
we used magic() function from Rmagic R package (v2.0.3). The output data are referred
to as MD-8.

SAVER [14] pools information across genes and cells to provide accurate expression
estimates for all genes and impute the missing values. SAVER assumes that the count of
each gene in each cell follows a Poisson-gamma distribution mixture. The Poisson distri-
bution approximates the technical noise, whereas the uncertainty in the true expression
is modelled as a gamma distribution. The recovered expression is a weighted average of
the normalized observed counts and the predicted true counts. To perform imputation
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on ND-8, we used saver() function from SAVER R package (v1.1.2). The output data are
referred to as SAD-B.

SANITY [69] is a bayesian method that corrects for the Poisson noise inherent in the
gene expression and the finite sampling associated with the capture and sequencing of
mRNAs. SANITY uses two basic assumptions, (1) the cell’s gene expression state is char-
acterised by the vector of the logarithms of the expected fractions (LEF) of the transcript
pool for each gene and (2) LEF is estimated from the raw UMI count data by characteris-
ing the prior distribution of LEF of each gene only by its mean and variance across cell.
SANITY is deterministic, has no tunable parameters and provides error bars for all of its
estimates. To perform imputation on ND-8, we used the C implementation of SANITY
(v1.1.2).

We refer the reader to [70], a recently published review and benchmarking study that
assesses performance, the code quality and the computational time for the above men-
tioned methods.

Network inference algorithms

We consider four different methods: Information Measurement (PIDC) [9], Emperi-
cal Bayes (EB) [71], Context Likelihood of Relatedness (CLR) [9], and GENIE3 [72], see
Fig. 1(II). The overall workflow of the aforementioned methods focuses on modelling the
relationship between genes using different correlation metrics.

PIDC and EB were developed by the same authors with EB presented as an improve-
ment of PIDC. Both methods use partial information decomposition (PID) as follows:
(1) compute the mutual information between two genes X and Y and the unique mutual
information between X and Y given a third gene Z, (2) define the proportional unique
contribution (PUC) between two genes X and Y as the sum of the ratio of unique to
mutual information calculated using every other gene Z in a network, (3) an empirical
probability distribution is estimated from the PUC scores for each gene, and the con-
fidence of an edge between a pair of genes is given . EB provides an additional step to
smooth the empirical distributions using a regression-based mode-matching method.
The methods output a ranked list of undirected edges using the confidence scores
obtained. The Julia implementation of these methods was used: InformationMeasures.jl
(v0.3.1), Networkinference.jl (v0.1.1) and EmpiricalBayes.jl.

CLR computes the mutual information between two genes and calculates the sta-
tistical likelihood of each mutual information value within its network context. Then,
the pairwise genes mutual information is compared to the background distribution of
mutual information scores for all possible gene pairs. The most probable interactions are
those whose mutual information scores stand significantly above the background dis-
tribution of mutual information scores. The Julia implementation of this method in the
following packages InformationMeasures.jl (v0.3.1) and Networkinference.jl (v0.1.1) was
used.

Originally developed for bulk RNA-seq and best performer in the Dialogue for Reverse
Engineering Assessments and Methods (DREAM4) challenge, GENIE3 is widely applied to
scRNA-seq. Unlike many methods in the same category that look at gene pairs or gene tri-
plets, GENIE3 takes into account the interaction of an arbitrary number of genes in one cal-
culation and can capture the nonlinear dependencies between genes by decomposing the
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prediction of a regulatory network between p genes into p different regression problems.
Although GENIE3 can return a directed network, for the sake of comparison with the other
methods, we considered the undirected network option. We used GENIE() function from
GENIE3 R package (v1.10.0).

As control we also report random inference (RAND), which returns for a given sparsity
random links in the GRN. We note that in this systematic study we matched the network’s
sparsity to the inference method algorithms’ threshold, meaning that if for a given sparsity
the GT network has N links, we chose the inference algorithms’ threshold that returns the
top N predicted links.

We refer the reader to [11], a recently published review that assesses the code implemen-
tation and usability and the computational time of the above mentioned methods, with the
exception of CLR.

Network inference performance evaluation
To evaluate the network inference algorithms performance, we consider two metrics: Area
Under Receiver Operating Characteristic curve (AUROC) [73] and Area Under Precision-
Recall curve (AUPR) [74], see Fig. 1(I1I).

The ROC curve is defined as a plot of False Positive Rate (FPR) versus True Positive Rate
(TPR) (also known as sensitivity or recall) which are given in function of True Positive (TP),
True Negative (TN), False Positive (FP) and False Negative (FN) as follow

FP
FPR= ——F—,
FP + TN

P
TPR = ——.
TP + FN

The AUROC is then easily obtained from the ROC curve, many options are available, we
used AUC() function from DescTools R package (v0.99.39) that takes as input the ROC
curve and the method to compute the area, we chose ‘trapezoid’. AUROC is character-
ised by the absence of bias toward models that perform well on the minority class at
the expense of the majority class, in other words AUROC does not favour methods that
are good at identifying interactions between genes while failing to detect the absence of
interactions [75].
The PR curve is defined as a plot of TPR against Precision (P) which is given as

TP

P=—" .
TP + FP

The AUPR is obtained from PR curve using AUC() function as described above. Using
AUPR we are able to assess the performance of a method on the minority class, in other
words, since the gene regulatory networks are sparse, we can assess the performance of a
given method on how it does in detecting existing interactions between genes [75].
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Fig. 3 Synthetic scRNA-seq data generated for 5 gene network example. The network was simulated using
500 cells over a 500 hour time period with parameters sampled as described in Methods sect. "Parameters
for mammalian cells" A Plot of the volume time series of a single representative cell. Early divisions are due
to replacement in order to keep number of tracked cells constant. B Plot of corresponding mRNA time series
for the 5 genes modelled. C Plot of corresponding protein time series for the 5 genes modelled. D Heatmap
of mMRNA pearson correlations taken from final time point. E Heatmap of mRNA pearson correlations scaled
by cell volume taken from final time point. F Heatmap of mRNA pearson correlations scaled by cell volume
and subsequently downsampled using Binomial downsampling with 20% capture efficiency. G Graph of
ground truth network where a blue arrow represents a link with an activating reaction and an orange arrow
represents a link an inhibiting reaction. H Graph of inferred reaction network obtained from PIDC algorithm
using mRNA data scaled by cell volume at final time point as input. Predicted links are represented by solid
black lines. I Graph of inferred reaction network obtained from PIDC algorithm using mRNA data scaled

by cell volume at final time point and downsampled (using Binomial downsampling with 20% capture
efficiency) as input. Predicted links are represented by solid black lines

v o e

Results

Synthetic scRNA-seq data for a toy example: unscaled expression leads to uniformly high
and positive correlations

We used the pipeline described in Fig. 1 to investigate different scenarios for network
inference. We begin in this section by presenting a toy example using our method of
synthetic scRNA-seq data generation (Fig. 1). This example serves to show typical out-
put of our simulation pipeline and also illustrates the difficulties of performing accurate
network inference using scRNA-seq data.

While we only make use of the final time point for mRNA and cell volume in this
study (as scRNA-seq is obtained in a time snap-shot), we present plots of the full vol-
ume time series for a single cell along with the corresponding levels of mRNA and pro-
tein in Fig. 3A—C. For initial conditions we chose the steady state mean value of mRNA
and protein species in the absence of any regulation. Furthermore, by using only the

final time point for network inference, we ensured all simulated cells are uncorrelated
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from the initial condition. As we made clear in Methods sect. our choice of parameters
such as cell doubling time, transcription, translation and decay rates keep the mRNA
and protein numbers within biologically feasible levels for mammalian cells. However,
we note that our approach can also be adapted for any other cell type by using different
parameterisations.

In Fig. 3D, we show gene-gene correlations computed from the cell population at the
final time point across the 5 genes. Strikingly we found that without scaling the raw
mRNA copy numbers by cell volume, gene correlations are dominated by cell volume
(see Fig. 3D). This is because gene expression scales with cell size and therefore mRNA
levels for different genes therefore have a global positive correlation due to cell size scal-
ing. Hence any correlations due to activations or inhibitions are obscured by the cells
position in the cell cycle. This information can be retrieved by dividing the raw mRNA
copy numbers by the cell volumes (as shown in Fig. 3E). Inspecting Fig. 3E we can
observe a strong positive correlation between gene 1 and gene 2 and a strong negative
correlation between gene 3 and gene 4. This is consistent with what we would expect
from the ground truth network (illustrated in Fig. 3G). While, most scRNA-seq proto-
cols do not measure cell size (see [6] for an exception), one can correct for cell size scal-
ing in real scRNA-seq data by normalising by total transcript counts per cell, which is
expected to scale with cell size [6].

Drop-out events are one of the most important features of single cell data. While their
technical origin is hotly debated, the evidence for zero-inflation has been questioned as
the statistics of drop-out events are consistent with a simple model of binomial capture
of original transcripts during scRNA-seq protocols [19]. To investiage the effect of drop-
outs, We next artificially induced drop-out events to the final mRNA data (before scaling
by final cell volume). We downsampled our data using a Binomial distribution with cap-
ture efficiency of 20%, see Methods sect. "Downsampling, scaling and imputation” for
more details. This approach is similar to the method used to generate single cell simula-
tion data for network evaluation that was published recently [76]. As shown in Fig. 3F
downsampling in this manner removes a significant level of the correlation information.

Finally, we present two network inference results. In Fig. 3H we show the network
inferred using the PIDC algorithm with the final mRNA data divided by final cell vol-
ume as input. We selected the threshold parameter to be equal to the sparsity of the
network (as we do for the rest of the results presented in this paper). We show in Addi-
tional File 1: Fig. S2 that this is the most appropriate parameter choice. By making this
choice we focus our study on the impact of imputation on inference accuracy rather than
the choice of inference algorithm parameters. We note that in applications to real data,
of course the true sparsity will not be known and a best guess should be used. For this
simple toy example, we can see that PIDC identified the whole network correctly (com-
paring Fig. 3H and I). We note that this network is not representative of a real biological
network due to its small size. However as shown in Fig. 31 even in this simple case down-
sampling the data affects the results significantly and PIDC no longer predicts any cor-
rect links. Hence, we observe that downsampling of the data that is associated with low
capture efficiency and drop-out in scRNA-seq data represents a challenge for network
inference. In the following, we investigate this issue systematically in bigger networks
and ask if imputation methods could help to resolve this challenge.
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Fig. 4 Network inference results using ground truth data (without downsampling) from 100 different
simulated random one regulation networks with 20 genes for 3 different network sparsities. Each network
was simulated over 500 hours using parameters sampled as described in Methods sect. "Parameters for
mammalian cells" A shows a barplot of the AUROC score for the 4 different network inference algorithms
considered as well as a random classifier (RAND). B shows a barplot of the AUPR score for the 4 different
network inference algorithms considered as well as a random classifier. Confidence intervals for barplots were
computed by subsampling 35 out of 100 networks 100 times. C shows a boxplot of the true positives found
for each network inference algorithm and random classifier for 3 different sparsity levels. The horizontal lines
depict the actual number of true positives for reference. D shows a boxplot of the true negatives found for
each network inference algorithm and random classifier for 3 different sparsity levels. Again, the horizontal
lines depict the actual number of true negatives for reference. E shows a boxplot of the false positives found
for each network inference algorithm and random classifier for 3 different sparsity levels. F shows a boxplot of
the false negatives found for each network inference algorithm and random classifier for 3 different sparsity
levels

Network inference algorithms tend to perform better for sparser networks

In this section we present the performance of 4 commonly used network inference algo-
rithms using ground truth data (i.e., no downsampling is performed) as input from 100
different simulated networks with 20 genes. Each network was randomly sampled in
terms of the links generated, number of cells and parameter values used. For simplicity,
we limited the number of links between genes to at most one (i.e., we use a ROR network
topology, see Methods sect. "Network topology, sparsity and simulation”). Though this
case is biologically infeasible, we used this to gauge the best case performance of the dif-
ferent algorithms and focus on the impact of network sparsity on network inference. The
sparsity parameter relates to the number of links in the network, where a larger param-
eter leads to more links. We considered network sparsities that correspond to 5, 10 and
19 links present in the network (out of a possible 190). We present the results of com-
monly used network inference metrics in Fig. 4.

Our first observation is that in general all 4 network inference algorithms perform sig-
nificantly better than the random classifier (across all measures considered). In terms of
ranking, for this data set, it appears that GENIE3 performs the best, followed by PIDC
then CLR and finally Empirical Bayes. This is consistent with other studies where it was
found that GENIE3 has the best network inference performance for many different data
sets [39].

With respect to the GENIE3 algorithm, we observed no clear relationship between
the AUROC score and network sparsity (Fig. 4A). Similarly, we see that the AUPR score
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stays relatively constant with respect to sparsity (Fig. 4B). However, we noticed a clear
trend regarding the number of true positives (Fig. 4C) versus network sparsity. As the
sparsity parameter is increased, while the number of true positives increases, the overall
fraction of average correctly identified true positives decreases (0.8, 0.6, 0.47 for 0.025,
0.05 and 0.1 sparsities respectively). We found a similar trend for the false positives and
false negatives (Fig. 4E, F) while the true negatives decrease with increasing sparsity
parameter (Fig. 4D). We note also that the variance in the number of true positives, true
negatives, false positives and false negatives increases with sparsity, implying GENIE3 is
less reliable for larger sparsity values.

We next considered the PIDC and CLR algorithms which perform similarly in this
case. In contrast to the GENIE3 algorithm, we observed an increase in the AUROC score
for both these algorithms as the sparsity is increased (Fig. 4A). The AUPR score did not
change with sparsity (Fig. 4B) and the number of true positives increases with sparsity
(while the overall fraction of average correctly identified true positives decreases) for
both algorithms (Fig. 4C). We found a similar trend for the false positives and false nega-
tives (Fig. 4E and F) while the true negatives decrease with increasing sparsity parameter
(Fig. 4D). We note that the CLR algorithm appears to have a constant variance for the
number of true positives, true negatives, false positives and false negatives for the dif-
ferent sparsities considered while the same metrics for the PIDC algorithm increases in
variance for the highest sparsity.

Unlike the other algorithms considered, Empirical Bayes produces similar trends for
both the AUROC and AUPR scores with both increasing with the sparsity parameter.
For the lower sparsities considered (0.025, 0.05), the number of true positives, true nega-
tives, false positives and false negatives is similar to the random classifier. However, for
the largest sparsity (0.1) the Empirical Bayes algorithm improves upon the random clas-
sifier but with very large variance.

Scale-free topologies are challenging for accurate network inference
Here we build on the previous sections by considering realistic scale-free topologies. In
this case, since more than one link can be made between genes (we allow up to 4 genes
to activate/inhibit another gene) using scale-free topologies, we must consider how this
regulation occurs. To explore this, we considered two different kinds of regulation, mul-
tiplicative or additive (for details see Methods sect. "Network topology, sparsity and sim-
ulation" ). We present the results of multiplicative versus additive regulation in Fig. 5.
Overall, we found the performance is poorer compared to the ROR network topolo-
gies results presented in Fig. 4, i.e., the results were closer to the random classifier for all
algorithms considered. This is due to the scale-free nature of the networks considered
as we found very little difference in the performance of the networks produced using
additive versus multiplicative regulation. Both forms of regulation display the inverse
relationship between the network sparsity parameter and accuracy that we observed in
the previous section. This inverse relationship is also reflected in the AUPR scores in
Fig. 5B, F. Interestingly, the AUROC scores show an opposite trend for additive and mul-
tiplicative regulation, with the AUROC score increasing for higher sparsities (apart from
the GENIE3 algorithm for multiplicative regulation). We also highlight that the overall
ranking of the network inference algorithms were preserved from the ROR case, with
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Fig. 5 Network inference results using ground truth data (without downsampling) from 100 different
simulated scale-free networks with 20 genes for 3 different network sparsities using additive or multiplicative
regulation. Each network was simulated over 500 hours using parameters sampled as described in Methods
sect. "Parameters for mammalian cells" A and E show barplots of the AUROC score for the 4 different
network inference algorithms considered as well as a random classifier (RAND) for additive and multiplicative
regulation respectively. B and F show barplots of the AUPR score for the 4 different network inference
algorithms considered as well as a RAND classifier for additive and multiplicative regulation respectively.
Confidence intervals for barplots were computed by subsampling 35 out of 100 networks 100 times. C and
G show boxplots of the true positives found for each network inference algorithm and random classifier for 3
different sparsity levels for additive and multiplicative regulation respectively. The horizontal lines depict the
actual number of true positives for reference. D and H show boxplots of the true negatives found for each
network inference algorithm and random classifier for 3 different sparsity levels for additive and multiplicative
regulation respectively. Again, the horizontal lines depict the actual number of true negatives for reference. E
and I show boxplots of the false positives found for each network inference algorithm and random classifier
for 3 different sparsity levels for additive and multiplicative regulation respectively. F and J show boxplots of
the false negatives found for each network inference algorithm and random classifier for 3 different sparsity
levels for additive and multiplicative regulation respectively

GENIE3 again performing the best, followed by PIDC, CLR then Empirical Bayes (which
is only slightly better than random classification). While the overall accuracy is dimin-
ished from the ROR case, the results appear more robust (i.e., the variance is decreased).

Due to inconsistencies we observed using the common AUROC and AUPR scores, we
use an easier to interpret score, the precision, for the remainder of the paper. Since we
fix the threshold used in the network inference algorithms to the sparsity of the net-
work, the precision can be interpreted simply as the fraction of correctly identified true
positives.

Different imputation methods perform better for different network inference methods

To address the question of which imputation method is best for the purpose of accurate
network inference we generated synthetic scRNA-seq data for 100 scale-free network
topologies using 20 genes. For simplicity, we only present results for the middle sparsity
case from previous sections (i.e., sparsity = 0.05 or 10 out of 190 possible reactions have
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Fig. 6 Impact of imputation on network inference performance and gene-gene correlation preservation
for 100 different simulated 20 gene networks using sparsity = 0.05 with multiplicative regulation for various
capture efficiencies. Figures A-D show boxplots of precision scores obtained for different imputation
algorithms displayed on x-axes for PIDC, CLR, GENIE3 and Empirical Bayes respectively. RAND corresponds
to precision obtained using random classification and GT data corresponds to precision obtained without
downsampling (i.e, capture efficiency is set to 1). Figures E- H show the mean squared deviation between
gene-gene correlations obtained using the ground truth data and those obtained using various imputation
methods displayed on x-axes (with results plotted on a log-scale). Figure E show results obtained using

all reaction types, while Figure F, G and H show results obtained using only activation, inhibition and
non-reacting type reactions respectively

links) and use multiplicative regulation (since both additive and multiplicative regulation
gave similar results). To reflect real scRNA-seq data, we downsampled our data using
capture efficiencies that reflect current technologically possible average capture efficien-
cies [77]. We present the results as boxplots in Fig. 6 where the first row corresponds to
the precision scores for different network inference algorithms using different imputa-
tion methods.

Overall we found that no imputation method is able to completely recapitulate the
network inference results obtained using the ground truth data. There is also a general
trend where as the capture efficiency decreases, the performance of the network infer-
ence decreases, with no network inference method/imputation method combination
improving upon random classification for capture efficiencies less than 10%. Another
general trend we notice is that MAGIC and SANITY imputation methods lead to very
poor network inference accuracy for all network inference methods studied and all cap-
ture efficiencies. We also note that the SANITY imputation algorithm failed to converge
for capture efficiencies lower than 30%. We also highlight that we ordered the results on
the x-axes by average score and highlight that ‘downsampled’ corresponds to no impu-
tation performed, hence every method to the right of ‘downsampled’ is beneficial for
inference.

Inspecting each individual network inference algorithm, we found that no one imputa-
tion method works best for every network inference algorithm. In Fig. 6A we observe
that the SAVER imputation method works best on average when combined with the
PIDC algorithm with scaled data and bayNorm performing very similarly. For the CLR
algorithm, bayNorm performs best on average, followed closely by SAVER (see Fig. 6B).
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For GENIE3 which produces the best ground truth performance, scaled data gives the
best results followed by bayNorm (see Fig. 6C). Remarkably for the 50% capture effi-
ciency scaled case, there is a single network which is inferred exactly. Fig. 6D shows the
Empirical Bayes algorithm results which works best when combined with SAVER impu-
tation, though it should be noted that even for ground truth data Empirical Bayes per-
formance is only marginally better than random classification.

We next investigated how well different imputation methods preserved gene-gene cor-
relations. To do this we first computed gene-gene Pearson correlations in the ground
truth data for the 100 synthetic scRNA-seq data sets. We then computed the corre-
sponding Pearson correlations for various imputation methods for different capture effi-
ciencies. We show one such example for each imputation method and for three different
capture efficiencies in Additional file 1: Fig S3. From this figure we see a general trend
where the gene-gene correlations become less correlated with the ground truth data as
the capture efficiency was decreased. We can also notice a pattern emerging with inhibi-
tion reactions (highlighted in grey) being less well preserved than other reaction types.
We also noticed that the SAVER imputation method seemed to artificially inflate corre-
lations. To test these observations more robustly, we computed the mean squared devi-
ation between gene-gene correlations obtained using the ground truth data and those
obtained using various imputation methods for all 100 data sets. We present these mean
squared deviations as boxplots in the second row of Fig. 6.

In general, the bayNorm imputation method preserved the gene-gene correlations best
(see Fig. 6E). The only other method improving on 'downsampled’ was the scaled method
which performed similarly well. MAGIC, SANITY and SAVER performed poorly in pre-
serving gene-gene correlations, however SAVER appeared to improve with increasing
capture efficiency. In Fig. 6F we show the mean squared deviations found using only
activation type reactions, and here we found that only bayNorm improves over the gene-
gene correlations found using the downsampled data. We also observed that SAVER and
MAGIC do not improve in performance with increasing capture efficiency for activation
type reactions. In Fig. 6G, we show that the scaled method performed best at preserving
gene-gene correlations of inhibition type reactions, followed closely by bayNorm which
also improved upon the downsampled data. Finally we observed that bayNorm is best at
preserving gene-gene correlations for non-reactions (see Fig. 6H).

Overall performance of network inference algorithms is inversely related to number
of combination reactions considered
To examine the impact of the number of genes on overall network inference perfor-
mance, in this section we extended the size of the networks analysed from 20 to 50 gene
networks. We used sparsities such that the fracton of links present in the network were
consistent with the 20 gene case from previous sections. This also prevented the maxi-
mum degree of the network from exceeding the maximum of 4 which is currently sup-
ported in Biomodelling.jl. We present the results for sparsity = 0.02 as boxplots in Fig. 7,
as in the previous section, where the first row corresponds to the precision scores for
different network inference algorithms using different imputation methods.

We found a general deterioration in the performance of all network inference
algorithms with the medium sparsity for the 50 gene case performing worse than
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Fig. 7 Impact of imputation on network inference performance and gene-gene correlation preservation
for 100 different simulated 50 gene networks using sparsity = 0.02 with multiplicative regulation for various
capture efficiencies. Figures A-D show boxplots of precision scores obtained for different imputation
algorithms displayed on x-axes for PIDC, CLR, GENIE3 and Empirical Bayes respectively. RAND corresponds
to precision obtained using random classification and GT data corresponds to precision obtained without
downsampling (i.e, capture efficiency is set to 1). Figures E-H show the mean squared deviation between
gene-gene correlations obtained using the ground truth data and those obtained using various imputation
methods displayed on x-axes (with results plotted on a log-scale). Figure E show results obtained using

all reaction types, while Figure F, G and H show results obtained using only activation, inhibition and
non-reacting type reactions respectively

medium sparsity for the 20 gene case (compare Fig. 7A-D with (Fig. 6A-D). While
GENIES3 still performed the best overall, CLR performed better than PIDC in this
case. Empirical Bayes was found again to be only marginally better than random
classification. In terms of imputation methods, we found that SAVER worked best
when combined with PIDC or Empirical Bayes and the scaled method worked best
for CLR or GENIE3 algorithms. This is broadly consistent with the 20 gene case.
Surprisingly, the gene-gene correlations are very closely aligned with the 20 gene
case (compare Fig. 7E-H with Fig. 6E-H), even for different reaction types. This
implies that the source of the deterioration in network inference is elsewhere. To
further investigate this, we also examined the number of combination reactions (see
Methods sect. " Network topology, sparsity and simulation" for details). We present
the number of combination reactions for the 20 gene and 50 gene cases in Addi-
tional file 1: Fig S7. We found a significant increase in the total number of combina-
tion reactions in the 50 gene case versus the 20 gene case. Furthermore, we found
that if we approximately matched the number of combination reactions for differ-
ent number of genes (e.g. 0.02 sparsity for the 50 gene case and 0.1 sparsity for the
20 gene case) we observed a very similar performance when using the ground truth
data (with the exception of the Empirical Bayes algorithm). Hence, this implies that
it is not the gene number that dictates the overall performance but the number of
combination reactions present in the network. We also found that the precision
scores decreased for the 50 gene case compared to 20 gene case whenever the data
was downsampled regardless of imputation method or network inference method.
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Discussion

Here we have introduced Biomodelling.jl, an open source julia package, for producing
synthetic scRNA-seq datasets based on a known gene-regulatory network. Biomodel-
ling.jl simulates realistic stochastic gene expression coupled to cell size in growing and
dividing population of cells using an agent-based approach. Downsampling using a
binomial distribution is used to model capture efficiency and drop-out in scRNA-seq
protocols. While there are other methods available for generating synthetic sScRNA-seq
datasets such as GeneNetWeaver and Splatter, these do not account for gene-gene corre-
lations that arise due to an underlying gene regulatory network and cell growth. Hence,
Biomodelling.jl can be used for benchmarking network inference methods. In this study,
we investigated the effectiveness of imputation on recovering gene-gene correlations
that are lost due to drop-out.

We first demonstrated the use of Biomodelling.jl by presenting results from a toy 5
gene network example. This showed that to uncover true gene-gene correlations it was
necessary to scale the raw mRNA numbers by cell volume, otherwise gene-gene cor-
relations would be uniformly high and positive. Without scaling by cell volume, the
mRNA numbers per cell for each gene are dominated by their position in the cell cycle.
While, there are several methods that have been developed to remove cell cycle effects
for scRNA-seq studies [78—80], we propose for the purpose of removing cell size effects
one could use a total count normalisation. We matched the threshold parameter of the
network inference algorithms with the sparsity of the network, as this yields the best
performance and simplifies the interpretation of the performance. For this simple net-
work, PIDC was able to correctly identify the whole network if the volume scaled mRNA
data was used. However we found that drop-out events simulated by downsampling lead
to poor network inference performance, implying even for very simple networks impu-
tation may help. We note that in general the sparsity of network is not known, but we
suggest the threshold could be derived from the number of known transcription factors
present in the considered network.

We then explored the performance of common network inference algorithms for sim-
ple topologies (ROR) using 20 genes network topologies. We found that all the network
inference algorithms considered performed significantly better than random classifica-
tion (apart from Empirical Bayes). Furthermore, GENIE3 performed best in this setting
and sparser networks were generally easier to infer. Introducing scale-free topologies
led to a general deterioration in the performance of the network inference algorithms
but the overall ranking of the algorithms was retained from the ROR network topologies
case. We also observed very little difference using additive or multiplicative regulation.
Hence we decided to use multiplicative scale-free topologies for evaluating the impact of
imputation methods on the performance of network inference algorithms.

We next examined the impact of performing imputation prior to applying the net-
work inference algorithms for a range of experimentally feasible capture efficiencies. In
general we found that inference performance was inversely related to the capture effi-
ciency regardless of imputation method used and that even for higher capture efficien-
cies the imputation methods were never able to completely recapitulate the ground truth
data case, though they frequently improved upon just using the downsampled data.
The best choice of inference algorithm depended on the choice of imputation method,
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i.e., there was no one best imputation method for every network inference algorithm.
Though we found clear evidence that some imputation methods should not be used for
network inference, SAVER, bayNorm and the scaled method can be used depending on
the choice of inference algorithm. As an example, we found SAVER and PIDC worked
well together. We also found that MAGIC and SANITY imputation methods never
improved upon using the downsampled data for any network inference algorithms that
we considered.

To better understand the network inference results we also examined how well gene-
gene correlations were preserved using several imputation methods. Overall, we found
that bayNorm was the best at preserving the gene-gene correlations found in the ground
truth data. We also examined the gene-gene correlations for specific reaction types.
Only bayNorm performed better than downsampled data for activation type reactions,
while bayNorm and the scaled method performed better than downsampled data for
inhibition and non-reacting type reactions. The fact that SAVER performs so poorly
here is inconsistent with the performance we found for network inference. Therefore
we examined this further, and while the gene-gene correlations are in general higher
than the ground truth gene-gene correlations, we found that they are off by a constant
(approximately the median correlation). In other words, the overall order or ranking of
correlations is preserved which may explain why the network inference algorithms such
as PIDC worked well with SAVER.

We also examined the impact of increasing the size of the gene network simulated.
Across all network inference algorithms, we found a deterioration in the quality of the
inference. We also computed the gene-gene correlations for various imputation methods
for these larger networks but unexpectedly found no difference compared to the smaller
gene networks, implying the source of the deterioration was elsewhere. We found that
the performance of the network inference seemed to be proportional to the number
of combination reactions (where it is possible to have a gene activated and inhibited
simultaneously) with similar performance recorded for 20 gene networks and 50 gene
networks with the same number of combination reactions (with the exception of the
Empirical Bayes algorithm). We speculate that incorporating protein information into
inference may help improve performance in such networks.

Finally, we compared our results with two recent complementary studies that inves-
tigated the impact of imputation on network reconstruction performance [81, 82].
In contrast to our study, we note that both these studies used experimental scRNA-
seq data sets where it is usually difficult to determine the ground truth network. In
[81], scRNA-seq data of seven different cell types were included, imputation methods
such as MAGIC and SAVER as well as inference methods such as PIDC and GENIE3
were evaluated in this study. The authors found that MAGIC introduced high positive
correlations and combining SAVER with PIDC led to an increase in network recon-
struction performance, these findings are consistent with our results (see Additional
file 1: Figs. S3, S4, S5 and S6). However, some disagreements with our results were
also observed. For example, while in this study it was reported that combining SAVER
with PIDC gave better results than combining SAVER with GENIE3, we found these
combinations of imputation method and network inference algorithm are comparable
regardless of the network sparsity and topology (Additional file 1: Figs. S4, S5 and
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S6). We also found that combining SAVER and GENIE3 does not improve the net-
work inference precision over downsampled data (Additional file 1: Figs. S4C, G, K,
S5C, G and S6C, G), unlike what was reported in the aforementioned study where the
authors observed that combining SAVER and GENIE3 does improve network infer-
ence performance in some cases. In [82], it was reported that low capture efficiencies
pose a challenge for imputation and network inference methods and that some impu-
tation methods, namely DCA [23], preserve the gene-gene correlations structure even
though false positive correlations are introduced, these findings are consistent with
our results (Additional file 1: Figs. S4, S5 and S6) where we found that for low capture
efficiencies, regardless of the imputation and network inference method, the network
inference precision is poor and we also found that SAVER similar to DCA preserves
the gene-gene correlations structure as mentioned above.

In summary, biomodelling.jl uses mechanistic models of gene regulatory network
and stochastic agent-based models of gene expression in cell populations to simu-
late realistic scRNA-seq data. This kind of approach is complementary to methods
that are purely statistical and use deep neural networks (see e.g. [83]). As illustrated
in this study, this kind of approach that is based on a known ground truth is useful
for bench-marking and development of novel methods for the analysis of scRNA-seq
data and gene-regulatory network inference.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/512859-022-04778-9

Additional file

Additional file 1. Additional figures demonstrating typical output of Biomodelling, the impact of varying the
sparsity parameter, gene-gene correlations, inference results of 20 and 50 gene cases and the impact of varying the
number of combination reactions.

Acknowledgements
Not applicable.

Author contributions
AL, VS.and M.S. wrote the main manuscript text. A.L. prepared figures and performed simulations. V.S. and M.S.
reviewed the manuscript. All authors read and approved the final manuscript.

Funding
This work was supported by the European Union’s Horizon 2020 research and innovation programme under the Marie
Sktodowska-Curie ITN initiative (Grant number: 766069).

Availability of data and materials
The raw datasets supporting the conclusions of this article are available in the following github repository: https://
github.com/Msturroc/biomodelling_benchmark.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no conflict of interest.


https://doi.org/10.1186/s12859-022-04778-9
https://github.com/Msturroc/biomodelling_benchmark
https://github.com/Msturroc/biomodelling_benchmark

Lasri et al. BMC Bioinformatics (2022) 23:236

Received: 17 August 2021 Accepted: 31 May 2022
Published online: 17 June 2022

References

1.

2.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Davidson E, Levin M. Gene regulatory networks. In:Proceedings of the National Academy of Sciences.
2005;102(14):4935-4935. Publisher: National Academy of Sciences Section: Introduction.

Saliba A-E, Westermann Alexander J, Gorski Stanislaw A, Vogel J. Single-cell rna-seq: advances and future challenges.
Nucl Acids Res. 2014;42(14).8845-60.

Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med.
2018;50(8):1-14.

Lambrechts D, Wauters E, Boeckx B, Aibar S, Nittner D, Burton O, Bassez AD, Pircher A, Van den Eynde K, Weynand B,
Verbeken E, Leyn Paul D, Liston A, Vansteenkiste J, Carmeliet P, Aerts S, Thienpont B. Phenotype molding of stromal
cells in the lung tumor microenvironment. Nat Med. 2018;24(8):1277-89.

La Gioele M, Ruslan S, Amit Z, Emelie B, Hannah H, Viktor P, Katja L, Maria EK, Peter L, Alessandro F, Jean F, Lars EB,
Zehua L, Van David B, Jimin G, Xiaoling H, Roger B, Erik S, Gongalo C-B, Patrick C, Igor A, Sten L, Peter VK. RNA velocity
of single cells. Nature. 2018;560(7719):494-8.

Saint M, Bertaux F, Tang W, Sun X-M, Game L, Koferle A, Bahler J, Shahrezaei V, Marguerat S. Single-cell imaging and
RNA sequencing reveal patterns of gene expression heterogeneity during fission yeast growth and adaptation. Nat
Microbiol. 2019;4(3):480-91.

Jackson CA, Castro DM, Saldi G-A, Bonneau R, Gresham D. Gene regulatory network reconstruction using single-cell
RNA sequencing of barcoded genotypes in diverse environments. eLife. 2020;9: e51254.

Sara A, Carmen BG-B, Thomas M, Van Anh H-T, Hana |, Gert H, Florian R, Jean-Christophe M, Pierre G, Jan A, van den
Joost O, Zeynep KA, Jasper W, Stein A. SCENIC: single-cell regulatory network inference and clustering. Nat Methods.
2017;14(11):1083-6.

ChanTE, Stumpf Michael PH, Babtie Ann C. Gene Regulatory Network Inference from Single-Cell Data Using Multi-
variate Information Measures. Cell Systems. 2017;5(3):251-67.

Chen S, Mar JC. Evaluating methods of inferring gene regulatory networks highlights their lack of performance for
single cell gene expression data. BMC Bioinf. 2018;19(1):232.

. Nguyen H, Tran D, Tran B, Pehlivan B, Nguyen T. A comprehensive survey of regulatory network inference methods

using single cell rna sequencing data. Brief Bioinf. 2021;22(3):bbaa190.

Vieth B, Parekh S, Ziegenhain C, Enard W, Hellmann I. A systematic evaluation of single cell rna-seq analysis pipelines.

Nat commun. 2019;10(1):1-11.

lacono Giovanni, Massoni-Badosa Ramon, Heyn Holger. Single-cell transcriptomics unveils gene regulatory network
plasticity. Genome Biol. 2019;20(1):1-20.

Huang M, Wang J, Torre E, Dueck H, Shaffer S, Bonasio R, Murray John |, Raj A, Li M, Zhang Nancy R. SAVER: gene
expression recovery for single-cell RNA sequencing. Nat Methods. 2018;15(7):539-42.

LiWeiV, Li Jingyi J. An accurate and robust imputation method scimpute for single-cell RNA-seq data. Nat Com-
mun. 2018;9(1):997.

Gong W, Kwak I-Y, Pota P, Koyano-Nakagawa N, Garry Daniel J. Drimpute: imputing dropout events in single cell RNA
sequencing data. BMC Bioinf. 2018;19(1):220.

Chen Mengjie, Zhou Xiang. VIPER: variability-preserving imputation for accurate gene expression recovery in single-
cell RNA sequencing studies. Genome Biol. 2018;19(1):196.

van David D, Roshan S, Juozas N, Kristina Y, Pooja K, Ambrose JC, Cassandra B, Kevin RM, Christine LC, Diwakar P,
Brian B, Linas M, Guy W, Smita K, Dana P. Recovering gene interactions from single-cell data using data diffusion.
Cell. 2018;174(3):716-29.

Tang W, Bertaux F, Thomas P, Stefanelli C, Saint M, Marguerat S, Shahrezaei V. bayNorm: Bayesian gene expression
recovery, imputation and normalization for single-cell RNA-sequencing data. Bioinformatics. 2020;36(4):1174-81.
Zhang Lihua, Zhang Shihua. Comparison of computational methods for imputing single-cell RNA-sequencing data.
IEEE/ACM Trans Comput Biol Bioinf. 2020;17(2):376-89.

Hou Wenpin, Ji Zhicheng, Ji Hongkai, Hicks Stephanie C. A systematic evaluation of single-cell RNA-sequencing
imputation methods. Genome Biol. 2020;21(1):218.

Lopez R, Regier J, Cole MB, Jordan MI, Yosef N. Deep generative modeling for single-cell transcriptomics. Nat Meth-
0ds. 2018;15(12):1053-8.

Eraslan G, Simon Lukas M, Mircea M, Mueller Nikola S, Theis Fabian J. Single-cell RNA-seq denoising using a deep
count autoencoder. Nat Commun. 2019;10(1):390.

Santos-Zavaleta Alberto, Gama-Castro Socorro, Pérez-Rueda Ernesto. A comparative genome analysis of the rpos
sigmulon shows a high diversity of responses and origins. Microbiology. 2011;157(5):1393-401.

Ly L-H, Vingron M. Effect of imputation on gene network reconstruction from single-cell ra-seq data. bioRxiv. 2021.
Camacho Diogo M, Collins James J. Systems biology strikes gold. Cell. 2009;137(1):24-6.

Cantone |, Marucci L, lorio F, Ricci Maria A, Belcastro V, Bansal M, Santini S, Bernardo MD, Bernardo Diego D, Cosma
Maria P. A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell.
2009;137(1):172-81.

Mendes P, Sha W, Ye K. Artificial gene networks for objective comparison of analysis algorithms. Bioinformatics.
2003;19(suppl 2):ii122-9.

Van den Bulcke Tim, Van Leemput Koenraad, Naudts Bart, van Remortel Piet, Ma Hongwu, Verschoren Alain, De
Moor Bart, Marchal Kathleen. Syntren: a generator of synthetic gene expression data for design and analysis of
structure learning algorithms. BMC Bioinf. 2006;7(1):1-12.

Page 24 of 26



Lasri et al. BMC Bioinformatics (2022) 23:236

30.

32.
33.

34.

35.

36.

37.

38.

39.

40.

42.

43.

44,

45.

46.

47.

48.
49.

50.
51.
52.
53.
54.

55.

56.

57.
58.

59.

60.

61.

62.

63.

64.

65.
66.

Li Yong, Zhu Yanming, Bai Xi, Cai Hua, Ji Wei, Guo Dianjing. Retrn: A retriever of real transcriptional regulatory
network and expression data for evaluating structure learning algorithm. Genomics. 2009;94(5):349-54.

. Hache Hendrik, Lehrach Hans, Herwig Ralf. Reverse engineering of gene regulatory networks: a comparative

study. EURASIP J Bioinf Syst Biol. 2009;1-12:2009.

Payne Samuel H. The utility of protein and mrna correlation. Trends Biochem Sci. 2015;40(1):1-3.

Roy S, Werner-Washburne M, Lane T. A system for generating transcription regulatory networks with combinato-
rial control of transcription. Bioinformatics. 2008;24(10):1318-20.

Hache H, Wierling C, Lehrach H, Herwig R. Genge: systematic generation of gene regulatory networks. Bioinfor-
matics. 2009;25(9):1205-7.

Haynes Brian C, Brent Michael R. Benchmarking regulatory network reconstruction with grendel. Bioinformatics.
2009;25(6):801-7.

Schaffter T, Marbach D, Floreano D. Genenetweaver: in silico benchmark generation and performance profiling
of network inference methods. Bioinformatics. 2011;27(16):2263-70.

Bellot P, Olsen C, Salembier P, Oliveras-Vergés A, Meyer Patrick E. Netbenchmark: a bioconductor package for
reproducible benchmarks of gene regulatory network inference. BMC Bioinf. 2015;16(1):1-15.

Marbach D, Costello James C, Kffner R, Vega Nicole M, Prill Robert J, Camacho Diogo M, Allison Kyle R, Kellis

M, Collins James J, Stolovitzky G. Wisdom of crowds for robust gene network inference. Nature Methods.
2012;9(8):796-804.

Greenfield A, Madar A, Ostrer H, Bonneau R. Dream4: combining genetic and dynamic information to identify
biological networks and dynamical models. PloS one. 2010;5(10): e13397.

Zappia L, Phipson B, Oshlack A. Splatter: simulation of single-cell rna sequencing data. Genome Biol.
2017;18(1):1-15.

. Milkevych V, Karaman E, Sahana G, Janss L, Cai Z, Lund Mogens S. Mescot: the tool for quantitative trait simula-

tion through the mechanistic modelling of genes'regulatory interactions. G3 Genes Genomes Genetics.
2021;11:133.

Bezanson J, Edelman A, Karpinski S, Shah Viral B. Julia: a fresh approach to numerical computing. SIAM Rev.
2017;59(1):65-98.

Sun X-M, Bowman A, Priestman M, Bertaux F, Martinez-Segura A, Tang W, Whilding C, Dormann D, Shahrezaei V,
Marguerat S. Size-dependent increase in RNA polymerase Il initiation rates mediates gene expression scaling
with cell size. Curr Biol. 2020;30(7):1217-30.

Broido Anna D, Clauset A. Scale-free networks are rare. Nature Commun. 2019;10(1):1017.

Khanin R, Ernst W. How scale-free are biological networks. J Comput Biol. 2006;13(3):810-8.

Zachary OW, Pogacar K, Grotewold E. Topological and statistical analyses of gene regulatory networks reveal
unifying yet quantitatively different emergent properties. PLoS Comput Biol. 2018;14:4.

Espinosa-Soto C. On the role of sparseness in the evolution of modularity in gene regulatory networks. PLOS
Comput Biol. 2018;14(5): e1006172.

James GM, Sabatti C, Zhou N, Zhu J. Sparse regulatory networks. Ann. Appl Stat. 2010;4(2):663-86.

Cai X, Bazerque Juan A, Giannakis Georgios B. Inference of gene regulatory networks with sparse structural
equation models exploiting genetic perturbations. PLOS Comput Biol. 2013;9(5): e1003068.

Gillespie Daniel T. Exact stochastic simulation of coupled chemical reactions. J Phys Chem. 1977,81(25):2340-61.
Gillespie Daniel T. The chemical Langevin equation. J Chem Phy. 2000;113(1):297-306.

Gillespie Daniel T. Approximate accelerated stochastic simulation of chemically reacting systems. J Chem Phys.
2001;115(4):1716-33.

Kempe H, Schwabe A, Crémazy F, Verschure Pernette J, Bruggeman Frank J. The volumes and transcript counts
of single cells reveal concentration homeostasis and capture biological noise. Mol Biol Cell. 2015;26(4):797-804.
Schwanhdusser B, Busse D, Na L, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M. Global quantification of
mammalian gene expression control. Nature. 2011;473(7347):337-42.

Couturier Charles P, Ayyadhury S, Le Phuong U, Nadaf J, Monlong J, Riva G, Allache R, Baig S, Yan X, Bourgey M,
et al. Single-cell rna-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy. Nat
Commun. 2020;11(1):1-19.

Svensson V, Vento-Tormo R, Teichmann Sarah A. Exponential scaling of single-cell rna-seq in the past decade.
Nat Protoc. 2018;13(4):599-604.

Barabasi N, Albert N. Emergence of scaling in random networks. Science. 1999,;286(5439):509-12.

Tanouchi, Pai A, Park H, Huang S, Stamatov R, Buchler NE, You L. A noisy linear map underlies oscillations in cell
size and gene expression in bacteria. Nature. 2015;523(7560):357-60.

Bertaux Francois, Marguerat Samuel, Shahrezaei Vahid. Division rate, cell size and proteome allocation: impact
on gene expression noise and implications for the dynamics of genetic circuits. Royal Soc Open Sci. 2018;5(3):
172234,

Cadart C, Monnier S, Grilli J, Sdez Pablo J, Srivastava N, Attia R, Terriac E, Baum B, Cosentino-Lagomarsino M, Piel M.
Size control in mammalian cells involves modulation of both growth rate and cell cycle duration. Nat Commun.
2018,9(1):1-15.

Charlebois Daniel A, Baldzsi G. Modeling cell population dynamics. In Silico Biol. 2019;13(1-2):21-39.

Mora T, Walczak AM. Effect of phenotypic selection on stochastic gene expression. J Phys Chem.
2013;117(42):13194-205.

Lee Kangtaek, Matsoukas Themis. Simultaneous coagulation and break-up using constant-n monte carlo. Powder
Technol. 2000;110(1):82-9.

Mantzaris Nikos V. Stochastic and deterministic simulations of heterogeneous cell population dynamics. J Theor Biol.
2006,241(3):690-706.

Thomas Philipp. Intrinsic and extrinsic noise of gene expression in lineage trees. Sci Rep. 2019;9(1):474.

Klein AM, Mazutis L, Akartuna |, Tallapragada N, Veres A, LiV, Peshkin L, Weitz DA, Kirschner MW. Droplet barcoding
for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161(5):1187-201.

Page 25 of 26



Lasri et al. BMIC Bioinformatics (2022) 23:236 Page 26 of 26

67.

68.

69.

70.

Yamawaki TM, Lu DR, Ellwanger Daniel C, Bhatt D, Manzanill P, Arias V, Zhou H, Yoon OhK, Homann O, Wang S, Li C-M.
Systematic comparison of high-throughput single-cell RNA-seq methods for immune cell profiling. BMC Genomics.
2021;22(1):66.

Vallejos Catalina A, Risso D, Scialdone A, Dudoit S, Marioni John C. Normalizing single-cell RNA sequencing data:
challenges and opportunities. Nat Methods. 2017;14(6):565-71.

Breda J, Zavolan M, van Nimwegen E. Bayesian inference of gene expression states from single-cell RNA-seq data.
Nat Biotechnol. 2021;39(8):1008-16.

Patruno L, Maspero D, Craighero F, Angaroni F, Antoniotti M, Graudenzi A. A review of computational strategies for
denoising and imputation of single-cell transcriptomic data. Brief Bioinf. 2021,22(4):222.

71. ChanThalia E, Pallaseni AnanthV, Babtie Ann C, McEwen Kirsten R, Stumpf Michael PH. Empirical bayes meets infor-
mation theoretical network reconstruction from single cell data. BioRxiv, 2018;pp. 264853.

72. Huynh-ThuV, Irrthum A, Wehenkel L, Geurts P. Inferring regulatory networks from expression data using tree-based
methods. PLOS ONE. 2010;5(9): e12776.

73. Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiol-
ogy. 1982;143(1):29-36.

74. Boyd K, Eng Kevin H, David C. Page. area under the precision-recall curve: point estimates and confidence intervals.
In: Hendrik B, Kristian K, Siegfried N, Filip V, editors. Machine learning and knowledge discovery in databases lecture
notes in computer science. Berlin: Springer; 2013. p. 451-66.

75. Haibo He. Imbalanced Learning: Foundations, Algorithms, and Applications, Wiley.

76. Chan Thalia E, Stumpf Michael PH, Babtie Ann C. Gene regulatory network inference from single-cell data using
multivariate information measures. Cell Syst. 2017;5(3):251-67.

77. Yamawaki Tracy M, Lu Daniel R, Ellwanger Daniel C, Bhatt D, Manzanillo P, Arias V, Zhou H, Yoon OhK, Homann O,
Wang S, et al. Systematic comparison of high-throughput single-cell rna-seq methods for immune cell profiling.
BMC Genomics. 2021;22(1):1-18.

78. Barron M, Li J. Identifying and removing the cell-cycle effect from single-cell rna-sequencing data. Sci Rep.
2016;6(1):1-10.

79. Liu J,Yang M, Zhao W and Xiaobo Z. Ccpe: Cell cycle pseudotime estimation for single cell rna-seq data. bioRxiv;
2021.

80. Hsiao Chiaowen J, Tung P, Blischak John D, Burnett Jonathan E, Barr Kenneth A, Dey Kushal K, Stephens M, Gilad
Y. Characterizing and inferring quantitative cell cycle phase in single-cell rna-seq data analysis. Genome Res.
2020;30(4):611-21.

81. Ly L-H,Vingron M. Effect of imputation on gene network reconstruction from single-cell RNA-seq data. bioRxiv, pp.
439623, 2021.

82. Steinheuer Lisa M, Canzler S, Hackermuiller J. Benchmarking scRNA-seq imputation tools with respect to network
inference highlights deficits in performance at high levels of sparsity. bioRxiv, pp. 438193, 2021.

83. Marouf M, Machart P, Bansal V, Kilian C, Magruder Daniel S, Krebs Christian F, Bonn S. Realistic in silico generation and
augmentation of single-cell rna-seq data using generative adversarial networks. Nat Commun. 2020;11(1):1-12.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

fast, convenient online submission

thorough peer review by experienced researchers in your field

rapid publication on acceptance

support for research data, including large and complex data types

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions . BMC




	Benchmarking imputation methods for network inference using a novel method of synthetic scRNA-seq data generation
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Biomodelling.jl
	Network topology, sparsity and simulation
	Types of reactions simulated

	Parameters for mammalian cells
	Cell population: growth, division and partitioning
	Genes tracking and ground truth data

	Downsampling, scaling and imputation
	Network inference algorithms
	Network inference performance evaluation

	Results
	Synthetic scRNA-seq data for a toy example: unscaled expression leads to uniformly high and positive correlations
	Network inference algorithms tend to perform better for sparser networks
	Scale-free topologies are challenging for accurate network inference
	Different imputation methods perform better for different network inference methods
	Overall performance of network inference algorithms is inversely related to number of combination reactions considered

	Discussion
	Acknowledgements
	References


