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Abstract: Nanosilica produced from physically-processed white rice husk ash agricultural waste
can be incorporated into geopolymer cement-based materials to improve the mechanical and micro
performance. This study aimed to investigate the effect of natural nanosilica on the mechanical
properties and microstructure of geopolymer cement. It examined the mechanical behavior of
geopolymer paste reinforced with 2, 3, and 4 wt% nanosilica. The tests of compressive strength,
direct tensile strength, three bending tests, Scanning Electron Microscope-Energy Dispersive X-ray
(SEM/EDX), X-ray Diffraction (XRD), and Fourier-transform Infrared Spectroscopy (FTIR) were
undertaken to evaluate the effect of nanosilica addition to the geopolymer paste. The addition
of 2 wt% nanosilica in the geopolymer paste increased the compressive strength by 22%, flexural
strength by 82%, and fracture toughness by 82% but decreased the direct tensile strength by 31%. The
microstructure analysis using SEM, XRD, and FTIR showed the formation of calcium alumina-silicate
hydrate (C–A–S–H) gel. The SEM images also revealed a compact and cohesive geopolymer matrix,
indicating that the mechanical properties of geopolymers with 2 wt% nanosilica were improved.
Thus, it is feasible for nanosilica to be used as a binder.

Keywords: geopolymer; epoxy; fracture toughness; tensile strength; flexural strength

1. Introduction

Over the last few years, the cement industry has caused an effect on global warming
with carbon dioxide emissions, estimated to be nearly 5–7% of total CO2 emissions in the
environment [1]. Therefore, in recent years, most of the research has focused on geopolymer
materials that can be synthesized from an alkaline activation process of various organic
materials or low-cost industrial byproducts, such as fly ash, rice husk ash, furnace slag as
green materials. Fly ash is widely used as a raw material in composite geopolymer [2,3].
Alkaline solution will react silica and alumina in fly ash through a polymerization process
and produce a sodium–aluminosilicate gel.

Nanosilica is the most widely-used nanomaterial in both common cement and geopoly-
mers to improve cement properties due to its reactive pozzolans and pore-filling effect [4,5].
It consists of silicon dioxide (SiO2) in crystalline and amorphous forms. Amorphous
nanosilica is the most commonly used type of nanoconcrete [6]. Nanosilica particles
vary in size, ranging between 5–658 nm for various types of silica-based nanomaterial
products [7,8].

The addition of nanosilica not only accelerates the rate of polymerization reaction but
also promotes the development of calcium silicate hydrates (C-S-H) and sodium alumi-
nosilicate hydrates (N–A–S–H) in natural pozzolan-based polymers [9]. The best results
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were obtained when 1 wt% nano-SiO2 was added to a metakaolin-based geopolymer with
a w/s ratio of 1.03 [10]. The addition of nanosilica to the geopolymer mortar increases the
dissolved silica, driving the accelerated rate of geopolymerization by forming long-chain
silicate oligomers in the geopolymer matrix [11]. Moreover, the larger surface area of
nano-silica particles will accelerate the geopolymerization process [12]. Ibrahim et al. [9]
reported that the addition of nanosilica not only accelerates the rate of polymerization reac-
tion but also promotes the development of calcium silicate hydrates (C–S–H) and sodium
aluminosilicate hydrates (N–A–S–H) in natural pozzolan-based geopolymer concrete.
Adak et al. [13] investigated the performance of nanosilica in fly ash-based geopolymer
concrete and observed that in the presence of nanosilica, the dissolution rate of Si and Si-Al
increases and accelerates the rate of geopolymerization. This is related to the amorphous
nature of nanosilica and its high surface area.

Recycling and reusing agricultural waste byproducts such as rice husk ash has been
a concern of researchers in recent years because of the environmental problems it causes.
The high content of silica in rice husk ash makes this material an option to be physically
converted into a nanomaterial and used as a reinforcement in this study. The use of
nanosilica in cement geopolymers faces several obstacles. The present fact that geopolymers
with many favorable characteristics have not been as widely used as Portland cement. The
widespread use of geopolymers is constrained by several limitations such as high porosity,
slow setting, and subsequent slow strength development [11]. These limitations need to be
improved to increase the use of geopolymers in concrete as an alternative to the binder.

The effect of nanosilica in Portland cement has been extensively investigated and
found to be an effective additive to the development of mechanical and microstructural
properties. However, research on the nanosilica effect of rice husk ash on the mechanical
properties, microstructure, and fracture toughness of geopolymers has not been broadly
discussed in the literature. Therefore, this study aimed to investigate the effect of physically
processed nanosilica on geopolymer cement’s mechanical/microstructure properties such
as compressive strength, direct tensile strength, flexural strength, ductility, fracture tough-
ness, Scanning Electron Microscope (SEM/EDX), X-ray Diffraction (XRD) and Fourier
Transform Infrared Spectroscopy (FTIR). The optimal amount of nanosilica is determined
by setting the silica content at 0–4 wt%. The mechanical strength and microstructural
development of geopolymer paste samples containing different nanosilica are treated in
the curing process at room temperature studied.

2. Materials and Methods
2.1. Materials

Class C fly ash from the Nagan Raya power plant in Aceh Province, Indonesia,
nanosilica from physically-processed rice husk ash, and epoxy resin made in Germany
purchased from the Indonesia Chemical Reagent Company, were used in this study. A
scanning electron microscope (SEM, Vega3–Tescan, Kohoutovice, Czech Republic) test
was used to observe the morphology of fly ash and Transmission Electron Microscope
(TEM, JEOL JEM 1400, Tokyo, Japan) for nanosilica shown in Figure 1. Nanosilica was
processed according to previous research results [14] by applying a ball mill on white rice
husk ash for 10 h at a speed of 600 rpm to change the size of rice husk ash to nano. This
process obtained nanosilica with an average particle size of 339.09 nm. The particle size of
nanosilica was measured using a Particle Size Analyzer (PSA, Horiba SZ–100V2, Kyoto,
Japan). The chemical composition of fly ash and nanosilica is presented in Table 1.
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Figure 1. The morphology of raw materials: (a) fly ash and (b) nanosilica. Figure 1. The morphology of raw materials: (a) fly ash and (b) nanosilica.

Table 1. Chemical composition of fly ash and nanosilica.

Chemical Analysis Class C Fly Ash a (wt%) Nanosilica (wt%)

SiO2 21.07 91.78
Al2O3 9.65 -
Fe2O3 27.23 0.15
CaO 32.58 2.09
MnO 0.44 0.18
K2O 1.17 4.11
SO3 5.69 1.43
TiO2 1.68 -

Cl 0.22 -
Ag2O 0.23 -
Yb2O3 0.09 -
P2O5 - 0.13
SiO - 0.13

a ASTM C 618.

The epoxy resin used was waterborne bisphenol-epoxy resin, and waterborne polyamine
epoxy curing agents were obtained from commercial suppliers. The alkaline activator is
a mixture of sodium hydroxide solutions and sodium silicate solutions. In this study, a
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sodium hydroxide solution with 10 M concentration was used, which was made by mixing
97–98% pure palette with water. The ratio of SiO2 and Na2O mass from sodium silicate
solution was 2.61 (SiO2 = 24.19%, Na2O = 12.81% and water = 63%). Thermophysical
properties of material used is shown in Table 2.

Table 2. Thermophysical properties of materials.

Thermophysical Properties
Materials/Value

Fly Ash Nanosilica

Size average 30 µm 339.09 nm
Density 2.45 gr/cm3 3.41 g/cc

Surface area - 28.566 m2/g
Pore Radius - 1.320 × 10 Å

Temperature onsite 57.04 ◦C 736.09 ◦C
Weight loss 600 ◦C 6.58% 1.3%

Material properties from XRD Crystallinity (64.9%), amorf (35.09%) semi-crystalline

2.2. Geopolymer Mixes Containing Nanosilica

The composition of the geopolymer paste mixture was made proportionally based
on previous work carried out by lab workers at room temperature [15,16]. The ratio for
the mixed formula is based on the ratio Na2SiO3/NaOH = 1. Table 3 shows the mixture
proportions used in the paste geopolymer. The mixing process was carried out by first
passing fly ash on a 200-mesh sieve, drying at 70 ◦C for 1 h. After that, we gradually mixed
the nanosilica with dosage 2, 3, 4 wt% and stirred for 5 min. Mixing was carried out using
a Hobart mixer. After that, we added activator solutions and stirred for 20 min at a stirring
speed of 800 rpm as recommended. The epoxy solution used was 20% by weight matrix
with a 1:1 ratio of epoxy resin and catalyst. After that, the two ingredients, namely the
geopolymer paste and epoxy resin, were stirred again for 5 min at a speed of 1350 rpm, as
recommended (Roviello et al., 2016) [17]. After the mixture was evenly mixed, the paste
was poured into a 50 × 50 × 50 mm3 cube mold according to the ASTM C109 standard [18]
and stored at room temperature. After one day of age, the specimens were demolded.

Table 3. Mixture proportions of geopolymers paste.

Specimens Fly Ash NaOH
Solution

Na2SiO3
Solution

Epoxy
Resin Water Nanosilica Nanosilica

Content
(g) (g) (g) (g) (mL) (g) (wt%)

1 1000 260 260 434 650 0 0
2 980 260 260 434 650 20 2
3 970 260 260 434 650 30 3
4 960 260 260 434 650 40 4

2.3. Testing Procedures
2.3.1. Mechanical Properties

Compressive strength testing was carried out according to ASTM C109, 2001 [18]
standards. The size of the test object used was a 5 × 5 × 5 cm cube. The calculation was
carried out according to the following equation.

σc =
P
A

(1)

where σc = compressive strength (MPa), P = total load on the specimen at failure (N), and
A = surface area of the specimen (m2). In all mechanica l properties testing, 3 specimens
were used in each treatment to get the average value and standard deviation.

The dog bone shape specimens were used to investigate the tensile behavior. The
testing machine and typical dog bone shape specimens are shown in Figure 2.
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Figure 2. (a) Testing machine, (b) specimen in gripping element, (c) the dimension of typical dog
bone specimen.

The direct tension test in this study was carried out according to the ASTM C 307-03
standard [19,20] by using Testometric materials testing machines with a loading rate of
30 mm/min.

From this test, the ductility (µ) was calculated based on the following equation.

µ =
∆u
∆y

(2)

where ∆u is the displacement at ultimate load (Pu = 80% Pmax), and ∆y is the displacement
at first yield [21].

Three-point bending tests were carried out according to ASTM D5045-14 [19] using
specimens with the size of 40 × 40 × 160 mm, and the crack length (a0) was 20 mm. This
test was performed using the Testometric materials testing machines with a 10 mm/min
loading rate. The test setup schematic is shown in Figure 3.
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The flexural strength (σF) was determined according to the formula:

σF =
3 Pm S
2 BW2 (3)

where Pm is the maximum load, S is the specimen span, B is the specimen width, and W is
the specimen thickness.

This test also determined fracture toughness (KIC) by using the following formula:

KIC =
Pm S

BW3/2

( a
W

)
(4)
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f
( a

W

)
=

3(a/W)1/2
[
1.99 − (a/W)(1 − a/W) ×

(
2.15 − 3.93a/W + 2.7a2 /W2

)]
2(1 + 2a/W)(1 − a/W)3/2 , (5)

where ƒ (a/W) is the polynomial correction factor, (a/W) is the ratio of crack length to the
thickness of 0.4.

2.3.2. Characterization of Materials

The morphology of the specimens was evaluated by SEM and for the elements con-
tained therein was also utilized an Energy Dispersive X-ray (EDX) detector (Vega 3-Tescan).
XRD analysis was implemented to characterize geopolymer paste specimens with the
addition of nanosilica. The XRD testing tool used was the Shimadzu XRD-7000. The X-ray
spectrum used was 1017–1020 Hz which has an energy of 103–106 eV. FTIR (Shimadzu-
IRPrestige-21) was used to see the functional groups of the geopolymer paste due to the
addition of nanosilica. Data are presented in wavenumbers from 4000 to 400 cm−1.

3. Results
3.1. Direct Tensile Strength

Figure 4a,b show the typical stress–strain curves and the maximum tensile strength
of the geopolymer cement paste added with nanosilica at the age of 28 days. Figure 4a
shows that the addition of 2, 3, and 4 wt% nanosilica did not significantly increase the
tensile strength. However, the addition of nanosilica shows a change in the resulting stress-
strain curve. When the failure happened, the stress on the sample without the addition
of nanosilica immediately dropped to zero. This is different from what happened to the
samples that had been added with nanosilica, which showed that there was a drop in stress
that did not occur suddenly. The failure of the material due to the addition of nanosilica
did not occur suddenly. Figure 4b shows a graph of the maximum stresses resulting from
the inclusion of nanosilica 2, 3, and 4 wt%.

The tensile strength due to the addition of 0, 2, 3, and 4 wt% nanosilica were 1.37,
0.95, 0.82, and 0.77 MPa, respectively. Its value obtained in this study was greater than
that done with the addition of cornsilk reinforced cement (0.4–0.6 MPa) [22], but it was
a small value compared to other studies such as the addition of metakaolin and rice
husk ash (0.92–1.91 MPa) [23], steel slag (0.66–1.30 MPa) [20] and polyethylene fiber
(3.25–3.43 MPa) [24]. The addition of nanosilica reduced the maximum tensile strength,
but nanosilica has not been able to increase the maximum tensile stress. This is because
nanosilica only has the ability to fill pores and is unable to withstand the growth of cracks
once elastic.

From the stress–strain curve analysis and the maximum tensile strength, it can be
concluded that the addition of nanosilica did not increase the tensile strength of the cement
paste but actually decreased it. However, the inclusion of 2, 3, 4 wt% nanosilica made
the geopolymer cement paste better in the face of failure, that the collapse did not occur
suddenly. This is consistent with what was reported by [22,25], where the inclusion of
nanosilica in the geopolymer cement paste gave rise to a residual stress phrase after failure.
The cause of the emergence of residual stress is because the nanosilica was able to fill the
pores and form a good matrix with epoxy. However, the nanosilica could not withstand
the tensile load after cracking, so that the maximum tensile strength dropped. Therefore,
the addition of nanosilica is recommended because it can increase the residual strength.
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Figure 5 shows the crack pattern after the tensile test. The zigzag-shaped tensile
pattern shows the material was trying to resist crack growth to achieve maximum strength.
The fracture pattern that tends to be straight (Figure 5a) shows the material’s brittle nature,
which was confirmed in the direct tensile strength test.
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3.2. Ductility

Ductility is assessed from the relationship between load and displacement in the direct
tensile strength test. In this study, ductility was tested by Equation (2), and the results are
shown in Figure 6.
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Figure 6. Ductility geopolymer cement with nanosilica.

From Figure 6 it can be seen that geopolymer cement pastes with nanosilica concen-
tration of 2 wt% have the highest ductility value of 2.08 compared to control specimens
without using nanosilica. The geopolymer ductility of cement was 0.82, 2.08, 1.83, 1.34
for nanosilica concentrations of 0, 2, 3, and 4 wt%, respectively. The greater the ductility,
the longer and sloping the post-yield phase. The addition of the nanosilica concentration
by 2 wt% showed that the geopolymer paste was able to undergo deformation without
experiencing sudden damage. The addition of nanosilica concentrations of 3 and 4 wt%
did not show a significant increase in ductility.

It can be concluded that the addition of 2 wt% nanosilica made the geopolymer paste
more ductile as indicated by the destruction that occurred unsuddenly. The ductility of
the geopolymer paste with the addition of 2 wt% nanosilica was 2.52 times higher than
that of the geopolymer paste without the addition of nanosilica. The increase in ductility
was due to the addition of 2 wt% nanosilica, which inhibited propagation crack, and it
took a longer time to disintegrate. The use of high ductility materials is recommended in
earthquake-resistant buildings because the structural collapse does not occur suddenly.

3.3. Compressive Strength and Flexural Strength

The results of the compressive strength of the geopolymer cement paste are shown in
Figure 7 and indicate the same trend with the flexural strength. The compressive strength
values with the addition of 0, 2, 3, 4 wt% nanosilica were 21.47, 26.26, 25.50, and 18.16 MPa,
respectively. Likewise, the average flexural strengths were 1.44, 2.62, 1.07, and 0.45 MPa,
respectively.

Figure 7 shows an increase in compressive strength of 22% at the addition of 3 wt%
nanosilica. Furthermore, the addition of 3 to 4 wt% nanosolica actually decreased the
compressive strength by 3 and 31%, respectively. Furthermore, the flexural strength
increased with the increase in the concentration of nanosica by 2 wt% but continued to
decrease with the addition of 3 and 4 wt% nanosilica. Flexural strength increased by about
82% with 2 wt% nanosilica.
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Figure 7. Compressive strength and flexural strength of geopolymer with some silica content.

The result indicates that flexural strength follows the same trend as the compressive
strength, and it was confirmed by other studies that the addition of nanoparticles increases
the strength of the geopolymer cement paste [26,27]. The addition of 3 wt% nanosilica
particles began to affect the compressive and flexural strength of the geopolymer. The
compressive strength at 28 days of 3 and 4 wt% of the nanosilica was reduced to 25.50 and
18.16 MPa respectively, while the corresponding flexural strength fell to 1.07 and 0.45 MPa
respectively.

The geopolymer paste’s compressive strength and flexural strength increased signifi-
cantly due to the increase in the reaction product of the geopolymer matrix [26,28]. In the
presence of a high alkaline environment and calcium from fly ash and additional nanosilica
can react and form CSH or CASH and NASH gels and cause higher strength geopoly-
mer pastes [29,30]. The results show that the geopolymer properties of high calcium fly
ash could be improved by adding 2 wt% by weight of nanosilica. The increased flexural
strength of the 2 wt% nanosilica was due to an improvement in the pore-filling mechanism.
When the nanosilica was uniformly dispersed, it filled the voids in the matrix, created a
denser microstructure [31,32]. This can be attributed to good interfacial adhesion leading
to resistance to bending and fracture. Nanosilica of 2 wt% can bridge microcracks and
increase crack growth resistance, leading to increased flexural strength.

The decrease in mechanical properties that occurred in the addition of 3 and 4 wt%
nanosilica was due to the addition of nanosilica caused an increase in the porosity of the
geopolymer paste, which contributed to the degradation of the mechanical characteristics.
Another cause is the agglomeration of the nanosilica in the geopolymer matrix, that created
microvoid, where is a weak zone in the material. Such agglomeration may result from
poor dispersion of the nanosilica at higher concentrations [33,34]. In general, the nanosilica
content in geopolymers has a major influence on the behavior of composites under bending.

Based on analysis of compressive strength and flexural strength, it can be concluded
that 2 wt% nanosilica was the optimum value to increase the geopolymer reaction and act as
a cavity-filler. The concentration addition of nanosilica by more than 2 wt% did not increase
compressive and flexural strength. This was because the addition of nanosilica caused
a poor dispersion between the nanosilica and the geopolymer matrix, and microvoid
formation occurred, which weakens the geopolymer. On the other hand, there was a
decrease in compressive and flexural strength with the addition of more than 2 wt% by
weight of nanosilica due to the accumulation of nanosilica, which caused the formation of
weak areas in the form of pores. After the curing process, these accumulated particles acted
as stress concentrators in the cement-containing matrix and caused cracking which was
also proved by SEM testing. Many studies have been conducted to determine the optimal
nanocomposite content in geopolymers, and it was found that excessive doses can lead to
a dramatic reduction in material characteristics [35,36].
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The relationship between the compressive, flexural and tensile strength of geopolymer
pastes is shown in Table 4. It shows that compressive strength was closely correlated with
flexural strength; the higher the compressive strength, the higher the flexural strength. The
addition of 2 wt% nanosilica resulted in a ratio of flexural to the compressive strength of
10%. Tensile strength and compressive strength are not well-correlated, and neither are the
tensile and flexural strength.

Table 4. The relation between compressive, flexural, and tensile strength of geopolymer paste.

Nanosilica
Content (wt%)

Strength of Geopolymer Paste (MPa) Ratio (%)

Compressive Flexural Tensile
Flexural to

Compressive
Strength

Tensile
Strength to

Compressive
Strength

Tensile to
Flexural
Strength

0 21.47 ± 1.12 1.44 ± 0.16 1.37 ± 0.01 7 6 95
2 26.26 ± 1.03 2.62 ± 0.16 0.95 ± 0.02 10 4 36
3 25.50 ± 1.33 1.07 ± 0.29 0.82 ± 0.06 4 3 76
4 18.16 ± 0.56 0.45 ± 0.04 0.77 ± 0.02 2 4 171

3.4. Fracture Toughness

The fracture toughness of the geopolymer paste as a function of nanosilica content
and controls is shown in Figure 8. Geopolymers containing nanosilica showed a significant
increase in fracture toughness. Nanosilica is believed to increase fracture toughness, the
energy from crack deflection at the particle and matrix interface, and debond the parti-
cles [37,38]. The addition of 2 wt% nanosilica to the geopolymer paste increased the fracture
toughness, namely 0.6 MPa.m1/2 for geopolymer control and 1.06 MPa.m1/2 for nanocom-
posites. The increased fracture toughness of the nano geopolymer composites over the
control geopolymer can be attributed to the good dispersion of the nanosilica through-
out the matrix and the ability to resist crack propagation, and increase fracture toughness.
Nanoparticles could improve the microstructure of geopolymer nanocomposites to enhance
their mechanical properties due to their reactivity.
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Figure 8. Fracture toughness and flexural strength of geopolymer pasta as a function of nanosil-
ica content.

The results of this fracture toughness were confirmed by SEM observations, as shown
in Figure 9a–h. It can be seen that the fracture surface of the control specimen shows a
significant difference from the specimen with 2 wt% nanosilica (Figure 9c,d). A larger
number of fly ash particles that partially reacted or did not react with pores or voids is
shown in Figure 9a,b, whereas the dense microstructure was observed in the geopolymer
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containing 2 wt% nanosilica (Figure 9b,c). Nanosilica contributed to the geopolymer
reaction and acted as a filler to improve the microstructure of the geopolymer with fewer
pores and cracks. This showed that the nanosilica particles were able to improve the
quality of the nanocomposite interface bonding, resulting in higher strength. In contrast,
the addition of 3–4 wt% nanosilica resulted in many branched cracks and cavities on
the surface (see Figure 9e,h). The matrix appeared less dense than the other mixtures,
suggesting that the rate of addition of these nanosilica was excessive.
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3.5. SEM Analysis

The SEM photo of the geopolymer paste is shown in Figure 9. The control paste
contained a less dense matrix with more unreacted and partially reacted fly ash particles in
the matrix (Figure 9a,b). For 2 wt% nanosilica (Figure 9c,d), fewer fly ash particles were
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observed, and the matrix appeared denser than the control paste. The use of nanosilica
in geopolymers with high calcium fly ash resulted in the formation of additional CSH
or CASH gel side by side with the NASH gel [39]. It was confirmed by the compressive
strength that led to an increase in strength. On the other hand, the addition of nanosilica
(Figure 9e,h) resulted in a large amount of observed nanosilica, and the matrix appeared
to be less dense than the other mixtures. This suggests that the amount of addition of
nanoparticles at a rate of 3–4 wt% was excessive.

Figure 10 shows the geopolymerization product in the form of C–S–H gel which
occurred from a mixture of 2 wt% nanosilica, which in turn interacted with fly ash, as
confirmed by the EDX results. Fly ash that is high in calcium, alumina, and silicates in the
mixture caused the formation of calcium alumina–silicate hydrate (C–A–S–H) gel [40,41].
Therefore, fly ash removed additional amounts of silica from the nanosilica and contributed
to the additional binder product, which influenced the regulation of geopolymer gel
behavior [42]. From Figure 10, we can observe the emergence of Mg2 + sourced from fly
ash which contributed to the formation of a new gel phase as Na–Al (Mg) –Si–H gel, which
was proven by EDX analysis. The micro-cracks observed in some SEM features may have
occurred during mechanical testing because the powders tested for SEM were taken from
the specimens after mechanical testing. Such micro-gaps could also result from internal
stress occurring between particles during microstructural development [43].
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Figure 11 illustrates a schematic model of geopolymer bonding as suggested by Davi-
dovits [44]. It can be seen that the presence of magnesium in the geopolymer chain provides
chemical stability or the so-called interatomic bonds in the matrix, due to the formation of
different links such as Si–O–Mg, Si–O–Al, Ca–O–Si, and Si–O–Si. Therefore, it is believed
that the intermolecular forces created in the system can increase mechanical strength.
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3.6. XRD Analysis

The XRD patterns of fly ash-based geopolymers are shown in Figure 12. From this
figure, it can be seen that the main crystal peak identified from the geopolymer paste is
the quartz (SiO2) with high intensity at 2θ = 27◦. Another crystal peak that emerged was
Mullite (Al6O13Si2) where these crystals were detected in a range of 2θ (17◦ and 65◦) [41].
Another pattern shown from the XRD test was the appearance of magnesium silicate
(MgSiO3) crystals phases at 2θ = 32◦ and 37◦. This phase arose due to the reaction of fly
ash containing Mg with nanosilica in the geopolymer paste.
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From XRD testing, it can be inferred that the raw material affected the formation of
geopolymerization. The decrease in the intension of fly ash and geopolymer paste seen
at 2θ = 27◦ was due to the influence of the alkaline solution [46]. Amorphous silica and
aluminosilicates in fly ash and nanosilica in an alkaline environment are required for the
formation of aluminosilicate gel which made the microstructure more homogeneous and
increased the strength of the resulting geopolymer cement [47].

3.7. FTIR Analysis

The FTIR spectra of the geopolymer paste with the addition of nanosilica are shown in
Figure 13. The band at 805 cm−1 is associated with the presence of stretching vibrations of
Si–O and Al–O [46,48]. This is also confirmed by the fly ash base material which contains
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silica and aluminate. The difference in functional groups formed in the geopolymerization
process is indicated by differences in absorption frequency. Bands at 940–1005 cm−1

represent asymmetric stretching of Si–O–Si and Al–O–Si vibrations formed during SiO2
dissolution and this indicates the appearance of C–S–H gel [49,50]. Vibration bands around
950–1200 cm−1 show the spectrum associated with T–O–Si (T: Si or Al) [51]. The bands
at 1600 cm−1 present the H–O–H group [45]. A wide stretch band at 2500–3600 cm−1

indicates O–H stretching [52]. The bands at 2300–2400 cm−1 appeared due to a mixture
of the activator solution and the binder during the geopolymerization process. This
occurred because excess sodium in the alkaline solution concentration was transferred to
the surface [53].
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Figure 13. FTIR spectra of the geopolymer paste with various addition of nanosilica, (a) 0 wt%, (b) 2 wt%, (c) 3 wt%,
(d) 4 wt%.

The conclusion can be drawn from the FTIR analysis that the geopolymer process
occurred both in the specimens without the addition and with the addition of nanosilica.
This is evidenced by the presence of the Si–O–Si and Al–O–Si functional groups. There were
differences in the spectrum of the specimens with the addition of nanosilica and without
the addition. This shows that the nanosilica is influential in forming other functional
groups which increase the mechanical strength. Although the addition of 4 wt% nanosilica
decreased the compressive strength, this could not be confirmed clearly by FTIR.

4. Conclusions

The mechanical and microstructural properties of physically processed nanosilica-
based geopolymer pastes have been investigated experimentally in this study. According to
the results, nanosilica influences mechanical strength, fracture toughness, and microstruc-
ture. It was found that the tensile strength showed a reduction after nanosilica addition
where the tensile strength decreased by 31%. However, compressive strength, flexural
strength, and fracture toughness were improved in the presence of nanosilica, confirming
that they can be used as a reinforcing material.

The compressive strength increased by up to 22% at 2 wt% of nanosilica and continued
to decrease with the addition of 3 and 4 wt% nanosilica. The same trend was confirmed
in flexural strength and fracture toughness which each increased by 82%. The addition
of 2 wt% of nanosilica made the material more ductile by 2.52 times. This indicates that
nanosilica is suitable for use as a material in geopolymer cement because of its ability
to inhibit the propagation crack and the possibility of structural collapse that occurred
unsuddenly.

Microscopy images of the geopolymer cement paste showed good nanosilica disper-
sion in the proportion of 2 wt% with less pore and matrix density. EDX analysis showed
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the emergence of phase gels C–S–H, A–S–H, and Na–Al (Mg) –Si–H which leads to an
increase in the mechanical properties of the geopolymer product. XRD results showed
that nanosilica affected the formation of geopolymerization. Aluminosilicate gel made the
microstructure more homogeneous and increased the strength of the geopolymer cement
paste. We conclude that nanosilica from rice husk ash is suitable for use as an alternative
source of cementitious material in cementitious geopolymers.
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