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Abstract Calcification is an independent predictor of atherosclerosis-related cardiovascular events. Microcalcification is linked
to inflamed, unstable lesions, in comparison to the fibrotic stable plaque phenotype generally associated with ad-
vanced calcification. This paradox relates to recognition that calcification presents in a wide spectrum of manifesta-
tions that differentially impact plaque’s fate. Macrophages, the main inflammatory cells in atherosclerotic plaque,
have a multifaceted role in disease progression. They crucially control the mineralization process, from microcalcifi-
cation to the osteoid metaplasia of bone-like tissue. It is a bilateral interaction that weighs heavily on the overall pla-
que fate but remains rather unexplored. This review highlights current knowledge about macrophage phenotypic
changes in relation to and interaction with the calcifying environment. On the one hand, macrophage-led inflamma-
tion kickstarts microcalcification through a multitude of interlinked mechanisms, which in turn stimulates phenotypic
changes in vascular cell types to drive microcalcification. Macrophages may also modulate the expression/activity of
calcification inhibitors and inducers, or eliminate hydroxyapatite nucleation points. Contrarily, direct exposure of
macrophages to an early calcifying milieu impacts macrophage phenotype, with repercussions for plaque progres-
sion and/or stability. Macrophages surrounding macrocalcification deposits show a more reparative phenotype,
modulating extracellular matrix, and expressing osteoclast genes. This phenotypic shift favours gradual displacement
of the pro-inflammatory hubs; the lipid necrotic core, by macrocalcification. Parallels to bone metabolism may ex-
plain many of these changes to macrophage phenotype, with advanced calcification able to show homeostatic oste-
oid metaplasia. As the targeted treatment of vascular calcification developing in atherosclerosis is thus far severely
lacking, it is crucial to better understand its mechanisms of development.
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1. Introduction

Atherosclerosis is a slowly progressing, chronic inflammatory disease
that affects large- and middle-size arteries,1 featuring the accumulation of
fatty and fibrous elements together with immune cells, and structural
vascular smooth muscle cells (VSMCs) in the intimal layer of the arterial
wall. During disease progression, atherosclerotic plaques develop
regions of mineralization, a process which has been traditionally linked
to an increased risk for heart disease, atherosclerotic plaque rupture,

and stroke.2,3 Rather than a mere by-product of the development and
changing inflammatory environment of the plaque, calcification impacts
grievously on disease progression and pathogenesis, particularly through
mediating biomechanical destabilization and directly impacting plaque in-
flammation. Calcification, be it bone related or ectopic, is an active pro-
cess involving interplay between multiple cell types,4 with an important
role for osteoclast-like macrophages in bone. Osteoclasts, the special-
ized resorptive cells found in bone, derived from a common myeloid
progenitor with macrophages. In plaque, both multinucleated giant cells
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and macrophages are observed to emulate osteoclast traits5–9 induced
through the RANK/RANK-L/OPG signalling axis,10,11 as present in late-
stage calcification.

Although micro- and macrocalcification often occur side-by-side dur-
ing plaque progression, microcalcification is largely observed in earlier-
stage lesions,12 while the latter predominates in late-stage plaque.13

Microcalcification particles, defined as <50 lm in size,14 are developed in
a four-stage process, involving calcifying extracellular vesicle (cEV) accu-
mulation, aggregation, membrane fusion, and finally, mineralization.15

During mineralization, amorphous calcium phosphate transforms into
mature crystal-like form hydroxyapatite ‘microcalcification’ particles,
present in spherical and needle-like morphology types, 0.5–15mm in
size.16 They become larger as lesions progress, as ‘speckled calcification’
(>_15mm to <_2 mm in diameter).17 Microcalcification particles in the fi-
brous cap increase the risk of plaque rupture.14,18 These particles coa-
lesce into larger sheet-like or nodular structures, up to several
millimetres in diameter. Such macrocalcification has been linked with
healing response and plaque stability.19,20 However, increased coronary
artery calcification (CAC) score is related to atherosclerotic plaque bur-
den, has been linked with all-cause mortality and is a broadly adopted
predictor of cardiovascular events.21,22

Like Janus, the Roman God of duality, macrophages in the atheroscle-
rotic plaque are seen to have both accelerative and decelerative, bilateral
relationship with calcification. On the one hand, they may trigger and ex-
acerbate vascular calcification onset, as calcification first develops in in-
flammatory hotspots throughout the plaque23; whereas on the other
hand, macrophages may limit calcification by encapsulation, internaliza-
tion, and resorption of macro24 and microdeposits.25

Macrophages co-localize with calcium phosphate crystals in develop-
ing atherosclerotic lesions.26–28 The presence of inflammatory macro-
phages has even been used as a surrogate marker for early
microcalcification.29 Vice versa, a high score of intimal microcalcification
can help to pinpoint the most inflamed28 and likely to rupture plaque
areas.30 Multimodal 18F-NaF and 18F-Fluorodeoxyglucose PET imaging of
both measures allows detection of highly metabolically active inflamed
areas and microcalcified areas in plaque in one shot .31 In contrast, areas
of macrocalcification have been largely observed to feature fewer inflam-
matory cells, more reparative macrophages, including osteoclast-like
cells,6 more fibrosis,32 and presentation of osteoid metaplasia.33 This
was confirmed by transcriptional analysis of human high- vs. low-calcified
carotid atherosclerotic plaques, showing repressed inflammation, lipid
transport, and chemokine signalling pathways.13 Hence, a better com-
prehension of exactly how macrophages engage with calcification
throughout disease progression will offer more opportunities for highly
necessary, novel therapeutics. In this review, we will outline current liter-
ature on macrophage crosstalk with intimal calcification in atherosclero-
sis, including both direct and indirect interactions, and its impact on
disease progression.

2. Macrophage phenotypic plasticity
in response to a calcified
microenvironment

Macrophages’ remarkable plasticity and functional heterogeneity render
them adaptive, according to specific microenvironment stimuli, to differ-
ent subsets or phenotypes.34 To understand how macrophages behave
in calcified plaques, in vitro assessment of macrophage response to

individual calcifying stimuli has been performed. In this, it is important to
note that the outcome appears to greatly depend on the initial pheno-
type of the cells being studied, but this is not regularly factored into ac-
count. The M1/M2 macrophage model,35 whilst being now considered a
too-broad descriptor of macrophage’s full phenotypic spectrum, has
been shown to have opposing effects on extracellular endogenous
mechanisms of calcification as further elaborated on below and may re-
spond differently to a calcified/calcifying environment.

Attempting to mimic macrophage responses to a microcalcified envi-
ronment, some in vitro studies have shown M2-like phenotypic shift in
hyperphosphataemia. Macrophages had increased phosphate-handling
ability and enhanced arginine hydrolysis, which both may dampen crystal
nucleation within the plaque.36 These phosphate-polarized cells pro-
duced higher levels of secreted adenosine triphosphate (ATP) and in-
creased pyrophosphate (PPi) synthesis, inhibiting calcium phosphate
deposition.37 PPi is produced by the enzyme ectonucleotide pyrophos-
phatase/phosphodiesterase 1 (eNPP), which hydrolyses extracellular
ATP to generate PPi and adenosine monophosphate. Therefore, PPi
inhibits the precipitation of calcium phosphate, preventing the formation
of hydroxyapatite and favouring its dissolution. Phosphate-polarized cells
also showed enrichment in oxidative stress handling genes.36

Inversive to the response seen to hyperphosphataemia, incubation of
macrophages with calcium phosphate-supplemented medium could in-
duce the release of calcifying matrix extracellular vesicles, and increased
interleukin (IL)-6 expression in M1 polarized cells, while M2 polarized
cells had reduced induction of Arginase-1 expression upon the same
stimulation,38 both pointing to net M1 skewing. Alone, increased extra-
cellular Ca2þ could trigger NLR family pyrin domain containing 3
(NLRP3) activation in monocytes and increase IL-1b secretion after lipo-
polysaccharide stimulation.39 However, the combined exposure to the
pro-inflammatory cytokine tumour necrosis factor-alpha (TNF-a), plus
CaPO4 stimulated the transformation of macrophages into osteoclast-
like cells in vitro, in an RANK-L independent manner.40 Importantly,
in vitro cell culture models reliant on supplementing additional calcium
phosphate to alter normal equilibrium may better reflect a medial calcifi-
cation environment, as it is observed during kidney dysfunction.41

Calcium phosphate crystals can be internalized actively by human
monocyte-derived macrophages through phagocytosis, induce a pro-
inflammatory M1 phenotype, and activate the NLRP3 inflammasome
complex to release IL-1b, amongst others.25,42,43 IL-1 molecule release
in response to cholesterol crystal phagocytosis and NLRP3 activation
drives the recruitment of neutrophils, and early lesion formation.44 This
pro-inflammatory response to calcium phosphate particles could be re-
versed/dampened by co-incubation with Fetuin A or Gla-Rich Protein
(GRP), both natural calcification inhibitors.45,46 Stimulation of THP-1 de-
rived macrophages with hydroxyapatite nanoparticles, the naturally oc-
curring mineral form of calcium phosphate, alone could also induce the
expression of GRP and Matrix Gla Protein (MGP),46 a potent vitamin K-
dependent protein inhibitor of vascular calcification produced by VSMCs
and chondrocytes. The mechanism behind the hydroxyapatite induced
pro-inflammatory response is not fully understood, nor is it known if
macrophages can directly sense and respond to hydroxyapatite particles,
or if pro-inflammatory responses are instead a by-product of frustrated
phagocytosis due to the inability to effectively breakdown ingested hy-
droxyapatite particles. However, the physicochemical properties of hy-
droxyapatite particles are highly variable, with sizes ranging from 0.1 to
100mm and needle-shaped/spherical morphology and smooth/rough
surface topology, all factors that can modulate the degree of inflamma-
tory response.47

2769Two-faced Janus: the dual role of macrophages in atherosclerotic calcification
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As the atherosclerotic plaque milieu is so complex and difficult to

model in culture, it is still largely unclear how direct macrophage-
calcification stimulation seen in vitro is taking place in the inflammatory
state of the plaque itself. Particularly, as plaque macrophages are likely to
be highly inflammatory, this may skew responses to calcification stimuli
in vivo. Deep phenotyping studies of plaque macrophages in proximity to
early and advanced plaque calcification would help mapping this causality
dilemma. Several ground-breaking single-cell sequencing studies in ath-
erosclerotic plaque have helped to highlight the macrophage spectrum
in this disease,48–53 but as of yet, studies comparing cellular heterogene-
ity of calcified vs. non-calcified plaques are lacking. A second outstanding
question is to what extent the calcification-related macrophage pheno-
type in vivo is dependent on the physicochemical features of the calcium
phosphate particle (e.g. charge, size, composition). The distinct response
of macrophages to hydroxyapatite particles and inorganic minerals sug-
gests that pathological atherosclerotic calcification is not merely a pas-
sive consequence of chronic inflammatory disease but may lead to a
positive feedback loop as a result of the active interplay between calcifi-
cation and inflammation during the disease progression.

3. Macrophage contribution to
intimal calcification

The critical step in the formation of an atherosclerotic plaque is the infil-
tration of macrophages in the subendothelial space. In this sense, macro-
phage infiltration is a sine qua non for vascular calcification. Direct causal
involvement of macrophages in vascular calcification is conceivable. This
section will review the diverse mechanisms in microcalcification initiation
(i) cEV release, (ii) apoptotic body nucleation, (iii) endogenous inhibitor
dysregulation, and (iv) osteogenic transdifferentiation, involving both di-
rect and indirect macrophage engagement. All these mechanisms, occur-
ring simultaneously in actively calcifying plaques, have been shown to be
initiated and driven by macrophage interaction with the microenviron-
ment and contained cells.

3.1 Macrophage extracellular vesicles
Macrophages can directly contribute to atherosclerotic plaque calcifica-
tion through the release of cEVs.38,54 These macrophage extracellular
vesicles are characterized by markers CD9, CD63, CD81, TSG101, and
CD68,38,55 externalized phosphatidylserine, and are loaded with S100A9
and Annexin-5 proteins. As well as possessing high calcification potential,
accumulation and aggregation of cEVs initiate nucleation of hydroxyapa-
tite particles, promoting the mineralization process within plaques.56

Parallels between extracellular vesicles released in the pro-
inflammatory atherosclerotic plaque milieu, and matrix vesicles in bone
formation can be drawn, since they share many commonalities; high min-
eralization potential, annexin expression, and acidic lipids such as phos-
phatidylserine.57,58 However, extracellular vesicles are highly variable;
recent high-throughput technologies highlighted phenotypic differences,
consistent with their originating cell type; including immunopositivity for
cell markers, protein, and RNA content.59 Furthermore, differences be-
tween vesicles from the same origin cells can be seen in an altered mi-
croenvironment. Comparative proteomic profiling analysis of
extracellular vesicles released from primary mouse aortic smooth mus-
cle cells upon different pro-osteogenic conditions demonstrated signifi-
cant differences in protein composition, such as endocytosis-associated
proteins reduced vesicles released from phosphate-stimulated cells.60 In
agreement, proteomic analysis of cEVs from human VSMCs and valvular

interstitial cells cultured in osteogenic media revealed an enrichment of
annexins including ANXA1 and its calcium-dependent binding partner,
S100 calcium-binding protein A11 (S100A11) that could tether extracel-
lular vesicles.61 Interestingly, ANXA1 knockdown attenuated extracellu-
lar vesicle microcalcification and therefore human SMCs and VICs
calcification.61 More research to that direction is needed in the develop-
ing multi-omics era, for further characterization of these vesicles, their
loading molecules as well as their emerging role in and beyond the vascu-
lar calcification pathology. Extracellular vesicles’ ability to contain pro-
teins, lipids, nucleic acids, and other signalling molecules, as well as their
capability to circulate and transmit specific molecular information to
other cell types influencing their function, is of great interest for potential
and promising diagnostic and prognostic biomarker evaluation.62

3.2 Macrophage lipid handling and cell
death driving microcalcification
Lipid infiltration and modification in early atherosclerosis trigger an in-
flammatory response, monocyte recruitment, and macrophage differen-
tiation, as well as foam cell generation.63,64 The lipid-rich necrotic core is
a key site of early calcification, with high hydroxyapatite nucleation po-
tential.65,66 Lipids may enhance the deposition of calcium crystals serving
as an extra scaffold for calcification, by triggering osteogenic differentia-
tion of VSMCs. Similarly, by affecting foam cell efferocytosis and stimulat-
ing inflammation, the lipid core increases the calcification propensity of
surrounding cells and extracellular matrix. Apoptosis of VSMCs in cul-
ture was shown to be a key regulator of the initiation of vascular calcifica-
tion with apoptotic bodies acting as nucleation sites for calcification.67

Parallels have also been drawn between apoptotic bodies and matrix
microvesicles that induce calcification in bone.68 Failure of macrophages
to clear apoptotic bodies, as observed in advanced atherosclerosis,69,70

allows calcium crystal growth to progress, and may also be a significant
inflammatory spur leading to the release of cytokines such as TNF-a,
also a potent inducer of osteogenic gene expression in VSMCs.71

Uptake of ox-LDL triggers apoptosis in macrophages and VSMCs.72,73

In early lesions, macrophage apoptosis can reduce overall plaque size
and lesion inflammation,74 however, in more advanced lesions, with
compromised efferocytosis, apoptosis will transition to secondary ne-
crosis, which is detrimental to plaque development and increases calcifi-
cation.75,76 Macrophages are highly effective in efferocytosis and have a
high capacity for continued clearance of apoptotic cells in the plaque;
upon uptake of apoptotic cells, they release anti-inflammatory cytokines
IL-10 and transforming growth factor-beta (TGF-b).77 Thus, targeting
efferocytosis in macrophages may have promise in reducing vascular cal-
cification, as well as overall plaque progression. Efferocytosis-targeting
strategies such as blockage of CD47 ‘don’t eat me’ signalling dramatically
reduced atherosclerosis in ApoE-/- through the improvement of debris
clearance by macrophages.78 CD47 inhibition is already considered for
cancer therapy, making clinical translation to atherosclerosis potentially
easier79 and recently CD47-interference nanotherapy was shown to
have a favourable outcome in atherosclerotic ApoE-/- mice.80

Beyond influencing cell death, macrophage lipid handling also impacts
the inflammatory nature of the plaque. OxLDL has a chemotactic effect
on monocytes, and is a TLR4 agonist81; stimulation of both macrophages
and VSMCs with oxLDL increases their expression of TLR4.82,83 It acti-
vates NF-kB signalling, producing a pro-inflammatory phenotype in mac-
rophages, and increasing osteoblastic differentiation and calcification in
VSMCs,84 as well as increasing foam cell formation in both. Moreover,
oxLDL uptake and subsequent lysosomal cholesterol crystal generation

2770 O.J. Waring et al.
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are inflammasome activating factors in macrophages, allowing matura-
tion and secretion of IL-1b and IL-18.85,86 IL-1b production is a key factor
in perpetuated atherosclerotic calcification, as mentioned, as it is also in-
duced in response to hydroxyapatite stimulation,87 suggestive of positive
feedback during microcalcification establishment. Indeed therapeutic in-
hibition of IL-1b in Ldlr-/- mice using a monoclonal antibody showed
greatly diminished calcification burden within plaques.88 Inflammasome
associated IL-1b production is kept in check by Rho GTPases RAC1 and
2, the expression of which was seen to be down-regulated with plaque
progression, potentially accelerating atherosclerotic calcification.87 A
neutralizing IL-1b antibody increased macrophage presence within the fi-
brous cap and promoted M2 macrophage polarization; whereas IL-1 sig-
nalling in VSMCs is essential for their migration and collagen secretion
into the fibrous cap in advanced atherosclerotic plaques.89 Of interest,
no difference in the lesion calcification was observed, compared to IL-1
signalling and inflammasome modulation in early plaques.90

3.3 Macrophage impact on endogenous
calcification inhibitors
Several endogenous mechanisms exist throughout the body to prevent
ectopic calcification. Macrophage-driven inflammation causes several
vascular cell types—including smooth muscle cells, endothelial cells and
pericytes—to undergo phenotypic changes resulting in altered expres-
sion of calcification modulating factors.91–93 Macrophage-produced in-
flammatory drivers initiate simultaneous loss of VSMC-expressed
calcification inhibitors, such as MGP, osteopontin (OPN) and PPi, and
gain of inducers such as osteoprotegerin (OPG).2 Stimulation of VSMCs
with macrophage conditioned medium simultaneously increased bone
morphogenic protein-2 (BMP-2) and inhibited MGP expression.94

As in macrophage response to a calcified microenvironment, polar-
ized macrophages can exert opposing pro- and anti-calcifying activity via
endogenous inhibitors. M1 macrophages have higher expression and ac-
tivity of the enzyme ectonucleoside triphosphate diphosphohydrolase 1
(eNTPD1, a.k.a. CD39), which hydrolyses ATP to AMP and Pi.95 Thus,
macrophages may promote calcification by not only producing Pi, a calci-
fication substrate, but also lowering ATP availability for eNPP1 to pro-
duce PPi,96 a potent calcification inhibitor. In the aortic wall, more than
90% of extracellular ATP is degraded to Pi,95 at a rate 10 times more
rapid than the rate of PPi synthesis and insufficient for the inhibition of
hydroxyapatite formation.97 Co-culture of M1 macrophages, or M1-
derived TNF-a enhances the TNAP activity of VSMCs; augmenting calci-
fication in vitro.98 Contrastingly, co-culture of VSMCs with M2 macro-
phages stimulated the synthesis of extracellular ATP and PPi and
enhanced the activity of eNPP1 in VSMCs.37

Macrophages secrete large amounts of the inhibitors OPN and
Fetuin-A in calcified plaques, which have been suggested to enhance
microcalcification opsonization for the purposes of phagocytosis.99

Although OPN can have pro-atherogenic effects,100 it has been shown
to be anti-calcifying in atherosclerosis, and specifically in macrophages
can induce carbonic anhydrase II expression, attenuate inflammatory ac-
tivation, and regulate osteoclast formation.101,102 Exogenous OPN
exerts a significant role as an inflammatory mediator of vascular injury; it
is induced in the differentiation of peripheral monocytes into an M2-like
phenotype.102

M2 macrophages release anti-inflammatory mediators and phagocy-
tize necrotic fragments or apoptotic cells to prevent the formation of
calcified nucleation sites.103 Of interest, macrophage-derived OPN bind-
ing to calcium phosphate or hydroxyapatite particles functions as an

opsonin104 and facilitates their ingestion through the phagocytosis pro-
cess. In accordance, fetuin/a2-HS glycoprotein, another vascular calcifi-
cation inhibitor, enhances phagocytosis of apoptotic cells and
macropinocytosis by macrophages,105 reducing the accumulation of pro-
calcifying apoptotic vesicles.

3.4 Macrophage impact on smooth muscle
cell osteogenic transdifferentiation
Macrophage interaction with VSMCs heavily contributes to plaque calci-
fication and is perhaps their most impactful indirectly calcifying activity.
Macrophages release a vast variety of pro-osteogenic cytokines71,106,107

that stimulate smooth muscle cells to transdifferentiate into an osteo-
genic phenotype. VSMC-osteo/chondrogenic phenotype94 is accompa-
nied by genetic lineage reprogramming involving up-regulation of
osteochondrogenic markers (RUNX2, SOX9 ALP, osteocalcin, osterix,
type II, and X collagen), down-regulation of VSMC markers (SM22a, SMa
actin, etc.),108 and secretion of calcifying microvesicles.109

It was shown that co-culture of macrophages with VSMCs profoundly
affected the ability of the latter to calcify. Inflammatory macrophages es-
pecially induced VSMC chondrogenic switch, as well as active calcifica-
tion.110 Co-culture of VSMCs with murine M2 macrophages, however,
inhibited calcification.37 Paradoxically, M2 hallmark cytokines such as
TGF-b have also been reported to have pro-calcifying effects: direct
stimulation of VSMCs with TGF-b increases calcification, as well as in-
creased VSMC migration and foam cell generation.111 Moreover, TGF-
b1 osteo-inductive signalling involves the Smad2/3 pathway112 and
SOX9-mediated113 up-regulation of RUNX2 in VSMCs. The up-regula-
tion of osteoblast markers, such as Runx2, in VSMCs can be induced
through incubation with many M1 inflammatory stimuli, including TNF-a,
IL-6, and IL-18.114–116 Similarly, products of oxidative stress such as reac-
tive oxygen species, a hallmark of the M1 macrophage phenotype, can
also induce VSMC phenotypic switching to pro-calcifying.117 In addition,
M1 macrophages can directly secrete oncostatin M, contributing to the
development of atherosclerotic calcification by inducing osteoblastic
transdifferentiation of VSMCs through the JAK3-STAT3 pathway.118 An
auto/paracrine mechanism of M1-released BMP-2119 may have implica-
tions in VSMCs calcification via BMP-2 receptor/Smad1/5 signalling axis.
The activation of Runx2, along with its chondrogenic downstream tar-
gets, can also induce VSMC apoptosis, as positive feedback for calcifica-
tion nucleation, and is linked mechanistically to the DNA damage
response.120 Hence, several interlinked mechanisms exist, in which
macrophage-led inflammation synergistically intensifies active intimal vas-
cular calcification.

4. Observed macrophage
phenotype in macrocalcified plaque
areas

In advanced calcified atherosclerotic plaques, macrophages surrounding
areas of macrocalcification generally have acquired markedly less in-
flamed, more reparative phenotypes.33 The transition from inflamed mi-
cro- to stable macrocalcification is highly understudied. Macrocalcified
plaque environments have not yet been successfully modelled in culture.
Also, little research has been documented on how microcalcification in
the arteries can transition into nodular or sheet-like structures, and
whether this is influenced by the inflammatory state of the plaque, or if
the structures themselves are influential factors. Certainly, differing

2771Two-faced Janus: the dual role of macrophages in atherosclerotic calcification
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macrocalcification structures contribute varyingly to the overall risk of
rupture.4 CD68þ Mannose Receptorþ (M2-like) macrophages were
stated to co-localize with cell-rich stable plaque areas, particularly away
from the lipid core and rupture-prone shoulder regions of the plaque
where M1-like cells tend to dominate.69,121 Furthermore, macrophages
near macrocalcified deposits showed an M2-like phenotype.122,123 As
stated, in vitro M2 macrophages are engaged in the healing response103 to
plaque inflammation; and through the induction of VSMC osteoblastic
differentiation,19 mediated mainly, but not exclusively by TGF-b signal-
ling124 may be facilitating the macrocalcification process.19 But more-
over, they can also reflect a level of calcification inhibiting activity.37

Overall, macrophage co-localization with calcification is reduced with
larger calcifications and higher in microcalcified areas.27 Macrocalcified
plaque appears to be enriched in tartrate resistant acid phosphatase
(TRAP)-positive multinucleated giant cells and CD68þ/Carbonic
Anhydrase II/TRAP-positive osteoclast-like macrophages .6,125 These
CD68þ MRþ, CAIIþ, Cathepsin K (CATK)low macrophages had minimal
resorptive activity, indicating that RANK-L-led osteoclast-like changes
within the plaque may not produce efficient osteoclasts from macro-
phages.7,122 Bone marrow-derived osteoclast-like cells could reduce cal-
cified elastin mineral content in vitro by 80% whereas in vivo, osteoclasts
induced elastin demineralization by 50%, without altering elastin integ-
rity.126 This lack of efficiency may be caused by vascular cell production
of soluble factors such as OPG and IL-18—shown to inhibit normal oste-
oclast generation and resorptive capability.127 Recent reports have
shown that macrophage multinucleated giant cell formation in chronic
inflammatory disease and osteoclast fusion in bone mass regulation dis-
play a common molecular signature.128 Research into the plaque prote-
ome showed cartilage oligomeric matrix protein, a musculoskeletal and
cardiovascular non-collagenous glycoprotein, can regulate macrophage
phenotype within the atherosclerotic plaque and skew towards an alter-
natively activated and osteoclast-like phenotype.129

Macrophage–osteoclast interrelationship has been described in bone
formation; a distinct population of osteolineage-associated resident mac-
rophages, termed ‘osteal macrophages’ or osteomacs, has been recently
described in mice; classified as F4/80þ, TRAPc-.130 Interestingly, it was
reported that osteomacs are injury-associated macrophage cells. They
are present in high numbers in areas of bone matrix deposition during
fracture healing processes. Their depletion suppressed bone healing
in vivo131,132 and they were able to differentiate to multinucleated
TRAPþ osteoclasts capable of bone resorption.133 Of note, true vascular
ossification, with the presence of an established bone marrow-like region
is greatly influenced by the anatomical location of the plaque and its origi-
nating arterial bed.134,135 For example, plaques in femoral arteries show
a higher propensity for osteoid metaplasia than carotid plaques.
Interestingly, a distinct myeloid origin circulating cell fraction expressing
osteocalcin and bone alkaline phosphatase has pro-calcific activity in vitro
and in vivo, contributing to ectopic vascular calcification in type 2 diabe-
tes.136 While osteoclast-like cells in plaque may provide an interesting
therapeutic potential due to their mineral removal and remodelling capa-
bility, it is yet unclear if exacerbating their presentation would be of ben-
efit, since extreme enrichment of cathepsin K in atherosclerotic plaques
could lead to redundant proteolytic plaque remodelling and plaque rup-
ture.137,138 In line, calcified nodule formation is initiated in the regions of
elastin degradation, therefore, a balance between osteo-immune cells is
critical, yet subverted by aberrant and/or unresolved immune responses
in atherosclerosis.139

5. Macrophage-osteoclast
phenotypic switch

As mentioned above, lipids are important factors in the biomineralization
process140–142; histologically, early calcification can be detected in acellu-
lar lipid pools in bone and ectopic mineralization.143 The lipid-rich ne-
crotic core is the highest risk area to precursor micro- and
macrocalcification deposits, and undergo long-term transformation into
dense calcium phosphate.65,66,144 This notion is enhanced from studies
showing that lesions with a higher load of calcification contain less lipid
core.145 High serum LDL-cholesterol is highly correlated to vascular cal-
cification,146,147 and both serum LDL and total cholesterol have been in-
dependently associated with CAC incidence.148 However, it remains
elusive whether lipids are causative in atherosclerotic calcification or just
represent an epiphenomenon, although they have been linked to
calcification-associated phenotypes in macrophages.

Lipid handling equivalent processes can be drawn between macro-
phages and observed osteoclast-like traits. Although it is vastly under-
investigated, this parallel may help to better understand the origin and
role of osteoclast-like cells in the plaque. More specifically, foam cells,
expressing the lysosomal protease CATK, have been shown to contribute
to plaque remodelling,149 much like activated macrophages and
osteoclast-like cells.150 Plaque multinucleated giant cells express markers
such as TRAP and CATK along with their distinctive osteoclast morpho-
logical overlap.6 In culture, lipids and modified lipids have been shown to
promote osteoclastogenesis through VSMC RANK-L up-regulation, di-
rect macrophage osteoclast gene up-regulation, and promoting osteoclast
survival.151,152 Similarly, lipid exposure in murine bone marrow-derived
macrophages could trigger multinucleated giant cell formation in culture, a
phenotype that could be greatly exacerbated by myeloid Mcl-1 depletion
in Ldlr-/- mice where a lipid accumulating, giant cell forming and apoptosis
prone phenotype in macrophages was demonstrated.153 Furthermore,
hyperlipidaemia in Ldlr-/- mice, which is associated with increased plasma
oxLDL levels, was seen to increase osteoclastogenesis potential in pre-
osteoclasts ex vivo.154 Cochain et al.48 reported a triggering receptor
expressed on myeloid cells 2 (TREM2) high, OPN expressing macrophage
subset, probably foam cells, in single-cell sequencing of CD45þ cells iso-
lated from the atherosclerotic aorta of Ldlr-/- mice fed a western-type
diet. This subset showed gene enrichment for lipid handling as well as os-
teoclast function and osteoclastogenesis. These cells were confirmed in
meta-analysis with single-cell data from Kim et al. to be indistinguishable
from foam cells and possess low inflammatory gene expression.52,155

As with the lipid crossover between ectopic calcification and bone,
developing intimal calcification acquires the RANK/RANK-L/OPG axis,
greatly influencing intimal calcification development and macrophage
phenotypic switch. RANK-L drives osteoclastogenesis.156 VSMCs, stimu-
lated by conditioned medium from inflammatory macrophages, up-regu-
late Runx2-controlled RANK-L production and secretion.8 Next to
supporting osteoclast differentiation, RANK-L has been shown to induce
IL-6 and TNF-a secretion in macrophages, and thus can reinforce the
VSMC pro-calcifying phenotype.157 Partial deletion of Runx2 in VSMC in
ApoE-/- mice causing an alternative functional truncated Runx2 protein,
showed reduced vascular calcification, with RANK-L expression reduc-
tion, reduced macrophage infiltration to the lesion, and reduced macro-
phage to osteoclast-like phenotypic switch.158 Further study with a
VSMC-specific runx2 deletion model showed reduced calcification, but
no change in lipid metabolism, lesion size, or macrophage
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recruitment.159 This highlights a mechanism of vascular calcification pos-
sibly separable from the inflammatory and lipid-driven mechanisms.

It is possible that the osteoid metaplasia, driven by the pathways here
highlighted, acts as a compensatory mechanism to control calcification
progression, and moreover, as a mechanism of inflammation control and
wound healing. The observations linking lipid handling to osteoclastogen-
esis may help to bridge the gap between highly inflammatory
microcalcification-associated macrophages, and the osteoclastogenic
switch capable of taking place. Understanding this association, and how it
affects calcification development and progression, may be critical in fu-
ture efforts to clinically modulate plaque inflammation and calcification.

6. Conclusions and future
perspectives

Whilst calcification is an independent predictor of clinical cardiovascular
events, the overall risk to plaque rupture or stability critically depends

on the actual calcification phenotype. Bone-like vascular calcification has
been shown to be a typical feature of more stable plaques and asymp-
tomatic disease.160,161 However, even fibrocalcific plaques have an asso-
ciated risk of adverse events, such as rupture, occlusion, or thrombosis
through calcified nodules.4 Plaque regression studies and meta-analysis
showed that a common feature of a regressing plaque is an increase in
dense calcium volume and CAC score, which is inversely correlated to
event risk.22,162 Treatment and rupture prevention, largely relies on ag-
gressive lipid-lowering statin therapy, shown to stabilize plaques but also
increase calcification. However, combination therapy with protein con-
vertase subtilisin/kexin type 9 (PCSK9) could inhibit statin-induced calci-
fication progression in 16 subjects, compared to statin monotherapy
(n = 15) in a paired longitudinal study.163

Drugs to specifically treat or reverse atherosclerotic calcification are
still currently missing. However, treating atherosclerotic calcification ef-
fectively at later stages will likely also not rely on purely targeting calcifi-
cation, but through a better understanding of the greatest risks at each
stage of the disease, so that treatment can be more targeted. Reducing

Figure 1 Interplay between macrophages and calcification in atherosclerotic plaque from early to late disease stage. Pro-inflammatory macrophages in
the atherosclerotic plaque milieu undergo hydroxyapatite crystal and modified lipid uptake (1), as well as extracellular matrix vesicle and cytokine release
(2). This establishes microcalcification in the plaque and induces an osteoblast-like phenotype in VSMCs (3). A pro-calcifying microenvironment and the
osteochondrogenic switch of VSMCs, driven by macrophages, increase inflammatory calcification deposition and establish more densely calcified nodules
(macrocalcification) (4). Macrophage engagement in the receptor activator of nuclear factor kappa B (RANK)/RANK-Ligand axis results in alternatively acti-
vated, remodelling-associated, and osteoclast-like macrophages surrounding macrocalcification deposits (5). As such, the inflammatory burden in this plaque
microenvironment falls, with increased calcification and remodelling. ALP, alkaline phosphatase; ATP, adenosine triphosphate; Ca2þ, calcium; CAII, carbonic
anhydrase 2; CATK, cathepsin K; DAMPs, damage-associated molecular patterns; ECM, extracellular matrix; ER, endoplasmic reticulum; IL-1R, interleukin-1
receptor; IL-1b, interleukin 1 beta; IL-6, interleukin 6; IL-18: interleukin 18; MMPs, matrix metalloproteinases; MSX2, Msh Homeobox 2; NLRP3, NLR family
pyrin domain containing 3; OPN, osteopontin; PAMPs, pathogen-associated molecular patterns; Pi, phosphate; ROS, reactive oxygen species; RUNX2,
runt-related transcription factor 2; SASP, senescence-associated secretory phenotype; TGFb, transforming growth factor-beta; TLRs, toll-like receptors;
TNF-a, tumour necrosis factor-alpha; TRAP, tartrate resistant acid phosphatase; TREM2, triggering receptor expressed on myeloid cells 2.

2773Two-faced Janus: the dual role of macrophages in atherosclerotic calcification
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inflammation and improving beneficial macrophage functions could rep-
resent a more powerful tailored strategy to prevent and reduce micro-
calcification, particularly in atherosclerosis patients with a high degree of
vascular calcification, unresponsive to regular lipid-lowering therapy.

A research explosion has occurred based on the role of macrophages
in the process of vascular calcification and is summarized in Figure 1. The
phenotypic plasticity and functional heterogeneity of macrophages
according to the microenvironment variables led to the understanding of
their pleiotropic effects in the atherosclerotic plaque calcification.
Inflammatory macrophage activity accelerates plaque calcification pro-
foundly, through many mechanisms that also couple to plaque growth
and risk of rupture. Meanwhile in-kind, a calcified microenvironment
reinforces these processes and produces calcification-associated macro-
phage phenotypes linked to macrocalcification. As such, net M2 skewing
in atherosclerosis through clinical intervention may reduce not only pla-
que progression but also calcification growth, both in early and late
stages. Reducing microcalcification generation, and enhancing fibrotic ac-
tivity associated with established stable calcification; specifically through
inflammation reduction, direct calcification inhibition activity and regula-
tion of plaque cell death. The precise modulation mechanisms that allow
for in vivo differentiation of macrophages into a phenotype in a manner
that is more protective for the patient is still an unmet need and an ur-
gent problem to be solved. Therefore, deep phenotyping of macro-
phages subsets with high-resolution omic methodologies like single-cell
technology in calcified plaques is still an open research area and repre-
sents a clear benefit for better disease understanding and assessment of
clinical risk. However, the relative contribution of macrophages to late-
stage calcification and disease state is also yet to be comprehensively elu-
cidated. Comparative assessment of cellular phenotypes presenting at all
stages of vascular calcification can help to fill in many gaps in understand-
ing of how this contributes to disease progression, risk of plaque rupture
(i.e. clinical events) and how current therapeutic strategies may be im-
proved. Conclusively, additional investigation of the potential molecular
mechanism and function of how macrophages modulate the progression
and regression of vascular calcification is expected not only to bridge the
gap between in vitro and in vivo observations but also to uncover a new
notion for the prevention and treatment of vascular calcification.
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29. Derlin T, Tóth Z, Papp L, Wisotzki C, Apostolova I, Habermann CR, Mester J,
Klutmann S. Correlation of inflammation assessed by18F-FDG PET, active mineral
deposition assessed by18F-fluoride PET, and vascular calcification in atherosclerotic
plaque: a dual-tracer PET/CT study. J Nucl Med 2011;52:1020–1027.

30. Joshi NV, Vesey AT, Williams MC, Shah ASV, Calvert PA, Craighead FHM, Yeoh SE,
Wallace W, Salter D, Fletcher AM, Beek EJR, Van Flapan AD, Uren NG, Behan
MWH, Cruden NLM, Mills NL, Fox KAA, Rudd JHF, Dweck MR, Newby DE. 18F-
fluoride positron emission tomography for identification of ruptured and high-risk
coronary atherosclerotic plaques: a prospective clinical trial. Lancet 2014;383:
705–713.

31. Creager MD, Hohl T, Hutcheson JD, Moss AJ, Schlotter F, Blaser MC, Park MA, Ho
Lee L, Singh SA, Alcaide-Corral CJ, Tavares AAS, Newby DE, Kijewski MF, Aikawa
M, Carli MD, Dweck MR, Aikawa E. 18F-fluoride signal amplification identifies
microcalcifications associated with atherosclerotic plaque instability in positron
emission tomography/computed tomography images. Circ Cardiovasc Imaging 2019;
12:e007835.

32. Menini S, Iacobini C, Ricci C, Fantauzzi CB, Salvi L, Pesce CM, Relucenti M, Familiari
G, Taurino M, Pugliese G. The galectin-3/RAGE dyad modulates vascular osteogen-
esis in atherosclerosis. Cardiovasc Res 2013;100:472–480.

33. Chinetti-Gbaguidi G, Daoudi M, Rosa M, Vinod M, Louvet L, Copin C, Fanchon M,
Vanhoutte J, Derudas B, Belloy L, Haulon S, Zawadzki C, Susen S, Massy ZA,
Eeckhoute J, Staels B. Human alternative macrophages populate calcified areas of
atherosclerotic lesions and display impaired RANKL-induced osteoclastic bone re-
sorption activity. 2017;121:19–30.

34. Ginhoux F, Guilliams M. Tissue-resident macrophage ontogeny and homeostasis.
Immunity 2016;44:439–449.

35. Murray PJ. Macrophage polarization. Annu Rev Physiol 2017;79:541–566.
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