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Abstract
Motivation: Combining single-cell sequencing with ligand–receptor (LR) analysis paves the way for the characterization of cell communication 
events in complex tissues. In particular, directed weighted graphs naturally represent cell–cell communication events. However, current compu-
tational methods cannot yet analyze sample-specific cell–cell communication events, as measured in single-cell data produced in large patient 
cohorts. Cohort-based cell–cell communication analysis presents many challenges, such as the nonlinear nature of cell–cell communication and 
the high variability given by the patient-specific single-cell RNAseq datasets.
Results: Here, we present scACCorDiON (single-cell Analysis of Cell–Cell Communication in Disease clusters using Optimal transport in 
Directed Networks), an optimal transport algorithm exploring node distances on the Markov Chain as the ground metric between directed 
weighted graphs. Benchmarking indicates that scACCorDiON performs a better clustering of samples according to their disease status than 
competing methods that use undirected graphs. We provide a case study of pancreas adenocarcinoma, where scACCorDion detects a sub- 
cluster of disease samples associated with changes in the tumor microenvironment. Our study case corroborates that clusters provide a robust 
and explainable representation of cell–cell communication events and that the expression of detected LR pairs is predictive of pancreatic can-
cer survival.
Availability and implementation: The code of scACCorDiON is available at https://scaccordion.readthedocs.io/en/latest/. and https://doi.org/ 
10.5281/zenodo.15267648. The survival analysis package can be found at https://github.com/CostaLab/scACCorDiON.su.

1 Introduction
Single-cell RNA sequencing (scRNA-seq) enables the charac-
terization of cellular processes at unprecedented resolution. 
Specifically, it allows the study of cell–cell communication 
(CCC) via the expression patterns of cognate ligand–receptor 
(LR) pairs across cells detected via scRNA-seq (Armingol 
et al. 2021, Dimitrov et al. 2022). As sequencing costs have 
been reduced by the rapid improvement of single-cell se-
quencing protocols, it has become possible to create scRNA- 
seq datasets for large patient cohorts (CZI Single-Cell 
Biology et al. 2023). Such datasets, which contain patients 
under different conditions, have the potential to improve un-
derstanding of how cell communication changes in various 
biological settings. However, for a sample-level analysis of 
such large-scale scRNA-seq patient data, efficient computa-
tional approaches are needed (Flores et al. 2023, Joodaki 
et al. 2024).

There are now hundreds of computational methods for 
LR-based communication analysis (Armingol et al. 2024). 
These tools mainly focus on inferring LR pairs within a single 
biological condition. A yet poorly studied aspect is to charac-
terize changes in cell communication in multiple biological 
conditions, such as disease versus control (Nagai et al. 2021) 

or over cell differentiation (Li et al. 2022). To this date, only 
a few computational methods for CCC—Tensor2Cell and 
MultiNicheNet—have considered data from multiple samples 
(patients). MultiNicheNet (Browaeys et al. 2023) builds 
upon NicheNet (Browaeys et al. 2020), considering both 
extra-cellular and intra-cellular signaling in CCC. To con-
sider multiple samples, MultiNicheNet obtains pseudo-bulk 
representations, where cells are bulked for each cell type and 
sample, and uses a differential expression approach [edgeR, 
Robinson et al. (2010)] to perform a multiconditional differ-
ential communication analysis. However, MultiNicheNet is a 
supervised algorithm that requires the group of samples to be 
defined prior and thus does not allow for the identification of 
unknown groups of patients with distinct CCC programs. 
TensorCell2Cell (Armingol et al. 2022) uses tensor compo-
nent analysis to detect latent factors explaining changes in 
CCC associated with sample-level scRNA-seq data. The fac-
tors can detect patterns (CCC events) related to individual 
samples. Similar to MultiNicheNet, Tensor2Cell does not 
provide any approach for finding unknown groups of sam-
ples defined by distinct CCCs.

This work explores CCC across multiple patients using di-
rected weighted graph representations. In this representation, 
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cell types are nodes; directed edges represent a communica-
tion event connecting a source cell (expressing a ligand) to a 
target cell (expressing a cognate receptor) (Nagai et al. 2021). 
The combined expression of LR molecules represents the 
strength of these directed edges (or edge weight). Using a 
graph representation enables us to exploit a wide variety of 
graph algorithms, such as pagerank (Page et al. 1998), to de-
tect latent cell–cell communication events leading to fibrosis 
(Leimk€uhler et al. 2021, Jansen et al. 2022). Within the 
sample-level cell–cell communication context, a common 
challenge in the sample-level analysis is clustering the samples 
according to disease stages. When using a graph-based repre-
sentation, this corresponds to clustering a set of graphs 
according to their similarity, which is a computationally chal-
lenging task. This problem has previously been tackled with 
graph-based optimal transport (OT) approaches, which (im-
plicitly) utilize spectral properties of graphs (Maretic et al. 
2019) or node distances (Xu et al. 2019, Scholkemper et al. 
2024). However, these approaches are designed for undi-
rected graphs and would miss important information regard-
ing the directionality of LR interactions.

2 Approach
We propose scACCorDiON (single-cell Analysis of Cell–Cell 
Communication in Disease clusters using OT in directed 
Networks). scACCorDiON represents the CCC data of each 
sample as a directed weighted graph (DWG) and uses the 
Wasserstein distance (Bonneel et al. 2011) between CCC 
graphs to derive patient-patient distances (Fig. 1). For this, 
we assume that the probability masses to be transported via 
OT correspond to the directed cell pair interaction strength 
(LR expression values). scACCorDiON adopts a balanced 
OT approach, i.e. it considers that the “mass” of cell–cell 
communication signals is conserved between patients and 
that the same amount of cell–cell communication is present 
in both normal and disease samples. To model this, we lift 
each CCC graph to a line graph, where a node represents a 
directed interaction, and its mass (or weight) represents the 
LR expression values of this interaction. scACCorDiON enc-
odes interaction information in two ways. First, it uses a cost 
function for OT, the Hitting Time Distance (HTD) (Boyd 
et al. 2021), a distance obtained by considering the directed 
graph as a Markov chain. Moreover, by working in a line 

graph, the masses to be transported are related to a directed 
cell pair interaction.

We use two clustering approaches with the estimated dis-
tance matrices: a k-medoid algorithm (Lloyd 1982) and a 
barycenter algorithm. For the latter, we take advantage of the 
fact that OT enables us to estimate the barycenters of a set of 
CCC networks (Cuturi and Doucet 2014). These barycenters 
can be used as “centroid” values within an expectation- 
maximization clustering algorithm denoted k-barycenters. 
Also, barycenters can be used together with transport maps 
for interpretation, i.e. delineating cell communication events 
that change between groups of samples.

We benchmarked scACCorDiON with the undirected 
graph OT (GOT) (Maretic et al. 2019) and baseline 
approaches: tabular representation of the data ignoring 
graph structures, and a simple OT approach exploring the 
correlation of nodes in undirected CCC graphs. The bench-
mark tested how well methods can recover known disease 
labels of samples across seven large scRNA-seq cohorts with 
up to 126 samples and up to a million cells. MultiNicheNet 
or Tensor2Cell could not be evaluated as neither method 
allowed the unsupervised analysis of samples. We assess how 
well clustering methods can recover the known disease labels 
of the samples.

Afterward, we explore the clustering results and transport 
maps to characterize CCC events on a pancreas adenocarci-
noma scRNA-seq data (Peng et al. 2019). scACCorDiON can 
detect novel uncharacterized sub-groups of disease samples 
and related LR pairs. Moreover, we use external data from 
the The Cancer Genome Atlas (TCGA), to show that sub- 
cluster specific LR interactions can predict pancreas adeno-
carcinoma patients’ survival, supporting the translational use 
of scACCorDiON. Finally, we contrasted results from 
scACCorDiON latent spaces derived from Tensor-cell2cell, 
showing both approaches’ complementarity.

3 Materials and methods
3.1 scACCorDiON
scACCorDiON is an OT-based framework for directed 
weighted graph metric learning and clustering. The input to 
scACCorDiON is a set of directed weighted CCC graph 
fG1; . . .;Gpg containing p graphs. We assume that each of 
these p graphs has been obtained from a LR analysis method 
(Nagai et al. 2021, 2024), applied to a scRNA-seq dataset 

Figure 1. Overview of scACCorDiON: scACCorDiON receives a scRNA-seq cohort experiment as input. In the first step (1 and 2), LR analysis is 
performed, and the cell–cell communication graphs for every sample (patient) are recovered. Next (step 3), we use graph-based optimal transport, which 
considers directions and weights of cell–cell interactions, to measure the distance between all pairs of samples. In the third step (4 and 5), this distance 
is used as input for k-medoids or k-barycenter algorithms that find groups of CCC graphs and produce representative CCC graphs for different patient 
conditions, and for dimension reduction algorithms to create low-dimensional data visualizations. In summary, scACCorDiON enables the analysis of 
patient cohorts at a CCC graph level and allows for a quantitative comparison of the changes in CCC graphs using optimal transport. Moreover, 
Barycenters/Medoids are a proxy to facilitate the explainability of the produced results.
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containing multiple samples (e.g. a cohort). The CCC graph 
of sample k is then defined as Gk ¼ ðVk;Ek;wkÞ, where a 
node v 2 Vk represents a cell type, and a directed edge e 2 Ek 

connects a pair of cell types when these cells are predicted to 
be communicating through a ligand (source cell) and receptor 
(target cell) pair. The weights of the edges wk are related to 
the amount of communication between the source and target 
cell, e.g. wkðeÞ is the sum of all LR expressions (LRScore). 
Note that in our problem setup, nodes can be identified 
across all graphs for a given scRNA-seq dataset, i.e. all sam-
ples k have the same cell types and thus the same node- 
set Vk ¼ V.

3.1.1 Metric learning from directed weighted graphs
scACCorDiON uses OT to obtain a metric between patients’ 
CCC graphs (Bonneel et al. 2011). More specifically, we hy-
pothesize that the edge weights of each graph are a specific 
realization of a signal supported on the same underlying 
graph structure, i.e. every CCC graph has distinct signals re-
lated to the LR expression between cell pairs, but they all 
share the same topology. Therefore, the directed weighted 
graph OT (DW-OT) problem we consider here consists of find-
ing an OT map between the CCC graph edge signals with re-
spect to an edge-to-edge cost (distance) matrix C. For this, we 
proceed in two steps. First, we define a shared topology line 
graph, which only considers directed edges present in at least 
one sample and that weights these edges by their frequency in 
the data (Supplementary Fig. S1). This graph is used to com-
pute the OT cost function using an approach based on 
Markov chain theory (Boyd et al. 2021). Second, we treat 
each sample’s edge weights as a signal distribution (LR ex-
pression) on this line graph and use OT to transport two such 
distributions.

3.2 Shared topology graph (STG)
We build a directed line graph L¼ ðV;E;WÞ, whose vertex 
set V contains each possible edge ðj;kÞ contained in one of 
the sample graphs Gi. The edge set E of the linegraph is de-
fined as follows: an edge e0 ¼ ðu0;v0Þ 2 E exists if the target of 
u0 is the source of v0, i.e. the target node of edge u0 in the orig-
inal graph, is the source node of edge v0 in the original graph. 
An schematic illustrating the STG construction is available in 
Supplementary Fig. S1. Note that this line graph’s structure 
essentially encodes the union of interactions of all CCC 
graphs. We denote this graph as the “shared topology graph” 
(STG). Finally, we defined the weight wu0v0 of edge ðu0;v0Þ as 
the proportion of graphs containing both edges u0 to v0. This 
makes transport of masses between common edges (in the 
original graphs) more likely than transport between rare 
edges (in the original graphs). As our line graph can have 
unconnected components, we add to the STG a low-rank reg-
ularization term, as popularized within the context of the 
well-known PageRank algorithm (Page et al. 1998, Gleich 
2015), to obtain a well-posed problem. Specifically, this guar-
antees the global reachability of all nodes in the STG, which 
is required to compute the distance between nodes in a graph. 
See Supplementary Fig. S2 for an example of an evaluation of 
the effect of this parameter. Using the STG, we can represent 
each sample as a signal distribution on the nodes of the STG, 
which we can compare via OT. However, for the computa-
tion of OT, we also need to define a distance matrix for the 
nodes on the STG, which specifies the cost of moving a signal 
from one node to another node in the STG.

3.3 Hitting time distance (HTD)
Here, we consider the Hitting Time Distance [HTD (Boyd 
et al. 2021)], which is a metric that can be applied to directed 
weighted graphs. To derive the HTD, we consider a discrete- 
time Markov chain ðXtÞt≥0 defined over the vertices V ¼
f1; . . .;Ng of a strongly connected graph. We assume the 
chain has a starting distribution λ and an irreducible transi-
tion matrix P¼D− 1A, where A is the adjacency matrix of 
the shared topology graph and D¼ diagðA1Þ. The Markov 
chain can then be described according to the state transition 
probabilities: 

PðX0 ¼ iÞ ¼ λi and PðXtþ1 ¼ jjXt ¼ iÞ ¼ Pi;j: (1) 

Let π 2 RN be the invariant distribution of the chain, i.e. 
πP¼ π. For a starting point distributed according to λ, the 
hitting time of a vertex i 2 V is the random variable 
τi ¼ infft≥1 : Xt ¼ ig. Following Boyd et al. (2021), we de-
fine the probability that starting in a node i, the hitting time 
of j is less than the time it takes to return back to i by 
Qi;j :¼ Pðτj≤ τijX0 ¼ iÞ. Based on the matrix Q¼ ½Qi;j� a nor-
malized hitting time matrix T can be defined in terms of 
its entries 

Ti;j ¼

π1=2
i

π1=2
j

Qi;j i 6¼ j;

1 otherwise;

8
>><

>>:

(2) 

If P is an irreducible stochastic matrix, i.e. the underlying 
graph is strongly connected, the Hitting Time Distance 
Matrix can be obtained by: 

CHTDði; jÞ ¼ − logðTi;jÞ (3) 

This distance can now be used as a cost matrix C for an OT 
problem that considers the movement of signal masses on the 
STG for different samples.

3.4 Computing a graph-based CCC distance
To set up our OT-based distance, let us collect the edge 
weights of each CCC graph in a matrix P 2 Rp×E, where E is 
the size of the union of the edge sets of all graphs (samples). 
Stated differently, E corresponds to the number of nodes in 
the line graph. Hence, the columns of P are indexed by the 
(directed) edges and rows by the samples/graphs, i.e. the row 
Pk;: describes the edge-weights wk of the kth graph Gk, which 
is appropriately zero-padded, in case Gk does not contain cer-
tain edges which are present in other graphs.

The optimal transport map C� 2 RE×E for two probability 
distributions defined on the nodes of the line graph as in-
duced by the two CCC graphs Gk and Gl can now be com-
puted as 

C� ¼ arg minC2S hC; CiF;

where S ¼ fCjC1 ¼ P:;k;C
T1 ¼ P:;l;Cij ≥0g;

(4) 

and the associated (induced) Wasserstein distance between 
the two CCC samples is: 
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dWðG
k;GlÞ ¼ min

C2S
hC; CiF ¼ hC

�; CiF (5) 

Remark. scACCorDiON uses a balanced optimal trans-
port, which assumes a mass conservation assumption. In our 
benchmarking, we also consider the unbalanced formulation 
described in the Supplementary Methods.

3.5 Clustering patient’s networks
scACCorDiON uses the metric dW [Equation (5)] to perform 
clustering of CCC graphs. One approach for this is a K- 
medoids partitioning algorithm (Rdusseeun and Kaufman 
1987, Schubert and Rousseeuw 2019, 2021), which only 
requires a distance matrix and detects samples (medoids) as 
representative of clusters. scACCorDiON leverages that we 
can also compute barycenters for distributions of (directed, 
weighted) graphs via the Wasserstein optimal transport 
framework (Cuturi and Doucet 2014).

3.5.1 K-barycenters clustering
A Wasserstein barycenter of a set of graphs G¼ fG1; . . .;Gpg

can be defined as: 

barycenterðGÞ ¼ arg min
μ

1
p

Xp

i¼1

dWðG
i; μðiÞÞ: (6) 

Time-efficient solutions to this problem can be obtained by 
using a dissimilarity-based loss function (Sinkhorn) of the op-
timal transport algorithm (Cuturi and Doucet 2014). In addi-
tion, we use barycenters to define an expectation- 
maximization-based clustering algorithm, where barycenters 
represent the “centroids” and we use the Wasserstein dis-
tance [Equation (5)] between graphs and barycenters. Given 
k as the number of desired clusters, Y be an indicator vari-
able, where yi 2 f1; . . .kg indicates the cluster of Gi, and 
fμ1; . . .;μkg indicates the set of barycenters, this leads to clus-
tering algorithm (Algorithm 1).To avoid local maxima due to 
the random initialization, we repeat the optimization process 
100 times and select the solution with the lowest average 
Wasserstein loss per cluster. Moreover, we use a seeding pro-
cess to pick the initial barycenters based on selecting CCC 
graphs that maximize the cluster-to-cluster distance as de-
scribed in Arthur et al. (2007).

3.6 Benchmarking
For benchmarking, we have collected seven publicly available 
disease scRNA-seq cohorts, from which samples were anno-
tated with their disease status. We obtained pre-processed, in-
tegrated, clustered, and annotated objects for all datasets 
from (CZI Cell Science Program et al. 2025). An exception is 
the pancreas adenocarcinoma datasets, which were pre- 
processed as described in Joodaki et al. (2024).

The LR inference was performed with CellPhoneDB 
(Efremova et al. 2020) implemented in the LIANA (Dimitrov 
et al. 2022) framework by only considering cells in a patient 
sample. The parameter related to the minimum expression 
proportion for the ligands/receptors is set to 
exp prop¼ 0:15, and highly significant interactions were 
considered P-value≤0.01. A description of the dataset’s 
main features is provided in Table 1. While scACCorDiON 
can be used with any LR inference algorithm, we choose 
CellPhoneDB due to its widespread use in the literature. We 
also note that CellPhoneDB is the best-performing tool in the 

recent single-cell benchmark (Luecken et al. 2024). CCC 
graphs were generated using CrossTalkeR (Nagai 
et al. 2021).

We are unaware of another computational approach that 
can cluster samples by considering CCC information. 
However, we can contrast scACCorDiON with the following 
baseline approaches. First, we consider tabular representa-
tions (edge weight matrix P) of the data as input (Tabular). 
Due to the high dimensionality of P, we first perform a di-
mension reduction with Principal Component Analysis 
(PCA). We compute the correlation distance on the matrix P 
as an OT baseline method and cost function for the previ-
ously described OT framework. This approach is denoted 
CORR-OT. Note that the last approach does not consider the 
graph’s directions. We also included an undirected graph op-
timal transport method in our benchmark, GOT (Maretic 
et al. 2019). GOT receives a single graph as input for every 
patient, where two cell types are connected with the cell pairs 
detected in one of the directions. The average LR scores (one 
for each direction) give the edge weights.

For distance metrics obtained by evaluated methods 
(Tabular, GOT, CORR-OT and DW-OT), we run k-barycen-
ters, k-medoids and the community detection algorithm 
Leiden (Traag et al. 2019). The last algorithm is chosen based 
on its widespread use in scRNA-seq pipelines (Wolf et al. 
2018). Note also that for Tabular, we use k-means algo-
rithm as this is equivalent to a k-barycenter in an Euclidean 
space. Algorithms were run by varying the number of clusters 
from 2 to 7. The Adjusted Rand Index (Hubert and Arabie 
1985) (ARI) and Rand Index (Rand) for the k equal to the 
number of class labels and k with maximum ARI value were 
computed for each clustering. Here, the disease labels are 
used as true classes. The Friedman-Nemenyi post-hoc test 
was used for every metric, clustering, and distance combina-
tion to statistically address the rank differences (Nemenyi 
1963, Dem�sar 2006). For Leiden (Traag et al. 2019), we vary 
the resolution parameter from 0 and 1 with 0.01 steps, as this 
allows us to obtain distinct clusters. We refer to 
Supplementary Fig. S3 for an overview of the experimental 
design. To explore the interpretability of Tensor-cell2cell 
(Armingol et al. 2022), we also estimated tensor decomposi-
tion and contrasted results with the disease labels and the 
new clustering by scACCorDiON. Here, we followed the tu-
torial available in https://liana-py.readthedocs.io/en/latest/ 
notebooks/liana_c2c.html. Elbow optimization was per-
formed to select the optimal number of factors (8).

Algorithm 1 K-Barycenters

Input: CCC graph’s fG1; . . .;Gpg and number of clusters  
k 2 N

Output: y ¼ ðy1; . . .;ypÞwhere yi ≤k
1:  Initialize barycenters (μ1,…,μk )
2:  repeat
3:   Expectation Step:
4:   yi ¼ argminj¼1;...;kdw ðGi ;μjÞ;8i 2 p
5:   Maximization Step:
6:   μj ¼barycenter(fGjGi 2G;yi ¼ jg)
7:  until Barycenter does not change

4                                                                                                                                                                                                                                      Nagai et al. 

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf288#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf288#supplementary-data
https://liana-py.readthedocs.io/en/latest/notebooks/liana_c2c.html
https://liana-py.readthedocs.io/en/latest/notebooks/liana_c2c.html


3.7 Robustness analysis
We also analyzed the robustness of scACCorDiON concern-
ing the cell type annotation resolution. For this, we evaluated 
the clustering performance under two annotation levels (ma-
jor cell types, and refined cell types/sub-states), provided in 
the myocardial infarction (MI) and the renal clear carcinoma 
(RCC) datasets. Moreover, the performance of under- 
sampling the number of cells in the PDAC dataset was also 
evaluated, i.e. we randomly removed up to 75% of cells and 
performed LR and scACCorDiON analysis. For each stra-
tum, five random samples were generated.

3.8 LR survival analysis
As a form of independent validation, we evaluate if the top 
predicted LRs, i.e. related to cells relevant to PDAC sub-
groups, could function as predictors of survival in the PAAD 
(Pancreatic Adenocarcinoma) TCGA dataset (Raphael et al. 
2017). Given a list of candidate LR pairs, we estimate 
LRScores on the bulk-RNA set data by computing the geo-
metric mean of the LR pairs on the expression data. Finally, 
we use a Cox Proportional Hazards model (Andersen and 
Gill 1982) to compute the Hazard Ratios adjusted to the can-
cer stage covariate and the LRs. To this end, Stage III and IV 
were aggregated into Stage IIIþ due to the low number of 
samples. We compute the log-rank test to observe the direct 
relation of the LRs with overall survival.

4 Results
4.1 Benchmarking cell–cell communication 
graph clustering
We evaluated the performance of scACCorDiON and base-
line competing methods using seven publicly available 
scRNA-seq cohort datasets. The datasets contain between 10 
and 33 cell types, 20 and 165 samples, and 50 236 to 
941 504 single cells. CCC graphs have an average interaction 
number between 75 and 142 (Table 1). scACCorDiON’s 
mainly consists of using the k-medoids and k-barycenter clus-
tering algorithm with a Wasserstein distance considering 
both the direction and topology of graphs (DW-OT). In the 
evaluation, we include a baseline OT method (CORR-OT), 
which considers the signal directions but not the topology of 
the CCC graphs; as well undirected graph optimal transport 
algorithm GOT (Maretic et al. 2019).

To evaluate the impact of the clustering method, we also 
performed clustering for all methods with k-medoids and 
Leiden algorithm (Traag et al. 2019). All methods are evalu-
ated with respect to their performance in the recovery of clus-
ters related to the known class labels measured by the ARI 
(Hubert and Arabie 1985). Class labels indicate the 

individual’s health status: healthy versus diseased (or disease 
sub-type). ARI is measured for the number of k equal to the 
number of true labels or the maximum ARI after varying the 
number of k from 2 to 7 (or cluster resolution) for a given 
dataset and algorithm. The corresponding individual line 
plots are displayed in Supplementary Fig. S5. Additionally, 
we repeated the evaluation assay using the rand index (Rand 
1971), considering the agreement of two partitions without 
any correction.

The benchmark results are shown Fig. 2A–D, and 
Supplementary Table S1. We observe that DW-OT with k- 
medoids has the highest mean ARI for the maximum ARI 
evaluation (Fig. 2A). A Friedman-Neymeni test indicates that 
DW-OT with k-medoids has the highest ranking and signifi-
cantly outperforms Tabular based baseline approaches and 
the use of Leiden clustering (Fig. 2B). DW-OT with k- 
medoids obtains the highest mean ARI for the number of 
clusters equal to the number of classes (Fig. 2C and D). A 
Friedman-Neymeni test indicates that also this k-medoids 
variant outperforms Tabular based baseline approaches 
and the use of Leiden clustering. Figure 2E (Supplementary 
Fig. S4C) shows embeddings (Moon et al. 2017) obtained 
from distances generated in this study. Regarding Rand 
Index, we observe similar rankings of methods and an aver-
age Rand index varying from 0.6 to 0.8 for DW-OT. These 
results underline the advantage of DW-OT with k-medoids, 
which is the only approach incorporating both directionality 
and connectivity of CCC graphs to cluster the samples.

We also evaluate how some of the methodological choices 
impact the results from scACCorDiON. First, we evaluate if 
the granularity of the cell type annotation impacts the overall 
results in the MI and RCC datasets, which provide two level 
of cell type annotation. Results (Supplementary Table S2) 
indicates that in both cases, DW-OT obtain best results at 
course annotation levels. This supports that cellular sub-state 
annotation is beneficial for cell–cell communication predic-
tion. Another important question is the robustness of the 
results in relation to the quality of the scRNA-seq, i.e. recov-
ery of cells per cluster. A cell down-sampling analysis in the 
PDAC data indicates that scACCorDiON only slightly deteri-
orates (0.12 ARI) when only 37.5% of the cells are kept.

One assumption of scACCorDiON is the fact that masses 
are conserved, i.e. the same level of cell–cell communication 
is present in distinct samples. To evaluate this, we contrast 
the performance of the balanced and unbalanced OT formu-
lations (See Supplementary Material). An analysis of DW-OT 
with the balanced OT versus unbalanced versions, indicates 
no statistical difference between approaches. Nevertheless, 
the balanced DW-OT obtains the higher ARI (and RI) scores 
(Supplementary Fig. S6). This supports the feasibility of the 

Table 1. Main features of datasets used in the benchmark, including the number of cell types (Cells), the average number of directed cell–cell 
interactions (CCI) detected with LR analysis, number of individuals/samples, number of cells, and number of sample labels.

Data/study Cells CCIs Samp. No. of cells Label References

Pancreas Adenocarcinoma 10 75 35 57.530 2 Peng et al. (2019)
COVID 18 245 130 647.366 4 Stephenson et al. (2021)
Myocardial infarction 33 871 23 132.888 3 Kuppe et al. (2022)
Breast cancer 10 94 126 714.331 2 Kumar et al. (2023)
Kidney AKI 13 142 36 76.020 3 Lake et al. (2023)
Lung atlas 12 117 165 941.504 5 Sikkema et al. (2023)
RCC 40 1280 17 50.236 2 Zvirblyte et al. (2024)
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hypothesis of mass conservation as explored by 
scACCorDiON.

4.2 scACCorDiON detects a Sub-cluster of pancreas 
adenocarcinoma
To evaluate the power of scACCorDiON in the detection of 
novel sub-clusters, we perform a Silhouette analysis 
(Rousseeuw 1987) to identify datasets with a higher number 
of clusters than true labels (Supplementary Fig. S5). 
Interestingly, we observe that for the pancreas adenocarci-
noma (PDAC) data, scACCorDiON predicts a sub-cluster as-
sociated with controls and two sub-groups associated with 
PDAC samples (Fig. 3A). As displayed in Fig. 3B, PDAC 1 
has overall increased communication, particularly interac-
tions related to ductal, malignant ductal, and fibroblast cells. 
PDAC 2 demonstrates a loss of communication regarding 
Acinar and Ductal cells, while we observe an increase in com-
munication related to Malignant Ductal, B, and Endocrine 
cells. The prominent signal related to the Malignant Ductal 

Cells indicates that PDAC 2 clusters are, possibly, linked to 
more advanced disease stages than the PDAC 1 cluster (Peng 
et al. 2019).

To understand CCC events related to transitions from con-
trol to early disease (Control –> PDAC 1). Between mild and 
advanced disease (PDAC 1->PDAC 2), we contrast the trans-
port maps (C) between the barycenters of these pairs of 
groups (Fig. 3C). We observe that pairs of CCC interactions 
with high transport masses discriminate well the detected 
groups (Fig. 3D and E).

We next make use of the LR analysis from CrossTalkeR 
(Nagai et al. 2021) to further investigate the interactions as-
sociated with the communication between Malignant Ductal 
cells and Ductal cells (Supplementary Fig. S8). We observed 
high expression in ERBB and EGFR receptors’ interactions 
among the top LR pairs. These receptors were previously 
assigned to be related to pancreatic intraepithelial neoplasia 
(PanIN) (Ghasemi et al. 2014, Meyers et al. 2020), described 
as a precursor stage of Pancreas Adenocarcinoma. Moreover, 

Figure 2. Clustering benchmark: (A) boxplots indicate the maximum ARI value distribution (x-axis) distribution for all evaluated methods over five scRNA- 
seq datasets. (B) Ranking values (mean and std) for each method and dataset regarding the maximum ARI value. The highest ranking indicates the 
highest ARI. The gray area indicates the 95% confidence interval of the Friedman and Nemenyi post-hoc test). Methods whose average values are not 
within the gray area have significantly lower rankings than the top-ranked methods. For both A and B, methods are ranked by average in decreasing 
order. C and D is the same as A and B for the ARI estimates, with the number of clusters equal to the number of original labels. (E) PHATE 2D 
embeddings of the distances matrices estimated by Tabular, CORR-OT, and DW-OT for all evaluated datasets. Colors correspond to the original labels.
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ligands secreted by Malignant Ductal cells include matrix 
metalloproteinase-7 (MMP7) and galactins (LGALS-3/ 
LGALS-3BP/LGALS-9), which have been recently shown to 
be expressed in malignant cells (Crawford et al. 2002). These 
results support an association between CCC changes in the 
tumor microenvironment and PDAC progression.

4.3 PDAC LR survival analysis
To validate the LR predicted in the previous PDAC analysis, 
we performed survival analysis with LR pairs and individual 
genes by using bulk RNA-seq data (n¼177) from the PAAD 
TCGA data (Raphael et al. 2017). We considered the top 10 
positive (PDAC1) and negative (PDAC2) hits for the cell-pair 
(Malignant Ductal Cells, Ductal Cell) and performed survival 
analysis using the Cox Proportional-Hazards model 
(Andersen and Gill 1982), always keeping the stage informa-
tion as a feature in each model.

For LR pairs with increased expression in PDAC2 cells 
(versus PDAC1), we observed 3 LRs with significant survival 
associations, where a higher LRScore leads to a worse prog-
nosis. Two receptors also showed a significant signal 
(Supplementary Table S3). When comparing PDAC1 with 
PDAC2, we detected four significant LR interactions, four 
significant receptors, and two ligands (Supplementary Table 
S4). Also, in both cases, LR expression pairs displayed the 
highest significance (top 2 for PDAC2 and top 3 for PDAC1), 
which suggests that the composition expression of the pre-
dicted LR pairs is a better predictor of survival than individ-
ual genes. One example of a pair whose significance is higher 
than its individual ligand and receptors is MMP7 -> SDC1 
(Supplementary Table S4). As previously mentioned, MMP7 
has been associated with malignant ductal cells, and current 
research supports its role in early PDAC stages and tumor 
metastasis, leading to poorer prognosis (Van Doren 2022). 

Altogether, this analysis supports the translational potential 
of predictions by scACCorDiON.

4.4 Comparison with tensor-cell2cell
As an alternative to the previous analysis, we also explore us-
ing Tensor-cell2cell (Armingol et al. 2022), allowing a factor- 
based and sample-level interpretation. If we check the factors 
by comparing the two known class labels (Control versus 
PDAC), we observe that two factors (6 and 8) are signifi-
cantly associated with controls; 5 factors (2, 3, 4, 5, and 7) 
with PDAC and one factor (1) is not related to the known 
labels (Supplementary Fig. S9A). Interestingly, by providing 
the clustering from scACCorDiON, we observe some factors 
to be related to PDAC1 (Factors 4 and 5) and others to 
PDAC 2 expression (Factors 1 and 7) (Supplementary Fig. 
S9B). These different loadings per sub-cluster support the bi-
ological relevance of these sample clusters.

Tensor-cell2cell can indicate cell–cell networks and LR 
pairs related to each factor for interpretation. Two factors (1 
and 4) are related to the Malignant Ductal cell –> Ductal cell 
interaction (Supplementary Fig. S10A). Factor 1 is more 
prominent in PDAC 2 cells, and factor 4 is more prominent 
in PDAC 1 cells (Supplementary Fig. S9). Pathway analysis 
with progeny (Schubert et al. 2018) indicates that these fac-
tors are mostly related to similar pathways, such as TNFa, 
NFKb, and EGFR (Supplementary Fig. S10B). In contrast, 
the PDAC1 factor had higher activity for Hypoxia and TGFb 
pathways. An equivalent analysis of Ductal cell -> Ductal 
cell interactions predictions from scACCorDiON also finds 
similar pathway pathways except for a lack of TGFb signal 
(Supplementary Fig. S10C).

We next performed survival analysis equivalent to the one 
above by selecting the top 10 LR loadings for factor 1 and 
factor 4 (Supplementary Tables S5 and S6). To our surprise, 
only a single receptor pair, and four genes were predictors of 

Figure 3. Sub-cluster analysis in pancreas adenocarcinoma. (A) MDS plot containing the clustering results on pancreas adenocarcinoma. One cluster 
contains all control samples (Control), and two clusters contain disease samples (PDAC 1 and 2). (B) Directed CCC graphs of barycenters of the detected 
sub-clusters. Edge thickness indicates the strength of the cell–cell interactions. Node sizes are placed accordingly to the node pagerank, and low 
representation edges were filtered to improve visualization. (C) Scatter plot with the transport map between the barycenter of the control and PDAC 1  
(y-axis) and PDAC 1 and PDAC2 clusters (y-axis). Every dot shows the mass transported between two cell–cell pairs in the comparisons. (D and E) Scatter 
plot with signals associated with selected cell–cell pairs for all the samples shown in (A). Colors correspond to the sample cluster.
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survival compared to seven pairs and ten genes in 
scACCorDiON/CrossTalkeR predictions. A possible reason 
for this is that Tensor-cell2cell factors are not specific to cell– 
cell pairs or a sample group (PDAC 1 or PDAC 2), as the case 
for CrossTalkeR. Nevertheless, Tensor-cell2cell and 
CrossTalkeR can be seen as complementary and interpretable 
approaches, which can be used in a complementary manner.

5 Discussions and conclusion
scRNAseq-based LR analysis enables the inference of CCC 
events related to complex diseases. However, sample-specific 
analysis, crucial for understanding CCC events in patient 
cohorts, has only been addressed to a limited extent so far. 
Here, we explore the problem of clustering samples that share 
similar cell communication patterns by modeling sample- 
specific CCC as directed and weighted graphs. We propose a 
graph-based optimal transport framework that finds optimal 
probabilistic mappings between cell communication signals 
and cell–cell graphs. Furthermore, this framework allows us 
to measure the distance between any two directed weighted 
graphs (regarding a Wasserstein distance) and estimate 
“average directed weighted graphs” (barycenters) represent-
ing typical CCC patterns within a group of samples. Our al-
gorithm is currently unique in that it allows both computing 
distances and clustering of directed weighted graphs. We 
have applied our DW-OT algorithm to calculate CCC graphs 
estimated in scRNA-seq with large cohorts and found that it 
outperforms other algorithms. An interesting result is that 
clustering worked better at fine resolution for datasets where 
coarse- and fine-level annotations were provided. This sup-
ports the idea that cellular sub-states are important in under-
standing cell–cell communication mechanisms.

In the DW-OT method, the “mass” of cell–cell communi-
cation signals is conserved between patients., i.e. it assumes 
that the same amount of cell–cell communication is present 
in both normal and disease samples. By utilizing prior biolog-
ical knowledge, other works have explored mass variations in 
optimization problems via unbalanced Optimal Transport 
(UOT) (Peyr�e and Cuturi 2019), such as in cell development 
and proliferation (Schiebinger et al. 2019). There, prior 
knowledge is related to cell expansion or cell death, estimated 
from relevant pathway changes as supported by the expres-
sion profiles of the single cells. In our benchmarking, UOT 
did not improve our results. However, we lack a good source 
of prior biological knowledge of mass changes in cell–cell 
communication, as LR interaction follows complex 
Stoichiometry principles, the increase of a ligand does not 
mean more signal toward receptors due to saturation (Attie 
and Raines 1995). Modeling mass changes in cell–cell com-
munication is an interesting venue for further research.

We further showcased how both barycenter and transport 
matrices can be used to interpret communication events sup-
porting detected clusters. This usage is exemplified in the 
pancreas adenocarcinoma dataset, where DW-OT detected 
sub-clusters not characterized in the original study presenting 
the data (Peng et al. 2019). Using the signatures of the identi-
fied groups, we conducted a survival-based analysis using the 
TCGA-PAAD dataset on top LR pairs. Interestingly, LR ex-
pression was more significant than individual ligand and re-
ceptor genes. Moreover, we observed a tendency for higher 
enrichment in receptors than ligands, which potentially hints 
at the previously mentioned saturation aspect, i.e. an increase 

in ligands might not lead to an increase in cell–cell 
communication.

Future challenges include extending the DW-OT frame-
work to work at the LR level. This implementation would re-
quire algorithms dealing with potentially large(nodes and/or 
edges) and noisy LR networks. We also noted that batch 
effects, frequently present in scRNA-seq cohort data, can af-
fect sample level as analysis as well as of scRNA-seq data 
(Joodaki et al. 2024). Therefore, understanding and handling 
such effects opens a new venue for improvements in the cur-
rent OT methods.
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