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A novel and robust method 
for counting components 
within bio‑molecular complexes 
using fluorescence microscopy 
and statistical modelling
Sophia F. Mersmann1, Emma Johns2, Tracer Yong2, Will A. McEwan3, Leo C. James4, 
Edward A. K. Cohen1* & Joe Grove2,5*

Cellular biology occurs through myriad interactions between diverse molecular components, many of 
which assemble in to specific complexes. Various techniques can provide a qualitative survey of which 
components are found in a given complex. However, quantitative analysis of the absolute number of 
molecules within a complex (known as stoichiometry) remains challenging. Here we provide a novel 
method that combines fluorescence microscopy and statistical modelling to derive accurate molecular 
counts. We have devised a system in which batches of a given biomolecule are differentially labelled 
with spectrally distinct fluorescent dyes (label A or B), and mixed such that B-labelled molecules 
are vastly outnumbered by those with label A. Complexes, containing this component, are then 
simply scored as either being positive or negative for label B. The frequency of positive complexes is 
directly related to the stoichiometry of interaction and molecular counts can be inferred by statistical 
modelling. We demonstrate this method using complexes of Adenovirus particles and monoclonal 
antibodies, achieving counts that are in excellent agreement with previous estimates. Beyond 
virology, this approach is readily transferable to other experimental systems and, therefore, provides 
a powerful tool for quantitative molecular biology.

All cellular processes are driven by coordinated networks of dynamically interacting molecular partners. To 
successfully function, these components typically need to be assembled into specific complexes or clusters. For 
example, receptor signalling generally requires the co-location of various sensory, regulatory and stimulatory 
partners; the precise make-up of these assemblies can tune the nature of the signal and resultant physiological 
output. Molecular cell biology research has, thus far, largely focused on determining the identity of the compo-
nents found in a given complex. However, it is becoming clear that the quantity of any given component is also 
vitally important. Quantifying the number of molecules, or stoichiometry, within an assembly can be used to 
understand its ultrastructure and, ultimately, to create complete models of entire macromolecular assemblies, 
as has been demonstrated for HIV capsids and the neurological synapse1,2.

There are various approaches to investigate the number of molecules within a given complex; for example 
calibrated biochemical analysis or cryo-electron microscopy (cryo-EM). However, such methods pose practical 
and/or technological barriers and, by their very nature, obscure heterogeneity within the sample. Single molecule 
localisation microscopy (SMLM) modalities, such as STORM and PALM, are potentially powerful techniques 
for counting3–8. Nonetheless, these approaches typically require detailed a priori knowledge of the experimental 
system (for instance, a thorough evaluation of the ‘blinking’ characteristics of the fluorophores9) and/or a well 
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understood reference sample with which to calibrate the measurement8,10. These steps need to be performed 
independently for each different experimental model and microscope set up; this creates a high barrier to imple-
mentation and can make these methods vulnerable to experimental variation and artefacts.

Here we outline an alternative, and potentially complementary, approach that combines (non-SMLM) fluo-
rescent microscopy and statistical modelling to extract estimates of molecular numbers within a complex. The 
method requires differential binary labelling of a constituent (i.e. separate batches of a protein of interest are 
labelled with fluorescent dye A or B); by appropriate mixing of the differentially labelled batches, assembled 
molecular complexes can be simply scored as being positive or negative for a given label. The frequency of posi-
tive complexes is then analysed by statistical modelling to extract estimates of stoichiometry. This approach is 
simple and requires minimal calibration or a priori understanding of the experimental system.

We demonstrate the feasibility and accuracy of this approach by studying the stoichiometry of virus-antibody 
complexes. Adenovirus (AdV) is a non-enveloped DNA virus; its genome is enclosed within a proteinous shell, 
called a capsid11. The major AdV capsid protein is hexon; this assembles into trimeric subunits, that are hexagonal 
in shape, which in turn arrange to form an icosahedron with 20 triangular faces (a molecular cartoon of the AdV 
particle is provided in Fig. 3A). The AdV particle has 12 vertices, each of which are occupied by a pentameric 
subunit (formed of the penton base protein) and a receptor binding ‘spike’ (formed of the fibre protein).

Antibodies (Ab) that bind sites such as the spike can directly neutralise AdV by blocking receptor interactions, 
therefore preventing the virus particle from entering the cell. However, antibodies targeting the hexon protein 
(which makes up the majority of the capsid) do not necessarily interfere with the mechanics of virus entry12,13. 
Nonetheless, anti-hexon antibodies can prevent virus infection by recruiting the intracellular antibody-sensor 
TRIM21, which targets the virus for degradation and activates cell-intrinsic immune responses14,15. Anti-hexon 
monoclonal antibody 9C12 inhibits AdV infection via this mechanism and is used as a prototypical system to 
investigate TRIM21. The stoichiometries of antibody and TRIM21 recruitment to incoming virus particles remain 
unclear and are likely to be a determinant of the resulting cellular response.

Previous studies, using alternative techniques, have provided estimates of the stoichiometry of AdV-9C12 
complexes. Each AdV particle possesses 720 identical hexon proteins, each of these represents a potential bind-
ing site for 9C12. However, the hexon subunits are assembled as trimers, and are arranged in a specific geometry 
(as described above). Moreover, antibodies are bivalent, therefore each 9C12 molecule has two hexon binding 
pockets. Consequently, it is highly unlikely that each hexon molecule will be occupied by a single 9C12 mol-
ecule (i.e. 720 antibodies per virus particle). Analysis by cryo-EM, immuno-gold EM staining and calibrated 
fluorescence measurements suggest a true maximum stoichiometry of 100-200 antibodies per particle16,17; this 
maximum is likely determined by the limits to antibody binding and packing enforced by the geometry of the 
particle. We have applied our counting method to the AdV-9C12 complex and generated estimates that are in 
good agreement with these previous studies, therefore validating our approach.

System and methods
Strategy.  We used differential binary labelling and statistical modelling to extract estimates of stoichiom-
etry, our strategy is outlined in Fig. 1; note that this approach can be generalised to apply to many other multi-
component systems (i.e. how many protein x are found in assembly y?). The hidden truth is the number of anti-
bodies bound to a virus particle; the Ab:virus stoichiometry is expected to increase with antibody concentration 
until it reaches a saturation point where the maximum number of Abs are bound (Fig. 1A.).

In our method (Fig. 1B), both components (virus and antibody) are fluorescently labelled, however, two 
separate batches of, the otherwise identical, antibody are given spectrally distinct dyes (resulting in AbA or AbB). 
Mixing of the differentially labelled antibody batches at appropriate proportions results in only a minority of virus 
particles receiving a particular fluorescent dye (B in the example cartoon). Therefore, when imaged, we detect 
three distinct fluorescent signals: each virus particle can be identified by its reference dye (green in the cartoon 
example), every virus particle has also received antibodies with dye A (magenta), however, very few particles 
are positive for dye B (blue) and can be scored as positive or negative in a binary fashion. The frequency of virus 
particles that are positive for AbB is a function of the A:B mixing proportion and the stoichiometry of Ab:virus 
interaction; this relationship between the data and the hidden truth can be modelled.

Consider a single virus to be capable of binding nsat antibodies at saturation. Under the assumption that anti-
bodies bind to the same virus independently from each other, K, the total number of (AbA and AbB) antibodies 
bound to a virus, can be modelled as a binomial random variable

where p is the probability of an antibody binding to a particular binding site of the virus. If nsat and p are known, 
then the expected number of antibodies bound to a single virus is simply E[K] = nsat · p. However, in most cases 
nsat is not known and p cannot be expressed easily since it depends not only on the antibody concentration used 
but also the composition of the virus particle and the geometry of interaction, which can be difficult to obtain. 
To extrapolate an antibody count it is, therefore, necessary to estimate both, nsat and p.

As described above, our experimental design utilizes antibody labelled with spectrally distinct dyes allowing 
binary scoring of individual virus particles as positive if they interact with at least one AbB molecule (Fig. 1). 
Here, we describe this state as being a Bernoulli random variable S that takes the value 1 if the virus is in the 
positive state, and 0 if it is in the negative state, i.e.

where q is the probability a virus interacts with at least one AbB molecule.

K ∼ Bin(nsat, p),

S ∼ Ber(q),
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Since q = P(S = 1) = 1− P(S = 0), we can derive a closed form for q by finding an expression for the 
probability of a virus not being complexed with any AbB P(S = 0) . To this end, we simply sum over all possible 
virus-antibody configurations under the constraint of all antibodies being AbA, i.e. a virus could bind zero, one, 
two, ... up to nsat AbA antibodies. The marginal probability of a virus being in a negative state, in respect to AbB, 
is thus given by

where P(S = 0|K = k) is the probability that given the virus binds to k antibodies, exactly zero of them are AbB. 
The conditional distribution of S given K = k is itself binomial, namely

where fl is the proportion of antibodies that are AbB. Therefore

and combining with the probability mass function of K, namely

gives

A closed form for q directly follows as

Note that here P(S = 0) is expressed in terms of p and nsat , and will hereafter be referred to as P(S = 0; θ) , where 
θ = (p, nsat).

P(S = 0) =

nsat
∑

k=0

P(S = 0|K = k)P(K = k),

S|K = k ∼ Bin(k, fl)
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k
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Figure 1.   Binary Labelling of AdV-antibody Complexes. (A) The ground truth: the number of antibody 
molecules (k) per virus particle increases with antibody concentration up to saturation (k = nsat) . (B) Extracting 
truth from data: AdV particles (labelled with a green fluorescent dye) are incubated with a defined mixture of 
two batches of antibody; one batch has received fluorescent label A (magenta), whilst the second has received 
label B (blue). When viewed by microscopy, every virus particle has received at least one molecule of AbA, 
whereas only a minority have received any AbB and can be scored in a binary fashion. Note, antibody molecules 
are not drawn to scale.
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Consider a single experiment (performed at a specific antibody concentration) to describe V viruses with 
states s = s1, ..., sV where V+ of these states are positive, i.e. V+ viruses have been observed to interact with at 
least one AbB molecule. Assuming independence among viruses, the likelihood of θ is then

where q is as given in (1). We are then interested in the posterior distribution of θ given by the central result of 
Bayesian statistics,

where π(θ) is a suitable prior for the unknown parameters θ.
In most applications, more than one experiment is performed; consider m experiments to be conducted at 

varying antibody concentrations c1, ..., cm , producing m sets of virus state observations S = {s1, ..., sm} . Param-
eter inference using the described single-experiment model would entail building m independent models, each 
estimating pj and nsat,j for experiment j. While estimating concentration-specific antibody binding probabilities 
is desired, inferring multiple nsat values is unintuitive since nsat is fixed for a particular virus-antibody pair, i.e. 
nsat should be common to all experiments regardless of the antibody concentration used. It is, therefore, prefer-
able to develop a general model accounting for multiple experiments that estimates all p1, ..., pm simultaneously 
while yielding only a single nsat estimate.

Such a general model contains a single likelihood L (θ;S ) , where θ = (p1, ..., pm, nsat) . This can be expressed 
as

where Lj(θ j; sj) is the likelihood function for θ j = (pj , nsat) as defined in (2). Hence, m+ 1 unknown param-
eters are estimated; a probability pj specific to each concentration cj for j = 1, ...,m , and crucially a single nsat 
shared over all experiments. To sample from the posterior distributions Markov Chain Monte Carlo (MCMC) 
is used, specifically the Metropolis-Hasting algorithm using PyMC18. No prior knowledge is incorporated by 
imposing a beta distribution Beta(1,1) on all pj , j = 1, ...,m , and a uniform distribution with a sufficiently large 
upper bound, Uniform(0,1000), on nsat . The convergence of MCMC is checked by visual inspection of trace and 
autocorrelation plots for each parameter. The statistical models used in our analysis are available here: https://​
github.​com/​sophi​amers​mann/​molec​ular-​count​ing, the raw data used for molecular counting can be found here: 
10.​5281/​zenodo.​39551​42.

Model verification via simulation.  The proposed method makes use of experimental parameters includ-
ing the proportion of AbB molecules ( fl ) and the number of viruses sampled (V). Formally, these are not required 
to comply with specific bounds. However, certain configurations of an experimental setup are not expected to 
yield data that lead to a sensible model. Using only ’B’ labelled antibodies (AbB) in an experiment (i.e. fl = 1), for 
example, would result in a data set with low information content. To explore how different experimental design 
choices impact the model’s ability to reliably estimate parameters, we analysed simulated data that assumed a 
range of possible experimental settings.

We simulated a single experiment at a time and, for the purposes of simulation, assumed the number of anti-
bodies bound at saturation to be known. For this we used an upper limit estimate of AdV-9C12 stoichiometry 
that we previously derived from an alternative method, nsat = 20516. In each simulation, the binding probability 
p of an antibody is thus the only parameter estimated. We considered a range of possible experimental settings 
by varying the total number of viruses sampled in an experiment (V=100−4000) and the proportion of AbB 
molecules ( fl=0.01−0.9). For an assumed true antibody binding probability p ∈ [0.1, 0.99] , data is simulated by 
drawing V virus states from S ∼ Ber(q) with q as described in (1). The antibody binding probability was then 
blindly estimated using MCMC and convergence checked using the Gelman-Rubin statistic19.

A total of 1331 simulations were carried out that assess the model’s ability to reliably estimate p in various 
experimental settings. As expected, high proportions of AbB molecules produced data of low information content, 
reflected in the model’s inability to accurately estimate p, even if the number of viruses used in an experiment 
was high (Fig. 2A). By contrast, if fl is less than or equal to 0.1, p was estimated with low bias and low variance 
(Fig. 2A). Simulations also suggested that for low fl , as a rule of thumb, at least 500 viruses per experiment 
should be sampled (Fig. 2B,C). However, if the proportion of AbB molecules is 0.1 (or higher), then the proposed 
model failed to produce a reasonable estimate of p for most underlying true values; higher number of viruses 
seemed to compensate this effect to some extent (Fig. 2D). In summary, these simulations put empirical bounds 
on experimental parameters and show that, if compliant, the method yields sensible estimates. Notably, we also 
ran simulations in which nsat was a free parameter (as opposed to being given a large upper bound), however 
these calculations proved intractable with MCMC not reaching convergence within a practical amount of time. 
Therefore, it is recommended that nsat be given an arbitrarily large upper bound based on an understanding of a 
given biomolecular assembly. For example the value chosen in our simulations (1000) is >4-fold higher than our 
simulated ground truth (205) and above the theoretical upper limit of our biolgical system (AdV has a maximum 
of 720 9C12 binding sites per particle).

(2)
L (θ; s) = P(s|θ) =

V
∏

i=1

P(S = si; θ)

=V+ · q+ (V − V+) · (1− q),

π(θ |s) ∝ L (θ; s) · π(θ),

L (θ;S ) =

m
∏

j=1

Lj(θ j; sj)

https://github.com/sophiamersmann/molecular-counting
https://github.com/sophiamersmann/molecular-counting
https://zenodo.org/record/3955142
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Figure 2.   Model verification via simulation. Bias and standard deviation landscapes of the posterior 
distributions upon increasing antibody binding probabilities, estimated from simulations to explore a range 
of experimental settings. Here, bias is the mean of the posterior distribution minus the true probability, 
while standard deviation refers to the standard deviation of the posterior distribution. (A) Bias and standard 
deviation as a function of the true binding probability, p, and the proportion of AbB molecules included, fl . The 
number of viruses used in an experiment, V, is fixed at 4000. (B–D) For a fixed value of fl (0.001, 0.01, and 0.1, 
respectively), bias and standard deviation are shown as a function of p and V. In each case nsat=205; this is a 
reasonable upper limit for AdV-9C12 stoichiometry based on previous estimates.
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Implementation
Experimental setup.  Successful implementation of our strategy requires sensitive and unambiguous 
measurements of individual virus-antibody complexes. We achieved this by immobilising AdV particles onto 
coverslips for analysis by total internal reflection fluorescence microscopy (TIRF-M; a detailed description of 
experimental methodology and technical notes are provided in the supplementary information). Prior to immo-
bilisation, purified AdV particles were directly labelled with Alexa Fluor 488, this provided a reference label by 
which AdV particles could be unambiguously identified. When observed by TIRF-M (Fig. 3Bi) AdV488 appear 
as monodisperse diffraction limited spots (the particle being ∼180 nm in diameter; Fig.  3A). To confirm a 
monodisperse population we used SRRF analysis (super-resolution by radial fluctuations20); for each spot we 
resolved a single maxima of fluorescence that was ∼200 nm in diameter (Fig. 3Bii and iii), consistent with the 
ultrastructure of AdV particles (Fig. 3A).

Immobilised AdV particles were incubated with monoclonal antibody 9C12 conjugated to Alexa Fluor 647 
dye (9C12647), and imaged by TIRF-M. Each AdV particle was positive for antibody, indicating the assembly 
of virus-antibody complexes (Fig. 3C). Moreover, individual AdV-9C12647 complexes could be analysed in a 
quantitative manner over a >100 fold range in antibody concentration (Fig. 3D). We automated this process to 
allow measurements of whole populations of virus particles at varying concentrations of antibody (Fig. 3E & F). 
9C12647 signal intensity was proportional to antibody concentration and reached a plateau at high values; this 
indicates increasing virus-antibody stoichiometries up to a saturation point at which maximum antibody bind-
ing is achieved (as outlined in Fig. 1A). Moreover, the populations of virus particles were quite homogenous in 
9C12 signal; this suggests a relative uniformity of assembly. In conclusion, we were able to quantitatively analyse 
the assembly of individual virus-antibody complexes.

To achieve differential labelling a second batch of 9C12 was directly conjugated with biotin; this served as 
the AbB batch to be mixed with the 9C12647 AbA batch (Fig. 1). It may be possible that conjugation with either 
biotin or Alexa Fluor 647 has unexpected detrimental effects on antibody binding; therefore, to have confidence 
in our binary labelling system we needed to demonstrate fair competition between our differentially labelled 
antibody batches. To test this we incubated immobilised AdV particles with a high concentration of antibody 
(20µg/ml) composed of different proportions of 9C12647 (AbA) or 9C12Biotin (AbB) (e.g. 0.75:0.25, 0.5:0.5). We 
then monitored the 9C12647 (AbA) fluorescence signal under each condition. As the proportion of 9C12647 (AbA) 
dropped we measured a stepwise reduction in fluorescence signal (Fig. 4A). If both batches of antibody possess 
equivalent binding to AdV we would expect a linear relationship between the proportion 9C12647 and fluorescent 
signal. Indeed, when normalised for units, we observed a near perfect linear relationship (Fig. 4B, slope = 0.99, 
R2=0.97); indicating a fair competition in binding between AbA and AbB.

As depicted in Fig. 1B, our approach requires detection of single antibody molecules of AbB within individual 
virus-antibody complexes. To explore this we incubated immobilised AdV particles with 5 µg/ml 9C12647 (AbA) 
spiked with 1% 9C12Biotin (AbB) (i.e. fl = 0.01). Molecules of 9C12Biotin were detected using streptavidin (an ultra-
high affinity biotin binding protein) conjugated to a quantum dot (QDot655). The photostability of quantum dots 
permits signal accumulation over prolonged exposure times21,22, therefore increasing the sensitivity of detection. 
Analysis by TIRF-M revealed that whilst every particle was positive for 9C12647 (AbA) only a subset possessed 
9C12Biotin-QDot655 (AbB) signal (Fig. 4C); this suggests a population of AdV particles receiving one, or very few, 
AbB molecules (as outline in Fig. 1B). Automated analysis revealed well-separated populations of AdV particles 
that were positive or negative for 9C12Biotin (AbB) (Fig. 4D). Note that all particles were positive for 9C12647 
(AbA). These data are consistent with the assembly of virus-antibody complexes in which the vast majority of 
antibody molecules are from batch A (9C12647), but a subset of complexes contain ∼ 1 molecules of batch B anti-
body (9C12Biotin); the proportion of AbB positive particles will serve as the output data for statistical modelling.

Notably, our method is dependent on a precisely known value for fl and, therefore, it is important to dem-
onstrate its robustness to experimental pipetting error when preparing the AbA/AbB mixture. Typically, these 
mixtures were prepared using a 10µ l pipette, which, based on the manufacturer’s data, can have a systematic 
error of ≤2.5% (i.e. consistently inaccurate by + or − 2.5%) and a random error of +/−1.2% (i.e. stochastic error 
upon each pipetting motion). We, therefore, simulated the effect of this error on the accuracy of our statistical 
approach (Supplementary Fig. 1). Here, our model performed well despite experimental error, giving bias and 
standard deviation values equivalent to simulations without error (Fig. 2). Therefore, our method is robust to 
the level of inaccuracy typically introduced through pipetting error.

Results
We proceeded with a series of experiments to generate data for statistical modelling and stoichiometric estimates. 
To achieve this we performed four independent overlapping titrations over a >100 fold range in antibody con-
centration (0.15–20µg/ml); this range covers the saturation point, identified in Fig. 3F, and lower antibody con-
centrations that are biologically relevant for 9C12-mediated neutralisation of AdV16. Guided by the simulations 
in Fig. 2, we explored a range of AbB proportions, from 0.007 to 0.07 (0.7–7% ), and, where possible, collected 
>500 particles per sample (the average number of particles collected was >1500). The proportion of positive 
particles was assessed for each sample, details of data analysis are provided in the supplementary information.

Supplementary Fig. 2 provides representative data: scatter plots display AbA (9C12647) and AbB (9C12Biotin) 
intensities for control samples (treated with unmixed AbB or AbA) and four representative test samples incubated 
with a titration of 9C12, containing 0.7% AbB ( fl=0.007). Bar charts provide summary statistics for each chan-
nel: the particles have uniform AdV488 reference signal, whereas the AbA fluorescence decreases with antibody 
concentration; likewise, the proportion of AbB positive particles decreases with concentration. These data are 
consistent with the expected concentration-dependent stepwise reduction in virus-antibody stoichiometry.
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The four experiments generated 24 sets of binary scores (Supplementary Table 1), which were inputted to 
our statistical model, as outlined in the methods. This generated posterior distributions of p (probability of an 

Figure 3.   Experimental measurements of AdV-antibody complexes. (A) A molecular cartoon of an AdV 
particle; Ab 9C12 targets the hexon protein. (B) Immobilised AdV488 particles were imaged by TIRF-M (i) 
and SRRF (ii), iii provides an enlarged image of a super-resolved particle. Scale bars 1 µm (i & ii) and 200nm 
(iii). (C) A representative field of AdV488 particles incubated with 1 µg/ml 9C12647, the merge image displays 
an overlay of both channels. Scale bar 5 µ m. (D) 9C12647 fluorescent signals associated with AdV particles 
incubated with 30, 0.3 and 0 µg/ml antibody. (E) Fluorescent measurements of populations of AdV particles. (F) 
Mean 9C12647 signals upon increasing concentration of antibody.
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antibody binding site being occupied) for each sample (Fig. 5A) and an estimated nsat of 133 molecules (maxi-
mum a posteriori (MAP) estimate; credible interval [119, 162]; Fig. 5B). Absolute antibody numbers for each 
sample can be derived by multiplying the MAP estimate of each posterior distribution (for p) by nsat (Fig. 5C). 
Figure 6A displays the mean number of bound antibodies at increasing 9C12 concentrations (derived from 
Fig. 5C); AdV-9C12 stoichiometries range from 29 to 115 across the titration of antibody. For any given sample, 
alongside the proportion of particles that are positive for AbB, the experimental setup also provides fluorescent 
intensity values of AbA in each AdV-Ab complex (Supplementary Fig. 2); this provides an internal reference 
for AdV-9C12 interaction, therefore, the stoichiometric estimates should correlate with their experimentally-
matched fluorescent intensity values. Figure 6B demonstrates a near-perfect linear correlation between stoichi-
ometry and fluorescence intensities for an example experiment; this would suggest that our statistical modelling 
faithfully reports the relationship between antibody concentration and AdV binding occupancy.

The stoichiometric estimates generated by our method are derived from an ensemble measurement and, 
therefore, represent the antibody interactions of the average virus particle; this obscures heterogeneity within the 
population. However, given the excellent agreement between the estimated antibody counts and AbA (9C12647) 

Figure 4.   Binary labelling of AdV-antibody complexes. (A) AdV particles were incubated with mixtures 
of mAb 9C12 conjugated to either Alexa Fluor 647 (AbA) or Biotin (AbB), to a final concentration of 20µg/
ml. The scatter plot displays AdV488 and AbA fluorescent signals for populations of AdV particles incubated 
with decreasing proportions of AbA. Data points are color-coded as stated in the legend. (B) The mean AbA 
(9C12647) signal has a near-perfect linear relationship to the proportion of AbA included in the antibody 
mixture, this indicates equivalent binding by AbA and AbB. The linear regression slope and goodness of fit (R2) 
are provided (C) AdV488 particles (green) were incubated with 5 µg/ml 9C12647 (AbA, magenta) spiked with 
1% (0.01) 9C12Biotin (AbB, blue); only a minority of particles received any 9C12Biotin. (D) Scatter plot displaying 
a population of AdV particles (labelled as in C), which can be scored as being positive or negative for AbB 
(9C12Biotin), as annotated on the plot.
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intensity values (Fig. 6B) we used the stoichiometric estimates to calibrate the AbA fluorescence signals, there-
fore allowing us to infer population heterogeneity. To achieve this, for any given sample we matched the median 
AbA fluorescence intensity to its associated stoichiometic estimate (generated by the model); extrapolating from 
this we then converted the AbA fluorescence values to inferred antibody counts for individual virus particles. 
Figure 6C provides histograms and frequency distributions of inferred antibody counts for a range of concen-
trations from a single experiment (as shown in Fig. 6B). Being slightly skewed to the right, the frequency data 
was best fitted using a log-normal distribution, this is particularly apparent at higher antibody concentrations. 
This would suggest that a significant proportion of virus particles are binding more antibodies than the average 
particle. However, no particles bound greater than 230 antibody molecules. We provide an interpretation of 
these observations in the discussion.

In summary, we have used statistical modelling to derive stoichiometric estimates of AdV-9C12 complexes. 
This suggests that the most probable antibody binding maximum is, on average, 133 molecules (95% CI 119-162). 
However, using stoichiometric estimates to calibrate fluorescent data revealed population heterogeneity with 
a small proportion of virus particles binding ∼200 antibody molecules. Notably, these values are in excellent 
agreement with previous estimates that we, and others, have derived using alternative methods16,17.

AdV + 9C12 is a well-understood model system and, therefore, is ideal to develop and validate our molecular 
counting method. However, the technical and analytical framework, outlined here, will be generally applicable 
to other molecular complexes. Achieving reliable estimates requires the appropriate choice of fl (the proportion 
of ’B’-labelled component); in the case of AdV + 9C12 this could be guided by previous estimates of the stoichi-
ometry at complete saturation (Fig. 2). For many bio-molecular assemblies nsat is poorly defined, or completely 
unknown, therefore to evaluate the utility of our method under such circumstances we calculated the Fisher 
information for theoretical complexes with nsat values ranging from 10-1000. This analysis is provided in Sup-
plementary Fig. 3 with data expressed as inverse Fisher information, where low values indicate optimal conditions 
under which reliable estimates can be achieved. As nsat increases there are fewer experimental conditions that 
reach optimum performance, nonetheless, low fl values are likely to give accurate molecular counts over a very 
broad range of nsat stoichiometries. To test this further, informed by the Fisher information analysis we picked a 
constant fl value of 0.01 and simulated experiments at nsat values of 10, 50 and 100 (analogous to the simulations 
in Fig. 2, where nsat=205). In these simulations our method performed well (i.e. low bias and standard deviation) 
across all nsat values, albeit with a necessity to sample greater numbers of virus-antibody complexes (V) at lower 
nsat values (Supplementary Fig. 4). This analysis suggests that our method is suitable for the quantification of 
bio-molecular assemblies with a wide range of stoichiometries.

Discussion
Various methods permit the investigation of molecular stoichiometries within biological assemblies but technical 
limitations often make it difficult to obtain reliable estimates. For example SMLM, by its very nature, identifies 
single molecules and, if properly calibrated, can deliver accurate stoichiometries; however, successful counting 
by SMLM requires a very detailed understanding of the photochemical behaviour of the chosen fluorescent dyes. 

Figure 5.   Posterior distributions and estimated parameters of AdV-9C12 interaction. Multiple titrations 
of AbA (mixed with fl=0.007-0.075 AbB) were performed to allow statistical modelling of AdV-9C12 
interaction stoichiometries. (A) Posteriors of antibody binding probabilities (p) for all measurements listed in 
Supplementary Table 1, grouped and color-coded by the proportion of AbB used in each experiment ( fl ). (B) 
Posterior distribution of nsat, the number of antibodies bound to a virus at saturation. The maximum a posteriori 
(MAP) estimate of nsat is 133 and lies within a 95% credible interval of 119 to 162. (C) Scatter plot displaying 
MAP estimates of all binding probabilities inferred from the posterior distributions shown in A, plotted against 
antibody concentration. The axis on the right additionally shows the expected number of bound antibodies (nsat 
* MAP of p).



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17286  | https://doi.org/10.1038/s41598-022-20506-y

www.nature.com/scientificreports/

Figure 6.   Inferring population heterogeneity. (A) Mean stoichiometric estimates at increasing concentrations 
of 9C12, error bars indicate standard error of the mean; data fitted with a binding curve, R2= 0.69 (Graphpad, 
Prism). (B) Stoichiometric estimates were compared to 9C12647 (AbA) fluorescent values from an individual 
experiment; data fitted with a linear regression, R2= 0.98 (Graphpad, Prism). (C) Stoichiometric estimates 
were used to calibrate fluorescent intensity values allowing inference of heterogeneity. Histograms display the 
frequency of inferred antibody counts as a proportion of total particles. The frequency data were fitted with a 
log-normal distribution, R2 values were all >0.99 (Graphpad, Prism).
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Here we outline a robust, and relatively easy, experimental framework for extracting accurate molecular counts 
using (non-SMLM) fluorescent microscopy and statistical modelling.

By creating a scheme in which complexes need only be qualitatively scored for a particular label, our method 
negates the necessity for carefully calibrated measurements and an a priori understanding of the system. The 
only requirement is that the chosen label is clearly discerned from background; this is easily achievable with 
bright/stable fluorescent dyes and relatively inexpensive cameras; in this case we used quantum dots for sensitive 
detection, but many standard fluorescent dyes should also suffice.

An obvious limitation is that our method relies on an ensemble measurement and obscures heterogeneity 
within the population of complexes. However, this information remains accessible via the A-label fluorescent 
signals measured from each complex. Consequently, the ensemble-based stoichiometric estimates of the average 
complex can be used to calibrate these fluorescent signals and infer approximate molecular counts for individual 
complexes, therefore, restoring heterogeneity.

We were able to make robust measurements of AdV-9C12 interactions by fluorescence microscopy and suc-
cessfully implemented the differential labelling strategy. We performed multiple independent measurements at 
various antibody concentrations to derive molecular counts for AdV-9C12 complexes. Our analysis estimated 
that the average AdV particle interacts with a maximum of 133 9C12 antibody molecules. Moreover, through 
examination of population heterogeneity we revealed that a small proportion of AdV particles may bind up to 
230 antibody molecules.

These data can be reconciled with a molecular model of AdV-9C12 complexes. AdV particles possess 720 
identical hexon subunits, each providing a potential binding site for 9C12, however, previous estimates suggest 
an absolute maximum of 240 antibody molecules per virion. This would suggest that particle geometry places 
packing constraints on the arrangement of antibody molecules. Cryo-EM analyses indicates a complex and 
heterogeneous interaction network in which particle geometry creates potential antibody clashes and, therefore, 
prevents binding to every site simultaneously17. Whilst there are consistently five 9C12 molecules at each of the 
twelve vertices of the AdV particle, additional antibody interactions occur through heterogeneous packing across 
the surface; the pattern of which is likely dictated by the random order in which binding sites become occupied on 
any given virus particle. Consequently, with optimal antibody packing there is likely to be an absolute maximum 
binding occupancy of ∼240 molecules. Our data indicate that the average particle binds fewer molecules (133) 
than the threshold dictated by purely geometric limitations. This would suggest that the majority of particles do 
not achieve optimal antibody packing and saturate at lower occupancies. This model also offers explanation to our 
observation that no particles bind greater than ∼230 molecules (Fig. 6C). Alternatively, the observed occupancy 
may be influenced by the inability of antibodies to access binding sites that are closely apposed to the coverslip 
surface; although, the penton fibre ’spikes’ of Adenovirus particles are likely to provide sufficient elevation from 
the coverslip to permit antibody binding. Nonetheless, binding site accessibility needs to be considered when 
applying our method to other systems.

These interpretations expose a potential flaw in our approach. Our modelling strategy assumes that compo-
nents bind independently, but in this test case the geometry of AdV particles create clashes between adjacent 
9C12 molecules such that complete saturation is not possible. Consequently, antibody binding events can be 
influenced by prior antibody interactions and, therefore, are not independent. Although this may have intro-
duced inaccuracies in our estimates, the molecular counts derived from our approach are in good agreement 
with previous values. Moreover, we maintain that the assumption of independent binding is appropriate for a 
generalisable method that can be applied to other biological assemblies.

Calculating the Fisher information of our method demonstrates that it is capable of reliable quantification 
over a broad range of nsat stoichiometries (we tested 10-1000; Supplementary Fig. 3), and this was supported by 
further simulated experiments at low nsat values (Supplementary Fig. 4). These analyses can be used to guide 
experiments with other biological systems. Moreover, in the absence of any a priori knowledge on maximum 
stoichiometries we recommend using low fl (i.e. very little ’B’-labelled component), which will perform well 
across a wide range of nsat . Given this, we expect our method to have broad utility. For example, within virology, 
investigating the molecular composition and antibody-mediated neutralisation of enveloped viruses such as 
human immunodeficiency virus, hepatitis C virus and SARS-coronavirus-2 (probable nsat values<50). Beyond 
the confines of virology, our method could be applied to a variety of other biological assemblies of various scales, 
for example: bacteria; purified cellular organelles; cellular vesicles, such as exosomes; and supramolecular com-
plexes such as ribosomes or inflammasomes. Moreover, we expect our method could be integrated with other 
complementary methods to enhance quantitative analysis; for example it may provide a means of internally 
calibrating SMLM-based counting schemes.

In conclusion, we have developed a novel and robust method for counting components within biomolecular 
complexes. We demonstrate that this approach can provide accurate counts and could be applied in a wide range 
of other biological systems.
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