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Generally, inflammatory bowel disease (IBD) can be caused by psychology, genes, environment, and gut microbiota. Therefore,
IBD therapy should be improved to utilize multiple strategies. Shen Ling Bai Zhu San (SLBZS) adheres to the aim of combating
complex diseases from an integrative and holistic perspective, which is effective for IBD therapy. Herein, a systems
pharmacology and microbiota approach was developed for these molecular mechanisms exemplified by SLBZS. First, by
systematic absorption-distribution-metabolism-excretion (ADME) analysis, potential active compounds and their corresponding
direct targets were retrieved. Then, the network relationships among the active compounds, targets, and disease were built to
deduce the pharmacological actions of the drug. Finally, an “IBD pathway” consisting of several regulatory modules was
proposed to dissect the therapeutic effects of SLBZS. In addition, the effects of SLBZS on gut microbiota were evaluated through
analysis of the V3-V4 region and multivariate statistical methods. SLBZS significantly shifted the gut microbiota structure in a
rat model. Taken together, we found that SLBZS has multidimensionality in the regulation of IBD-related physiological
processes, which provides new sights into herbal medicine for the treatment of IBD.

1. Introduction

Recent studies have revealed several factors responsible for
the digestive diseases such as irritable bowel syndrome/in-
flammatory bowel disease (IBS and IBD) [1–5]. However,
the cellular mechanisms behind these diseases are complex
and unclear. In recent years, much attention has been
focused on the development of herbal medicine for the treat-
ment of digestive diseases. Shen Ling Bai Zhu San (SLBZS),
which is composed of 10 herbs, has been proven to have wide
pharmacological effects on digestive diseases, including anti-
inflammatory and gut microbiota modulation effect [6, 7].

A majority of herbal medicines exert pharmacological
effects by targeting multiple host molecules. However, it is
difficult to identify these herbal medicine targets. Therefore,

a new method that can identify the active compounds and
pharmacological targets of herbal medicine is in urgent need
of development [8].

Systems pharmacology, which combines oral bioavailabil-
ity prediction, multitarget prediction, and network analyses, is
used to identify the active compounds and pharmacological
targets of herbal medicine [9–11]. Herein, we applied the sys-
tems pharmacology method to explore the pharmacological
mechanisms of SLBZS.

Additionally, high-throughput sequencing has been used
to promote our understanding of the role of gut microbiota
in health and disease [12]. For example, small intestinal bac-
terial overgrowth [13] and altered intestinal microbiota [14]
are implicated in subgroups of patients with functional bowel
disorders. However, due to the inherent limitations of the
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diagnostic methods, the exact evidence of the causal role of
microbiota composition on the pathogenesis of the disease
remains elusive.

In this study, a combination of systems pharmacology
and 16S rRNA boosts our exploration of the potential rela-
tionship among drug-microbiota-target.

2. Results

In this study, a combination of oral bioavailability (OB)
(≥30%) screening, Caco-2 permeability (Caco-2) (>-0.4),
prediction of permeability, half-life (HL) (long), and drug-
likeness (DL) (≥0.18) properties was applied to explore
the active compounds of SLBZS. We also added DL < 0 18,
OB < 30%, Caco − 2≤−0 4, and HL= short with bioactivity
as candidate compounds. Finally, we screened 97 SLBZS
as candidate compounds (Table 1). The number of active
compounds in Dolicho LablabL, Atractylodes macrocephala,
Wolfiporia cocos, Glycyrrhiza uralensis Fisch, Platycodon
grandiflorus, Semen Nelumbinis, Panax Ginseng, Fructus
Amomi, Dioscorea opposita, and Semen Coicis was 4, 7, 15,
20, 3, 8, 23, 9, 10, and 8, respectively.

2.1. Target Identification and Network Analysis. SLBZS exerts
a pharmacological effect by targeting several host molecules
[15, 16]. To identify the drug-target direct interactions on a
large scale, we hypothesized that the ensemble features of
the ligand group can accurately reflect the direct binding
information of a specific target based on ligand-target inter-
action data to establish the WES model. In the present study,
74 potential targets were predicted for the 97 candidate com-
pounds (Supp Table S1 and S2).

2.2. Network Construction

2.2.1. Compound-Target Network. The compounds from
SLBZS acted on multiple targets, and each target was
involved with a variety of compounds. Figure 1(a) shows that
the compound-target network contains 171 nodes and 330
compound-target interactions. We screened 74 target proteins
from the potential target list related to intestinal disease pro-
cesses, including inflammatory bowel disease, duodenal ulcer,
and colitis. Additionally, multiple relationships between the
compounds and targets were illustrated in this network. For
instance, quercetin exhibited the highest number of target
candidate-target interactions (degree = 28), followed by luteo-
lin (degree = 7) and kaempferol (degree = 15), thereby indicat-
ing the multitarget properties of SLBZS ingredients.

2.2.2. Target-Disease Network. To identify the relationship
between SLBZS and disease, the DrugBank, TTD, and
PharmGKB databases were searched. As shown in
Figure 1(b) and Supp Table S3, 73 SLBZS compounds were
related to 4 types of diseases, including digestive system
disease (degree = 44), pathology processes (degree = 28),
signs and symptoms (degree = 10), and cancer (degree = 19).

2.2.3. Target-Pathway Network. A total of 59 candidate tar-
gets and 47 KEGG pathways constituted the target-pathway
network (Figure 1(c)). Apparently, most targets were related

to different pathways, indicating that SLBZS may exert syn-
ergistic effects through these different pathways. Addition-
ally, one active compound may target different molecular
targets, illustrating the multitarget mechanism of SLBZS.
Moreover, to investigate the synergic effects of these 10
herbal medicines on IBD, an integrated “digestive-related
pathway” approach was applied based on the current
research of digestive disease pathology including the MAPK
signaling pathway, NF-kappa B signaling pathway, calcium
signaling pathway, and chemokine signaling pathway
(Figure 2 and Supp Table S4 and S5).

2.2.4. Target Tissue Location. Supp Figure S1 shows the
tissue location network based on these 70 targets, which
can be divided into six tissue modules, including the liver,
heart, spleen, lung, kidney, and gut. Thus, the candidate
compounds reflect multiple targets that can be localized to
more than one tissue (Supp Table S6).

2.3. Structural Changes of Intestinal Microbiota by SLBZS.
To analyze the alteration in the intestinal microbiota struc-
ture in rats treated with herbal medicine for IBD, the Illu-
mina sequencing system was used to generate high-quality
sequences from stool samples. The α diversity of the intes-
tinal microflora indicates that DSS can significantly decrease
the Chao1 and Shannon diversity indices in both experimental
groups (MOD and SLBZS), whereas the SLBZS group showed
a higher Shannon index when compared to the Chao1 index
after treatment with SLBZS (Figures 3(a)–3(d)). Principal
component analysis (PCA) and principal coordinate analysis
(PCoA) showed that SLBZS significantly altered the intestinal
microbiota structure of rats (Figures 3(e) and 3(f)). Similarly,
the unweighted UniFrac distance and unweighted pair-group
method with arithmetic means (UPGMA) showed that DSS
and SLBZS treatment can clearly separate rats (Figures 3(g)
and 3(h)).

To find key system types related to the efficacy of SLBZS,
MetaStat analysis was used in this study. Using mothur
software, the statistical algorithm of MetaStat [17] was used
to perform a pairwise comparison test on the differences
between the samples (groups) of each taxon at the gate and
genus levels. A detailed phylogenetic analysis of the taxo-
nomic composition of the microbiome of mice treated with
DSS showed that the increased inflammatory conditions
observed upon DSS administration were associated with
variations in the abundance of specific taxa, including Fir-
micutes, Bacteroidetes, Proteobacteria, and Actinobacteria
[18, 19] (Figure 4(a)).

Significant changes towards restoration of normobiosis
were detected among the less abundant genera belonging
to the Firmicutes phylum in the DSS+SLBZS-derived
microbiota. For instance, Corynebacteriaceae, Lactobacilla-
ceae, Paraprevotellaceae, Veillonellaceae, Prevotellaceae, and
Clostridiaceae which were expanded in colitic rats were
reduced upon SLBZS treatment and returned to levels com-
parable to those observed in control group rats (Figure 4(b)).

SLBZS-derived samples showed significant increases
in known commensals, including Adlercreutzia and Dorea,
and in the SCFA-producing taxa Ruminococcus spp., Blautia
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Table 1: Candidate information.

No. Compound Herb OB Caco-2 HL DL Degree Structure

MOL1 Luteolin

Platycodon
grandiflorus

Semen
Nelumbinis

36.16 0.19 Long 0.25 17

HO

HO

OH

OH

O

O

MOL2
12-Senecioyl-2E,8E,
10E-atractylentriol

Atractylodes
macrocephala

62.40 0.01 Short 0.22 2

OO

O−

−O

MOL3
14-Acetyl-12-senecioyl-
2E,8E,10E-atractylentriol

Atractylodes
macrocephala

60.31 0.33 Short 0.31 1

O−

O O

O

O

MOL4
14-Acetyl-12-senecioyl-
2E,8Z,10E-atractylentriol

Atractylodes
macrocephala

63.37 0.42 Short 0.30 1

OH

O

OO

O

MOL5 Alpha-humulene
Atractylodes
macrocephala

22.98 1.88 Short 0.06 1
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Table 1: Continued.

No. Compound Herb OB Caco-2 HL DL Degree Structure

MOL6

(3S,8S,9S,10R,13R,14S,17R)-
10,13-Dimethyl-17-[(2R,5S)-
5-propan-2-yloctan-2-yl]-
2,3,4,7,8,9,11,12,14,15,16,17-

dodecahydro-1H-
cyclopenta[a]phenanthren-3-ol

Atractylodes
macrocephala

36.23 1.45 Long 0.78 3

HO

MOL7 Atractylenolide I
Atractylodes
macrocephala

37.37 1.30 Long 0.15 2

O

O

MOL8 3β-Acetoxyatractylone
Atractylodes
macrocephala

54.07 1.13 Long 0.22 2

O

O

O

MOL9 Palmitic acid
Dolicho
LablabL

19.30 1.09 Short 0.10 4
O

OH

MOL10 Quercetin

Glycyrrhiza
uralensis
Fisch
Semen

Nelumbinis

46.43 0.05 Short 0.28 28

OH
OH

O

OHO

OH
OH

MOL11 Linoleic acid
Dolicho
LablabL

41.90 1.16 Short 0.14 3

OH

O

MOL12

(2R)-2-[(3S,5R,10S,13R,14R,16R,17R)-
3,16-Dihydroxy-4,4,10,13,14-

pentamethyl-2,3,5,6,12,15,16,17-
octahydro-1H-

cyclopenta[a]phenanthren-17-yl]-6-
methylhept-5-enoic acid

Wolfiporia
cocos

30.93 0.01 Short 0.81 4

OH

OH

HO

O

MOL13 Trametenolic acid
Wolfiporia

cocos
38.71 0.52 Short 0.80 2

OH

HO

O

MOL14
7,9(11)-Dehydropachymic

acid
Wolfiporia

cocos
35.11 0.03 Short 0.81 7

O O

O

OH

OH
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Table 1: Continued.

No. Compound Herb OB Caco-2 HL DL Degree Structure

MOL15 Cerevisterol
Wolfiporia

cocos
37.96 0.28 Long 0.77 2

OH
OHHO

MOL16

(2R)-2-[(3S,5R,10S,13R,14R,16R,17R)-
3,16-Dihydroxy-4,4,10,13,14-
pentamethyl-2,3,5,6,12,15,

16,17-octahydro-1H-
cyclopenta[a]phenanthren-17-yl]-

5-isopropyl-hex-5-enoic acid

Wolfiporia
cocos

31.07 0.05 Short 0.82 5

O

OH

HO

OH

MOL17 Ergosta-7,22E-dien-3beta-ol
Wolfiporia

cocos
43.51 1.32 Short 0.72 1

HO

MOL18

(2R)-2-[(5R,10S,13R,14R,16R,17R)-
16-Hydroxy-3-keto-4,4,10,13,14-
pentamethyl-1,2,5,6,12,15,16,17-

octahydrocyclopenta[a]phenanthren-
17-yl]-5-isopropyl-hex-5-enoic acid

Wolfiporia
cocos

38.26 0.12 Short 0.82 5

OH

O

OH

O

MOL19
3beta-hydroxy-24-methylene-

8-lanostene-21-oic acid
Wolfiporia

cocos
38.70 0.61 Short 0.81 2

O

HO

HO

MOL20 Pachymic acid
Wolfiporia

cocos
33.63 0.10 Short 0.81 4

OH

OH

OO

O

MOL21 Poricoic acid A
Wolfiporia

cocos
30.61 -0.14 Short 0.76 5

O OH

O
OH

OH

MOL22 Poricoic acid B
Wolfiporia

cocos
30.52 -0.08 Short 0.75 4 HO

O

OH OH

O
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Table 1: Continued.

No. Compound Herb OB Caco-2 HL DL Degree Structure

MOL23 Poricoic acid C
Wolfiporia

cocos
38.15 0.32 Short 0.75 4 OH

O OH

O

MOL24 Hederagenin
Wolfiporia

cocos
36.91 1.32 Short 0.75 3

HO

MOL25 Tumulosic acid
Wolfiporia

cocos
29.88 0.13 Short 0.81 2

O

HO

OH

HO

MOL26 Dehydroeburicoic acid
Wolfiporia

cocos
44.17 0.38 Short 0.83 3

HO
O

−O

MOL27 Denudatin B
Dioscorea
opposita

61.47 0.90 Long 0.38 2
OO

O
O O

MOL28 Beta-sitosterol

Panax
Ginseng
Fructus
Amomi

36.91 1.32 Short 0.75 3

HO

MOL29 Sitosterol

Glycyrrhiza
uralensis
Fisch

Semen Coicis

36.91 1.32 Short 0.75 2

HO

MOL30 Docosanoic acid
Dolicho
LablabL

15.69 1.21 Short 0.26 1
O

OH

MOL31 Rutin

Glycyrrhiza
uralensis
Fisch
Semen

Nelumbinis

3.20 -1.93 Long 0.68 8

HO

HO

HO

OH

OH

OH

OH

OH

OH

OH

O

O

O

O

O

O
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Table 1: Continued.

No. Compound Herb OB Caco-2 HL DL Degree Structure

MOL32 Kaempferol

Glycyrrhiza

uralensis
Fisch
Panax
Ginseng

41.88 0.26 Long 0.24 15

OH

OH

HO O

OH O

MOL33 Stigmasterol

Panax
Ginseng
Fructus
Amomi
Dioscorea
opposita

Semen Coicis

43.83 1.44 Short 0.76 1

HO

MOL34 Licochalcone A
Glycyrrhiza
uralensis
Fisch

40.79 0.82 Short 0.29 2

OH

O

O

HO

MOL35 Cholesterol
Dioscorea
opposita

Semen Coicis
37.87 1.43 Short 0.68 3

HO

MOL36 Sitosterol alpha1 Semen Coicis 43.28 1.41 Short 0.78 3

HO

MOL37 Mandenol Semen Coicis 42.00 1.46 Short 0.19 4 O

O

MOL38
24-Ethylcholest-4-

en-3-one
Fructus
Amomi

36.08 1.46 Short 0.76 1

O

MOL39
Poriferast-5-en-

3beta-ol
Fructus
Amomi

36.91 1.45 Short 0.75 3

HO

7Oxidative Medicine and Cellular Longevity



Table 1: Continued.

No. Compound Herb OB Caco-2 HL DL Degree Structure

MOL40 Isoliquiritigenin
Glycyrrhiza
uralensis
Fisch

85.32 0.44 Short 0.15 7

HO

O

OH

HO

MOL41 Sitosteryl acetate
Fructus
Amomi

40.39 1.39 Short 0.85 3

O

O

MOL42
[(2R)-2,3-Dihydroxypropyl]

(Z)-octadec-9-enoate
Semen Coicis 34.13 0.34 Short 0.30 5 O O

OH

OH

MOL43 Gynesine
Dolicho
LablabL

60.07 0.58 Short 0.03 6

O−

N+O

MOL44
Icosa-11,14,17-trienoic

acid methyl ester
Fructus
Amomi

44.81 1.52 Short 0.23 4
O O

MOL45 Spinasterol
Platycodon
grandiflorus

42.98 1.44 Short 0.76 3

HO

MOL46 Hyperin
Semen

Nelumbinis
6.94 -1.42 Short 0.77 4

OH

HO

HO

HO

OH

OH

OH
OH

O

O
O O

MOL47 18beta-glycyrrhetinic acid
Glycyrrhiza
uralensis
Fisch

22.05 0.10 Long 0.74 6
HO

OH

O

O

MOL48 Isotrifoliol
Glycyrrhiza
uralensis
Fisch

31.94 0.53 Long 0.42 3
HO

OH

O

O

O

O

MOL49

(2S)-6-(2,4-Dihydroxyphenyl)-
2-(2-hydroxypropan-2-yl)-
4-methoxy-2,3-dihydrofuro

[3,2-g]chromen-7-one

Glycyrrhiza
uralensis
Fisch

60.25 0.00 Long 0.63 4
HO

HO OH

O O O

O
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Table 1: Continued.

No. Compound Herb OB Caco-2 HL DL Degree Structure

MOL50 Licochalcone B
Glycyrrhiza
uralensis
Fisch

76.76 0.47 Short 0.19 5

HO

HO

HO

O

O

MOL51 Licochalcone C
Glycyrrhiza
uralensis
Fisch

4.44 0.63 Long 0.29 2

HO

O

O
OH

MOL52 Glycyrrhizic acid
Glycyrrhiza
uralensis
Fisch

19.62 -2.66 Long 0.11 2

O

O

O

O
O

O

O

O
HO

OH

OH
HO

HO

HO OH

OH

MOL53 Shinpterocarpin
Glycyrrhiza
uralensis
Fisch

80.30 1.10 Long 0.73 5

O
O

O

OH

MOL54 Glabridin
Glycyrrhiza
uralensis
Fisch

53.25 0.97 Long 0.47 5

OHHO

O

O

MOL55 Isoglycyrol
Glycyrrhiza
uralensis
Fisch

44.70 0.91 Long 0.84 1

O O O

OO

OH

MOL56 Icos-5-enoic acid
Glycyrrhiza
uralensis
Fisch

30.70 1.22 Short 0.20 3

O OH
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Table 1: Continued.

No. Compound Herb OB Caco-2 HL DL Degree Structure

MOL57 Gadelaidic acid
Glycyrrhiza
uralensis
Fisch

30.70 1.20 Short 0.20 2

O OH

MOL58 Gancaonin H
Glycyrrhiza
uralensis
Fisch

50.10 0.60 Long 0.78 8

HO O

OOH O

OH

MOL59
18α-Hydroxyglycyrrhetic

acid

Glycyrrhiza
uralensis
Fisch

41.16 -0.29 Short 0.71 2

OH

HO

HO

O

O

MOL60 Xambioona
Glycyrrhiza
uralensis
Fisch

54.85 1.09 Long 0.87 3

O

O O

O

MOL61 Deoxyharringtonine
Panax
Ginseng

39.27 0.19 Short 0.81 5

O

O
O

O
O

O

O
N

OH

MOL62 Dianthramine
Panax
Ginseng

40.45 -0.23 Short 0.20 3

OH

OH

HN
OH

OH

O

O

MOL63 Arachidonate
Panax
Ginseng

45.57 1.27 Short 0.20 3

OH

O
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Table 1: Continued.

No. Compound Herb OB Caco-2 HL DL Degree Structure

MOL64 Ginsenoside Ro
Panax
Ginseng

1.98 -2.86 Long 0.05 3

OH
OH

OH

OH
OH

OH

OH

OH
OH

HO
O

O

O
O

O

O

HO

O

MOL65 Ginsenoside Rb1
Panax
Ginseng

6.24 -3.99 Long 0.04 2

OH

HO
OH

OH OH
OH

OH

OH OH

OH

OH

OH

OHHO
HO

O

O

O

O

O

O

O
O

MOL66 Ginsenoside-Rb2
Panax
Ginseng

6.02 -3.92 Long 0.04 2

OH OH

OH

OH

OH

OH
OH

OHOH

HOHO

HO

HO

O

O

O

O
O

OH

O

O
O

MOL67 Ginsenoside-Rc
Panax
Ginseng

8.16 -3.97 Long 0.04 2

OH

OH

OH

OH

OH

OH

OH
HO

OH
HO

HO

OH O

O

O
O

O

HO

HO

O

O

O

MOL68 Ginsenoside-Rg3
Panax
Ginseng

17.75 -2.02 Long 0.22 2

HO

HO

HO

HO

HO

HO OH
OH

OH

O

O

OO

MOL69 Ginsenoside rh2
Panax
Ginseng

36.32 -0.51 Long 0.56 2

HOOH

OH

OH

HO
OH

OO

11Oxidative Medicine and Cellular Longevity



Table 1: Continued.

No. Compound Herb OB Caco-2 HL DL Degree Structure

MOL70 Ginsenoside-Rh3_qt
Panax
Ginseng

13.09 0.97 Long 0.76 2

OH

HO

MOL71 Ginsenoside-Rh4
Panax
Ginseng

5.22 -0.73 Short 0.60 2

OH

OHHO

OH

OH

OH

O

O

MOL72 Ginsenoside-Rh4_qt
Panax
Ginseng

31.11 0.50 Short 0.78 2

OH

OH

HO

MOL73 Ginsenoside-Rs1
Panax
Ginseng

6.27 -3.69 Long 0.04 3

OHHO
OH

OH

OH

OH
O

OO

O
O

O

OOOHOH
HO

OH
HO

HO O

OOH

MOL74 Ginsenoside-Rs2
Panax
Ginseng

8.14 -4.03 Short 0.04 3

OH OH

OH

OH

HO

HO
HOHO

HO
OH

HOOHOH

O

O

O

O O

O

O

O O

O

MOL75 Gomisin B
Panax
Ginseng

31.99 0.60 Long 0.83 5

HO

O

O
OO

O
O

O

O

MOL76 Panaxadiol
Panax
Ginseng

33.09 0.82 Long 0.79 2

OH

HO

O
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Table 1: Continued.

No. Compound Herb OB Caco-2 HL DL Degree Structure

MOL77 Panaxytriol
Panax
Ginseng

33.76 0.06 Short 0.13 3

HO

OH

OH

MOL78 Alexandrin_qt
Panax
Ginseng

36.91 1.30 Long 0.75 1

HO

MOL79 Ginsenoside Rg5
Panax
Ginseng

6.15 -1.92 Long 0.23 1

HO

HO

HO

OH

HO

HO

OH
OH

O
O

O

O

MOL80 Ginsenoside Rg5_qt
Panax
Ginseng

39.56 0.88 Long 0.79 2

OH

HO

MOL81 Hancinol
Dioscorea
opposita

64.01 0.53 Long 0.37 2
O

O

O O

HO

MOL82 Hancinone C
Dioscorea
opposita

59.05 0.74 Long 0.39 1
O

O

O O

O

O

MOL83
24-Methylcholest-
5-enyl-3belta-O-

glucopyranoside_qt

Dioscorea
opposita

37.58 1.33 Short 0.72 1

OH

MOL84 Campesterol
Dioscorea
opposita

37.58 1.34 Short 0.71 1

HO

13Oxidative Medicine and Cellular Longevity



Table 1: Continued.

No. Compound Herb OB Caco-2 HL DL Degree Structure

MOL85 Isofucosterol
Dioscorea
opposita

43.78 1.36 Short 0.76 1
OH

MOL86 Dioscoreside C_qt
Dioscorea
opposita

36.38 0.39 Long 0.87 2

O

O

OH

HO

MOL87 Doradexanthin
Dioscorea
opposita

38.16 0.52 Short 0.54 4 HO
O

OH

MOL88 Platycodin D
Platycodon
grandiflorus

7.60 -4.99 Long 0.01 2

OH

HO

HO

HO
OH

OH

OH

HOHO
OH

OH

OH
OH

O

O

O
OH O

O
O

O

O
HO

HO
HO

O
O O

MOL89 Methyl icosa-11,14-dienoate
Fructus
Amomi

39.67 1.47 Short 0.23 3
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sp., Clostridium spp., Veillonella spp., Coprococcus spp.,
and Roseburia spp. (Figure 4(c) and Supp Figure S2),
which are reported to be reduced in IBD patients [20–22].
Additionally, PICRUSt was applied to predict microbiota
metabolism [23]. 328 pathways were involved in the
microbiota metabolism and 176 pathways were significantly
changed by SLBZS (Figure 5 and Supp Figure S3). After
treatment with SLBZS, the relative abundance of functional
genes in the following categories significantly (P < 0 01)
increased: cell motility, signal transduction, membrane
transport, and amino acid metabolism, all of which were
reduced in the DSS-treated group. Meanwhile, cell growth
and death, replication and repair, infectious diseases, immune
system diseases, glycan biosynthesis and metabolism, and
digestive system genes were significantly (P < 0 01) decreased
but were increased in the DSS group.

2.4. Alleviation of IL-1β, IL-10, and TNF-α and Pathological
Changes by SLBZS. We analyzed the data from the experi-

ment, and after one week of treatment, IL-1β and TNF-α
were significantly decreased by SLBZS, whereas IL-10 was
increased. As shown in Figures 6(a)–6(c), IL-1β and TNF-α
were significantly decreased, while IL-10 increased after
treatment with SLBZS. The histological changes in the colons
of each group are shown in Figures 6(d)–6(f). The colon of
the control group exhibited normal histological features. In
the model group, there was infiltration of colon mucosal
inflammatory cells, and the intestinal villus epithelial cells
were degenerated, necrotic, and shed. Pathological changes
were significantly reduced in the SLBZS group.

3. Discussion

To our knowledge, this is the first study to evaluate the
efficacy of TCM on IBD with a systems pharmacology and
microbiota approach. Chinese herbs are a complex system
of multicomponent, multitarget, and synergistic effects
among its components. This systematic pharmacological

Table 1: Continued.
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technique is used to study TCM active compounds and target
identification and identify targets and the relationship
between drugs and diseases.

In this study, some herbal medicines may contain the
same compound, such as Glycyrrhiza uralensis Fisch and
Panax Ginseng, Panax Ginseng and Fructus Amomi, and
Panax Ginseng andGlycyrrhiza uralensis Fisch. Among these,
Atractylodes macrocephala, Glycyrrhiza uralensis Fisch, and
Panax Ginseng have been found to have extensive pharmaco-
logical effects, such as antioxidant, immunomodulation, and
anti-inflammatory [24–29]. In particular, the low molecular
weight Glycyrrhiza uralensis Fisch can inhibit tumor cell pro-
liferation to exert anticancer and immunomodulatory effects.
They also increase the thymus/spleen index and T lympho-
cyte population. In addition, Glycyrrhiza uralensis Fisch can
increase the expression of antitumor factors such as IL2,
IL6, and IL7 and reduce the protumor cytokine TNFα [24].
Shimato et al. have demonstrated that Atractylodes macroce-

phala can promote the production of G-CSF, clinically used
to treat neutropenia and prevent chemotherapy-induced
immunodeficiency [27]. Also, Panax Ginseng has been dem-
onstrated to regulate multiple types of immune cells includ-
ing macrophages, NK cells, DCs, T cells, and B cells [30].
Moreover, luteolin and quercetin, which existed widely in
Glycyrrhiza uralensis Fisch, Platycodon grandiflorus, and
Semen Nelumbinis, have been proven to have broad biologi-
cal and pharmacological effects [31, 32].

Despite the different numbers of each herbal-related tar-
gets, significant target overlap occurred between these
herbals. The results indicate that these targets can be regu-
lated by different herbs in SLBZS to play a synergistic role
[15, 16]. For example, several compounds including alexan-
drin_qt, campesterol, isofucosterol, and panaxadiol were
involved in modulating the activation of peroxisome
proliferator-activated receptor gamma (Pparg), which might
be ascribed to lipid and glucose metabolism [33, 34].
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Figure 1: Compound-target-disease-pathway network. (a) Compound-target network of SLBZS consisting of 171 nodes (97 compounds and
74 potential targets) and 330 edges. (b) Target-disease network including 73 candidate targets and 4 diseases. (c) Target-pathway network
including 59 candidate targets and 47 KEGG pathways.
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Based on network construction, the results indicate that
most compounds modulate multiple targets to exert their
pharmacological effects. For example, quercetin exhibits not
only antitumor [35] and anticancer [31] activity but also
antiproliferative effects [36]. Antiproliferative effects of con-
jugated metabolites of quercetin have been evaluated against
three different cancer cell lines [36]. In addition, luteolin pre-
sents anti-inflammatory effects, serves as a neuroprotective
agent [37], and also exhibits antitumor effect [32, 38]. The
antitumor effect of luteolin may be transmitted by cMet/
Akt/ERK signaling [38]. Furthermore, the results indicated
that several targets are hit by multiple ingredients in the
compound-target network. Pparg showed the highest
degree (degree = 39), along with Sphk1 (Sphingosine kinase
1, degree = 31), Klf5 (Kruppel-like factor 5, degree = 19),

and Akr1b10 (Aldo-keto reductase family 1 member B10,
degree = 19), demonstrating the potential therapeutic effect
of each drug contained in SLBZS for combating intestinal
disease via modulation of these relevant proteins. These
targets play crucial pathological rules in disease related to
cancer [39–42]. AKR1B10 has been shown to be closely
related to tumor size and cell metastasis of gastric cancer,
and AKR1B10 can be used as a good prognostic indicator
for gastric cancer [39]. Deletion of KLF5 can result in a
decrease in PI3K/AKT signaling and accumulate HIF1α in
prostate tumors to promote tumor angiogenesis [40]. Previ-
ous research has illustrated that the PPARγ allele may be
involved in the development, differentiation, and metastasis
of gastric cancer in Turkey [43]. Sphk1 has been shown to
be involved in the pathogenesis of human hepatocellular
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carcinoma (HCC), and DMS can inhibit the effects of Sphk1.
Therefore, Sphk1 can be used as a potential target for the
treatment of HCC [42].

Reportedly, the proteins Mmp12, Pparg, and Ptgs2 are
related to digestive system disease and cancer. Biancheri
et al. demonstrated that Mmp12 contributes to the respon-
siveness of patients with IBD to anti-TNF agents [44] and
might be involved in the remodeling of injured gut tissue
with respect to the migration, proliferation, and differentia-
tion of endothelial cells [45]. Pparg is involved in the inhibi-
tion of tissue damage associated with immune activation
through the inhibition of the NF-κB pathway [46]. Ptgs2
can repair the injured intestinal mucosa and exert a critical
role in the pathophysiology of Salmonella typhimurium-
induced ulcerative colitis [47].

Some pathways, such as the NF-κB pathway [46], MAPK
pathway [48, 49], calcium signaling pathway [50], and
chemokine signaling pathway [51], have been improved
in relation to digestive disease. In addition, these pathways
are reflected in several modules such as inflammation,
proliferation apoptosis, survival, and proliferation.

The MAPK cascade is a highly conserved module that
is involved in various cellular functions, including cell pro-
liferation, differentiation, and migration. A study on the
pharmacological approach showed that stevioside exerts
antiapoptotic and anti-inflammatory effects through the

inhibition of the release of cytokines and the activation of
the MAPK signaling pathway [52]. Another pharmacological
study showed that berberine might execute an antiapoptotic
function by inhibiting the MAPK pathway [53]. In macro-
phages, carbon monoxide (CO) reduces lipopolysaccharide-
induced proinflammatory cytokines effectuated by the
MAPK pathway [48]. Recent studies have highlighted that
oxidative stress activates MAPKs and MT2A (a mediator of
MAPKs) that play a crucial role in antiapoptosis and anti-
inflammation [54]. Studies have shown that black raspberries
(BRB) have a preventive effect on rat esophageal cancer, and
the mechanism may be that BRB reverse oxidative stress and
inhibit NF-κB/MAPK pathway [55]. Rutin exerts neuro-
protective effects by increasing superoxide dismutase and
glutathione peroxidase levels in the peripheral blood and
inhibiting the p38 MAPK pathway [56]. This finding reveals
the importance of MAPKs in the normal digestive function.

NF-κB is found in almost all animal cell types and is
involved in cellular responses to stimuli such as stress,
cytokines, free radicals, heavy metals, ultraviolet irradiation,
oxidized LDL, and bacterial or viral antigens. NF-κB also reg-
ulates the expression of antiapoptotic genes which play an
important role in cell survival and play various roles in cell
development, proliferation, differentiation, and metabolism
[57]. Furthermore, the degree of NF-κB activation induced
by LPS is significantly increased in Atg7-deficient intestinal
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Figure 3: The effect on the gut microbiota structure of SLBZS. (a–d) Rarefaction curves showing microbial richness based on the Chao1 index
and microbial richness and evenness on the Shannon index. (e, f) Microbiome clustering based on unweighted principal component analysis
(PCA) and principal coordinate analysis (PCoA) UniFrac metrics of fecal gut microbiota. (g, h) Unweighted UniFrac distance and
unweighted pair-group method with arithmetic means (UPGMA) showed that DSS and SLBZS treatment can separate rats clearly.
Statistical significant difference was assessed through one-way ANOVA with LSD post hoc test ∗P < 0 05, ∗∗P < 0 01, and ∗∗∗P < 0 001;
n = 6.
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epithelium. This also shows that autophagy can relieve
endotoxin-induced inflammatory responses in intestinal
endothelial cells, thereby maintaining intestinal homeostasis
[58]. Both innate and adaptive immune responses are associ-
ated with NF-κB, and the development and maintenance of
cells and tissues associated with the immune system are
under the control of the NF-κB transcription factor family
in multiple pathways. Initially, the role of NF-κB in the thy-
mus was limited to the important role of RelB [59], but it
became clearer in the development of medullary thymic epi-
thelial cells [60–62].

Calcium (Ca2+) ions are important for cell signaling,
and they exert an allosteric regulation of many enzymes
and proteins once they enter the cytosol of the cytoplasm.
Studies have shown that intracellular Ca2+ release is accom-
plished by Zn+ triggering inositol 1,4,5-triphosphate (IP3)
[63, 64]. Activation of mitogen-activated protein (MAP)
and phosphoinositide 3 (PI3) kinase pathways protects
colonic epithelial cells. In experimental colitis, metabolic cal-
cium signaling in colonocytes is induced by zinc-induced
receptors [65]. In Caco-2 cell monolayers, DSS increases
the intracellular Ca2+ concentration and depletes intracellu-
lar Ca2+ by BAPTA/AM, disrupts tight junctions, and causes
barrier dysfunction [66]. These findings reveal the impor-
tance of the calcium signaling pathway, which might be
instrumental to the success of future human trials of a new
strategy to treat digestive disease.

Chemokine receptors are cytokine receptors found on the
surface of certain cells that interact with a type of cytokine
called a chemokine. Chemokines can activate a range of sig-
naling pathways to mediate their biological effects by binding

to G-protein-coupled receptors (GPCRs). Duffy and D6 bind
to CXC and CC inflammatory chemokines, respectively [67].
Chemokines can be divided into “inflammatory” chemokines
and “steady state” chemokines [68]. Inflammatory chemo-
kines can play important roles in recruiting leukocytes to
the site of inflammation, such as neutrophils, monocyte
macrophages, dendritic cells (DC), and natural killer (NK),
which play key roles in the innate immune response. The
results demonstrated that the chemokine signaling pathway
can be further divided into modules such as survival,
migration, apoptosis, cellular growth, and cytokine produc-
tion. In the immune system, chemokines are mainly pro-
duced and transported by leukocytes and play an important
role in the immune system [69]. Chemokines act by binding
to chemokine receptors. Activation of chemokine receptors
induces proliferation and differentiation of immune cells,
and both are essential processes in innate and adaptive
immune responses [70].

In summary, these pathways are regulated by different
compounds, suggesting that digestive diseases may affect dif-
ferent pathways. In addition, multiple protein targets belong
to a variety of signaling pathways, suggesting that certain pro-
teins can simultaneously affect multiple signaling pathways.

In this experiment, IL-1β, IL-10, and TNF-α were ana-
lyzed. IL-1β and TNF-α participate in the MAPK and NF-
κB pathways, and the two pathways share crosstalk. Recent
studies have shown that IL-1β and TNF-α can be proinflam-
matory cytokines in IBD [71–74], whereas IL-10 has been
demonstrated to play a vital role in the control of inflamma-
tion and prevention of enteritis [75]. In patients with colitis
and inflammatory bowel disease, damaged mitochondria
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accumulate in macrophages when IL-10 signal is deficient.
This leads to abnormal activation of NLRP3 inflammasome
and IL-1β production [76, 77].

In our research, changes to the intestinal microbial struc-
ture by SLBZS were observed. SLBZS treatment inhibits two
genera that contain potential pathogens, Corynebacterium
and Helicobacter, which are strongly associated with peptic
ulcers, chronic gastritis, duodenitis, and stomach cancer
[78]. Blautia is a group of bacteria containing various acetate

and butyrate producers [79, 80]. This research observed that
an increase in the SCFA producer Blautia in the SLBZS treat-
ment group was consistent with previous animal studies
[81]. Roseburia and Lachnospira, as SCFA producers, were
reported to recover a balanced community after diet treat-
ment in type 2 diabetic patients [82]. Ruminococcus is present
in the digestive tract of ≥90% of people and is involved in dis-
eases associated with the intestines, such as IBD. A recent
study demonstrated the ability of Ruminococcus to produce
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propanol and propionate as the end products of metabolism
[83]. These new findings provide us with insights into the
specificity of the genera’s adaptability to the gut environment
and promote our understanding of the role of gut commen-
sals in health and disease.

Based on the 16S rRNA results, we found that SLBZS
treatment can alter the microbial structure of the intestine,
which has an enhanced effect on the intestinal microbiota
richness and diversity in DSS model rats. Therefore, SLBZS
seems to offset the structural changes caused by DSS. As a
result, the identified bacterial phylotypes in response to
SLBZS treatment in DSS rats may be related to the develop-
ment and improvement of DSS-induced metabolic abnor-
malities. The overrepresentation of the KEGG gene in the
patient’s microbiome can reflect the deleterious metabolism
of the neurotransmitter pathway and the host gut protec-
tion glycosaminoglycan mucin, in contrast to the beneficial
counterpart in the control [84]. Our PICRUSt analyses
revealed that SLBZS can significantly increase amino acid
metabolism, which may indicate SCFA. This is consistent
with the increased SCFA-producing genera. Infectious dis-
ease, immune system disease, and digestive system disease
were all reduced after treatment with SLBZS, which had a
positive effect on IBD.

However, a large number of validation tests are required.
The systems pharmacology results can directly prove the
effect of the active compounds of SLBZS on the target, while
a change in the microbiota structure can supplement the
interaction between the Chinese herbal compounds and gut
commensals, then revealing the underlying mechanism.
Taken together, the combination of the two methods can sys-

tematically illustrate the relationship among active com-
pounds, targets, and the microbiota and contribute to the
study of the mechanism of IBD.

4. Materials and Methods

4.1. Dataset Construction. The current data were obtained
from the TCM pharmacology analysis platform (TCMSP,
http://lsp.nwu.edu.cn/tcmsp.php) and a large amount of
literature mining. We collected 980 compounds and their
physicochemical properties from SLBZS: 14 compounds of
Dolicho LablabL, 55 compounds of Atractylodes macroce-
phala, 34 compounds of Wolfiporia cocos, 280 compounds
of Glycyrrhiza uralensis Fisch, 102 compounds of Platycodon
grandiflorus, 31 compounds of Semen Nelumbinis, 190 com-
pounds of Panax Ginseng, 165 compounds of Fructus
Amomi, 71 compounds of Dioscorea opposita, and 38 com-
pounds of Semen Coicis. Detailed information is freely avail-
able from the TCMSP analysis platform.

4.2. Active Compound Screening Model

4.2.1. Oral Bioavailability (OB). In the present study, oral
bioavailability (OB) was estimated based on OBioavail 1.1
[85] and the IntegOB. OB is one of the major pharmacoki-
netic parameters in the ADME (absorption, distribution,
metabolism, excretion) profile of a drug. The molecule with
suitableOB ≥ 30% served as the candidate compound for fur-
ther research.

4.2.2. Caco-2 Permeability. The oral absorption of drugs
was primarily completed via intestinal epithelial cells (IEC).
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Figure 6: IL-1β (a), IL-10 (b), and TNF-α (c) can be significantly improved by SLBZS. ∗P < 0 05; ∗∗P < 0 01. Histological changes of the colon
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In this study, a computer Caco-2 permeability prediction
model was applied to predict intestinal permeability of all
TCM components in TCMSP. The number of Caco − 2
molecules>−0 4 is considered to exhibit adequate intestinal
epithelial permeability.

4.2.3. DL (Drug-Likeness). Drug-likeness is a qualitative con-
cept used in drug design for how “druglike” a substance is
with respect to factors like bioavailability. It is estimated from
the molecular structure before the substance is even synthe-
sized and tested.

4.2.4. HL (Half-Life). The half-life of a substance is the dura-
tion required for a drug to lose half of its pharmacological
activity. HL= long is defined as a suitable half-life range.

4.3. Drug Targeting. Drug targeting was implemented by a
novel computational model designed to detect the direct drug
targets based on an in-house weighted ensemble similarity
(WES) method [86] with satisfactory validation of both inter-
nal and external data.

4.4. Network Construction. TCM is a complex material sys-
tem comprised of the effective active compound, the target
of the action, and the related diseases; it does not correspond
to the theory of “single gene, single target, and single disease.”
In order to resolve these issues, we constructed a compound-
target network to reveal the association between the drug
and the target protein. The construction of the network
aided in identifying the protein targets of each compound
in Chinese medicine, understanding the mechanism underly-
ing the activity of the drug in the treatment of the disease,
and studying the target in the disease network. Thus, in
the generated network, nodes represent compounds, tar-
gets, signaling pathways, or diseases, while edges represent
compound-target, target-disease, and target-pathway inter-
actions. The bipartite graphs were generated using Cytoscape
2.8.1 [87].

4.5. Compound Organ Location. In order to elucidate the gut
disorder at the organ level, firstly, the GO targets were ana-
lyzed for most of the selected targets, followed by the analysis
of distribution in tissues and organs. Determination of target
tissue distribution was based on microarray analysis data of
different tissue types in BioGPS database (http://biogps.org).

Ω = t1, t2,⋯, tn ,
Hi = hit1 , hit2 ,⋯, hitn ,

hi =
∑n

i=1hi
n

,

Ai = t ∈Ω ∣ t > hi ,

1

wherein t represents human tissue, Ω represents tissue loca-
tion, h represents a tissue-specific pattern of mRNA expres-
sion of one target, Hi represents the expression position of
mRNA of one target in Ω, hi represents one target in the tis-
sue of the average expression, n is the number of organiza-
tions, and Ai indicates a target tissue location.

4.6. Animal Management. A rat model test was performed to
test the effect of SLBZS on the IBD model. After a week of
acclimation period, 30 rats (male and 10 weeks) were ran-
domly divided into 3 groups—control group (CON), model
group (MOD), and SLBZS group (SLBZS). The MOD and
SLBZS group rats were administered 3% DSS (40 kDa; MP
Biomedicals) for 7 days, while the CON was administered
with equal volume of saline. After 7 days, the SLBZS group
was intragastrically administered with SLBZS 2mL (1.2 g)
for 7 days, and the other two groups were orally given an
equal volume of saline. The condition of the rats was moni-
tored twice per day. After 24 hours of the last administration,
feces, serum, and colon were collected and stored at -80°C.
The animal experiments were approved by the Institutional
Animal Care and Use Committee of South China Agricul-
tural University (Approval No. CNAS BL0011).

4.7. Preparation of SLBZS. SLBZS was prepared using the
published method [7]. SLBZS is a traditional Chinese patent
medicine, composed of Panax Ginseng (10 g), Wolfiporia
cocos (10 g), Atractylodes macrocephala (10 g), Dioscorea
opposita (10 g), Dolichos Lablab (7.5 g), Semen Nelumbinis
(5 g), Semen Coicis (5 g), Fructus Amomi (5 g), Platycodon
grandiflorus (5 g), and Glycyrrhiza uralensis Fisch (5 g). The
ten Chinese herbs were purchased from qualified suppliers
based on standards specified in the Chinese Pharmacopoeia
(Guangzhou, China). The herb materials were mixed and
extracted twice at 80°C by stirring it for 1 h using 10 vols of
distilled water (v/m). Then, we centrifuged the extract at
1500 ×g at room temperature. The SLBZS decoction was fil-
tered and then concentrated to 1 gmL−1 (net content) with
deionized water.

4.8. 16S rRNA Gene Sequence Analysis of Intestinal Flora in
Fecal Samples. Total genomic DNA of fecal samples was
extracted by the InviMag Stool DNA Kit (Invitek, Germany)
as previously described [7]. Fecal microbial DNA was
extracted using Fast DNA SPIN extraction kits (MP Biomed-
icals, Santa Ana, CA, USA) and applied to amplification of
the V3-V4 region of 16S rDNA. Fecal microbiota compo-
sition was assessed using Illumina HiSeq sequencing of
16S rDNA Amplicon and QIIME-based microbial analysis.
The procedures for fecal microbial DNA extraction, sequenc-
ing and library construction, and microbial analysis are
described in the supplementary methods.

4.9. Histologic Observation of the Colon. Histologic colon
samples were prepared as previously described [7]. The
colon samples were collected and fixed in 10% formalin,
dehydrated with a sequence of ethanol solutions, embed-
ded in paraffin, sliced (4-5 μm), and stained with hematoxy-
lin and eosin (HE), then observed with Olympus BH22
Microscope (Japan).

4.10. Measurement of Serum Cytokines. Interleukin- (IL-)
1β, IL-10, and tumor necrosis factor-alpha (TNF-α) were
tested using an ELISA kit (Cusabio, Houston, TX, USA;
https://www.cusabio.com/). Indices were tested according
to the manufacturer’s instructions.
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4.11. Quantification and Statistical Analysis. Statistical
analysis was performed with GraphPad Prism 5 (Graph-
Pad Software). Statistical significance was calculated using
Kruskal-Wallis test with Dunn’s multiple comparison correc-
tion. ∗P < 0 05, ∗∗P < 0 01, and ∗∗∗P < 0 001 were regarded
as statistically significant.
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