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Review

The cell biology of inflammasomes: Mechanisms of
inflammasome activation and regulation

Deepika Sharma and Thirumala-Devi Kanneganti
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Over the past decade, numerous advances have been
made in the role and regulation of inflammasomes during
pathogenic and sterile insults. An inflammasome complex
comprises a sensor, an adaptor, and a zymogen pro-
caspase-1. The functional output of inflammasome activa-
tion includes secretion of cytokines, IL-18 and IL-18, and
induction of an inflammatory form of cell death called
pyroptosis. Recent studies have highlighted the infersec-
tion of this inflammatory response with fundamental cellu-
lar processes. Novel modulators and functions of
inflammasome activation conventionally associated with
the maintenance of homeostatic biological functions have
been uncovered. In this review, we discuss the biological
processes involved in the activation and regulation of the
inflammasome.

Introduction

Inflammasomes are multimeric complexes formed in response
to a variety of physiological and pathogenic stimuli. Inflam-
masome activation is an essential component of the innate im-
mune response and is critical for the clearance of pathogens or
damaged cells. However, overt inflammasome activation is also
a major driver of autoimmune and metabolic disorders, underly-
ing the importance of understanding this process in physiologi-
cal and pathological contexts.

The inflammasome sensors are grouped according to their
structural features into nucleotide-binding domain-like recep-
tors (NLRs), absent in melanoma 2-like receptors (ALRs), and
the recently identified pyrin. These receptors have the ability
to assemble inflammasomes and activate the cysteine protease
caspase-1. In addition to the sensor (NLR, ALR, or pyrin) and
enzymatic component (caspase-1), most inflammasomes also
use an adaptor molecule known as ASC (apoptosis-associated
speck-like protein containing a caspase activation and recruit-
ment domain). Upon detecting specific stimuli, the activated sen-
sor nucleates ASC to form a discrete foci, or “speck,” within the
activated cell. Nucleated ASC sequentially recruits caspase-1,
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which undergoes proximity induced autocatalytic cleavage to
produce the active subunits p10 and p20. These active caspase-1
subunits can then proteolytically process cytokines, IL-1p and
IL-18, and induce a specific form of inflammatory cell death
termed pyroptosis. Activated caspase-1 thus provides the host
cell with dual defense mechanisms through the release of ma-
ture cytokines and removal of the infected or damaged cell.
Inflammasome assembly is thus a coordinated signaling event
essential for mounting an appropriate immune response after
pathogenic or sterile insults. Although most studies have used
in vitro culture systems and reconstitution assays to analyze
inflammasome activation, recent advances have allowed visu-
alization of these processes in vivo after an infectious insult at
the level of a single cell (Sagoo et al., 2016). Recent studies
have also highlighted the existence of an NLRP3 inflammasome
pathway, mediated by caspase-11 (Kayagaki et al., 2011).

Inflammasome activation is tightly regulated to provide
defense against pathogenic insults and avoid damage to the host.
Multiple molecular and cellular signals are therefore involved
in maintaining the balance between inflammatory response and
resolution. In this review, we provide an overview of the cel-
lular and molecular mechanisms involved in the regulation of
inflammasome activation.

NLR family

NLR family members all share a central nucleotide-binding do-
main (NBD), and most members have a C-terminal leucine-rich
repeat (LRR) domain and a variable N-terminal domain. The
NLR family can be subdivided into NLRP or NLRC based on
whether the N terminus contains a pyrin or caspase activation
and recruitment domain (CARD), respectively. Certain mem-
bers of the family, including NLRP1, NLRP3, and NLRC4,
have been well established as NLRs capable of forming inflam-
masomes, whereas other members, like NLRP6 and NLRP12,
are still considered putative inflammasome sensors. It remains
to be seen if other members of the NLR family are capable
of forming or regulating inflammasome assembly in response
to some unknown stimuli.

NLRP1

NLRP1 was the first cytosolic receptor identified for its ability
to form a caspase-1 activating platform (Martinon et al., 2002).
Human NLRP1 contains the canonical NBD and LRR domains,
a pyrin domain (PYD), as well as a function-to-find and a
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Figure 1. Canonical inflammasomes NLRP1, NLRP3, NLRC4, AIM2, and pyrin. Ligands and upstream mediators involved in inflammasome activation.
The NLRP1b inflammasome responds to lethal factor produced by B. anthracis and assembles an inflammasome by recruiting caspase-1 through its CARD
domain or through ASC as an adaptor. The NLRP3 inflammasome responds to intracellular damage induced by pathogenic or sterile insults. The NLRC4
inflammasome assembles in response to recognition of bacterial flagellin or components of the type Ill secretion system via NAIPs and can form complexes
with or without recruiting ASC. AIM2 inflammasome senses double-stranded DNA through its HIN200 domain. Pyrin responds to Rho modification induced
by bacterial toxins. Inflammasome activation leads to caspase-1 activation that in turn cleaves its downstream effectors: the newly identified pyroptosis
executioner gasdermin D and pro-form of cytokines IL-18 and IL-18. DAMP, danger associated molecular pattern; GBP, guanylate binding protein; PAMP,

pathogen associated molecular pattern; T3SS, type Il secretion systems.

C-terminal CARD domain. The mouse genome encodes three
paralogs, NLRP1(a—c), which all lack the PYD. NLRP1b is ac-
tivated by anthrax lethal toxin produced by Bacillus anthrax.
Lethal toxin comprises protective antigen and lethal factor;
protective antigen generates pores in the host cell membrane,
whereas lethal factor enters the cell and cleaves NLRP1b at an
N-terminal site, leading to the induction of inflammasome acti-
vation (Fig. 1; Chavarria-Smith and Vance, 2013). This cleavage
is essential and sufficient to induce NLRP1b activation (Cha-
varria-Smith and Vance, 2013). Proteolytic cleavage within the
NLRP1b function-to-find domain is also required for assembly
of a functional inflammasome (Frew et al., 2012). Based on
these observations, it has been hypothesized that NLRP1b could
act as a sensor of protease activity caused by various bacterial
toxins, although this has not been rigorously tested or shown.
NLRPI1b activation also promotes parasite clearance and pro-
vides protection against mortality in response to Toxoplasma
gondii infection in mice (Gorfu et al., 2014). Toxoplasma-
induced NLRP1 activation is observed in susceptible rat strains
(Cirelli et al., 2014) and is a major determinant of parasite con-
trol in infected macrophages (Cavailles et al., 2014), although
activation of NLRP1b through this parasite does not result in
detectable levels of an NLRP1b cleavage product (Ewald et al.,
2014). This suggests that either NLRP1b processing is not a pre-
requisite for inflammasome activation as posited or a thorough
analysis for a potentially unstable cleavage product is required
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to reconcile this discrepancy. The link between immune re-
sponse to Toxoplasma infection and NLRP1 inflammasome is
clinically relevant even in humans, as congenital toxoplasmo-
sis is associated with single-nucleotide polymorphisms in the
NLRPI gene and loss of NLRP1 in human monocytic cell lines
promotes Toxoplasma infectivity (Witola et al., 2011).

Evidence for the ability of NLRPla to induce inflam-
masome activation comes from a genetic model, wherein mice
harboring a mutation in the NLRPIa gene (Q593P) develop
a caspase-1— and IL-1p-mediated systemic inflammatory dis-
ease (Masters et al., 2012). These mice also exhibit a change
in myelopoiesis, such that the number and function of hema-
topoietic progenitor cells are markedly altered in a caspase-1—
dependent but IL-1R signaling—independent manner. Thus, a
significant loss of hematopoietic progenitors is observed be-
cause of aberrant inflammasome activation and cell-intrinsic
pyroptosis. However, the specific triggers or mechanisms regu-
lating the NLRP1a inflammasome are as yet unknown. Genetic
studies in humans have identified NLRP1 mutations linked to
autoinflammatory diseases including vitiligo (Jin et al., 2007),
Addison’s disease (Zurawek et al., 2010), rheumatoid arthritis,
systemic sclerosis, and Crohn’s disease (Finger et al., 2012);
however, further studies that define the molecular mechanisms
and structural conformations involved in NLRP1 activation
will be needed to deduce the link between NLRP1 and these
autoinflammatory diseases.



NLRP3

NLRP3 was first shown to be associated with hereditary auto-
inflammatory syndromes called cryopyrin-associated periodic
syndromes, which are characterized by skin rashes and epi-
sodes of fever (Hoffman et al., 2001). In fact, over 90 disease-
associated mutations have since been observed in humans in
and around the NBDs that render NLRP3 constitutively active
(Masters et al., 2009). NLRP3 is an inflammasome-forming
NLR that responds to a wide range of infectious and endoge-
nous ligands and is implicated in the pathogenesis of several
autoinflammatory diseases, including arthritis, gout, diabetes,
obesity, and Alzheimer’s disease (Guo et al., 2015).

The triggers that have been shown to induce NLRP3 acti-
vation include pathogen-derived ligands such as microbial cell
wall components, nucleic acids, and pore-forming toxins; envi-
ronmental crystalline pollutants like silica, asbestos, and alum;
and endogenous danger signals like ATP, serum amyloid A, and
uric acid crystals (Man and Kanneganti, 2015). In fact, the di-
versity of its activators is one of the most distinctive features of
the NLRP3 inflammasome and makes the possibility of a direct
interaction with each activator unlikely. It is therefore assumed
that the NLRP3 inflammasome either senses a common second-
ary activator downstream of these stimuli or responds to cel-
lular stress associated with infection or physiological damage.
Production of reactive oxygen species (ROS), potassium efflux,
changes in cell volume, calcium signaling, and lysosomal dis-
ruption have all been proposed as critical upstream signals re-
quired for NLRP3 activation (Cruz et al., 2007; Pétrilli et al.,
2007; Cassel et al., 2008; Dostert et al., 2008; Halle et al., 2008;
Hornung et al., 2008; Schorn et al., 2011; Zhou et al., 2011;
Compan et al., 2012; Lee et al., 2012; Murakami et al., 2012;
Muiioz-Planillo et al., 2013). Even though potassium efflux has
been reported by multiple groups to be the unifying mechanism
regulating NLRP3 activation, potassium efflux is also observed
in response to NLRP1b activation (Pétrilli et al., 2007), raising
doubt over the specificity of potassium efflux for NLRP3 in-
flammasome activation. Nevertheless, all of these features are
associated with cellular stress, suggesting NLRP3 could be a
global sensor of cellular damage (Fig. 1).

Although the precise trigger is unknown, recent studies
have identified multiple cellular mechanisms that regulate ac-
tivation of the NLRP3 inflammasome. Under resting condi-
tions, ASC is found in the mitochondria, cytosol, and nucleus,
whereas NLRP3 associates with the ER (Zhou et al., 2011).
Nucleation of the inflammasome requires a change in the sub-
cellular localization of these molecules to facilitate their in-
teraction. This change in spatial arrangement is brought about
by dynein-mediated transport of mitochondria toward the ER,
bringing ASC and NLRP3 in close proximity (Misawa et al.,
2013). Further, mitochondrial dysfunction induces microtubule
alterations that enable the juxtaposition of NLRP3 and ASC,
suggesting that diverse cellular functions involved in mitochon-
drial homeostasis and cytoskeletal modulations coordinate and
converge on NLRP3 activation (Misawa et al., 2013). Although
colocalization of inflammasome components is required for all
inflammasomes to be activated, inhibitors of microtubule alter-
ations specifically block the NLRP3 inflammasome, suggesting
that distinct cytoskeletal signatures are involved in activation of
certain inflammasomes (Misawa et al., 2013).

In addition to cytoskeletal rearrangements, recent studies
have identified NEK7, a protein involved in cell-cycle progres-
sion, as a novel regulator of the NLRP3 inflammasome (He et

al., 2016; Schmid-Burgk et al., 2016; Shi et al., 2016). NEK7
is a serine/threonine kinase that is known to promote mitotic
spindle formation and cytokinesis and is required for progres-
sion through mitosis (O’Regan and Fry, 2009). NEK?7 interacts
with the LRR domain of NLRP3, independent of its kinase ac-
tivity, and is required for NLRP3 inflammasome activation (He
et al., 2016). This interaction additionally restricts NLRP3 in-
flammasome activation to cells in interphase (Shi et al., 2016).
It was hypothesized that this cell cycle—mediated restriction of
NLRP3 activation is caused by the limited cellular concentra-
tion of NEK7, such that once a cell enters mitosis, NEK7 is
localized to mitotic spindles and NLRP3 activation is attenu-
ated (Shi et al., 2016). The significance of this intersection be-
tween NLRP3 activation and cell cycle progression is currently
unknown, though it could be posited that this is a safeguard
cells use to dampen the inflammasome while undergoing cell
division, during which the cell may be enriched in endogenous
ligands that could be misrepresented as cellular stress.

NLRC4

NLRC4 activates procaspase-1 through its CARD domain to
induce cell death (Poyet et al., 2001) in response to Salmonella
infection (Mariathasan et al., 2004). Bacterial flagellin (Fran-
chi et al., 2006; Miao et al., 2006; Molofsky et al., 2006; Ren
et al., 2006) and multiple components of the bacterial type III
secretion systems (Miao et al., 2010b; Zhao et al., 2011; Yang
et al., 2013) activate the NLRC4 inflammasome, enabling it
to provide host defense against a diverse range of pathogens.
However, NLRC4 does not interact directly with its activa-
tors; instead, a family of proteins, termed NAIPs (NLR fam-
ily, apoptosis inhibitory proteins), act as sensors that recognize
the ligand and induce activation of the NLRC4 inflammasome.
Mouse NAIP1 and NAIP2 recognize bacterial needle and inner
rod proteins, respectively, whereas NAIPS and NAIP6 bind to
flagellin (Fig. 1; Kofoed and Vance, 2011; Zhao et al., 2011;
Rayamajhi et al., 2013; Yang et al., 2013). The human genome
encodes only one known NAIP (Endrizzi et al., 2000), which
can sense both flagellin and needle proteins, suggesting a simi-
larity in the mode of recognition of the two structurally related
ligands (Yang et al., 2013; Kortmann et al., 2015).

NLRC4 contains a winged-helix domain, which together
with the NBD stabilizes NLRC4 in a closed conformation under
basal conditions, whereas the LRR domain provides steric hin-
drance to its oligomerization (Tenthorey et al., 2014). These
two inhibitory mechanisms thus maintain NLRC4 in an inac-
tive state in the absence of a ligand. Support for this theory
comes from structural modeling based on cryo-EM analysis of
NAIP5-NLRC4 multimers and a crystal structure of dormant
NLRC4 (Diebolder et al., 2015). This study suggested that ro-
tation of the LRR domain would be required to allow NLRC4
to fit into the active oligomeric form detected by cryo-EM (Die-
bolder et al., 2015). A recently characterized cryo-EM structure
of the NLRC4 inflammasome in response to bacterial type III
secretion systems rod protein Prgl revealed that nucleation is
initiated from a single, activated NAIP2 molecule that subse-
quently induces NLRC4 polymerization. The inflammasome
assembly follows a domino-like reaction, wherein the activated
NAIP2 molecule provides a platform for self-oligomerization
of NLRC4 to form a wheel- or disc-like structure (Hu et al.,
2015; Zhang et al., 2015).

In addition to removal of infected cells through pyropto-
sis and perpetuation of inflammation through IL-1p and IL-18
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release, NLRC4 activation affects other aspects of cell biology
that are critical in host defense. In macrophages infected with
Salmonella, NLRC4 induces an actin polymerization response
that prevents further bacterial uptake and increases intracellular
ROS production to enhance intracellular killing and lower bac-
terial dissemination (Man et al., 2014a). NLRC4 activation in
epithelial cells is specifically required to control pathogen load
during Salmonellainfection. In accordance with this, epithelium-
specific deletion of inflammasome components (Naip 1-6,
NLRC4, and caspase-1/caspase-11) results in higher bacterial
load and extraintestinal dissemination (Sellin et al., 2014). A
surprising feature of NLRC4 activation is observed in a mouse
model using intraperitoneal delivery of flagellin, which induces
rapid host mortality (within 30 min). This striking inflam-
masome-dependent response is independent of IL-1p or IL-18
and instead relies on the production of eicosanoids, including
prostaglandins and leukotrienes. This inflammasome-dependent
eicosanoid production leads to rapid vascular fluid loss and mor-
tality (von Moltke et al., 2012). How the NLRC4 inflammasome
activates biosynthesis of eicosanoids and whether this function
of eicosanoid production can be extended to all inflammasomes
are currently unknown. Overall, these studies highlight the im-
portance of NLRC4 inflammasome in cellular responses be-
yond the conventional roles of cytokine release and pyroptosis.

Human genetic studies have identified gain-of-function
mutations in NLRC4 that are associated with autoinflammation
and enterocolitis (Canna et al., 2014; Kitamura et al., 2014,
Romberg et al., 2014). Because NLRC4 has been ascribed such
diverse functions in animal models of infection, it remains to
be seen whether human patients recapitulate any specific fea-
tures of NLRC4 activation.

NLRPG6

NLRP6 is uncharacteristic by virtue of the unusual ligand it
recognizes and its observed downstream effects. One of the
earliest studies identified NLRP6 as a negative regulator of
the mitogen-activated protein kinase and NF-kB pathway in
macrophages infected with Listeria monocytogenes, Esche-
richia coli, and Salmonella (Anand et al., 2012). Thereafter, the
role of NLRP6 in activation of caspase-1 was hypothesized as
being required to maintain optimal mucosal response to chem-
ical damage and pathogens (Elinav et al., 2011; Wlodarska et
al., 2014). In the gut, NLRP6 antagonizes microbial dysbiosis
through mucus production (Elinav et al., 2011). In the absence
of NLRP6, the intestinal barrier integrity is compromised, ren-
dering the animal susceptible to pathogenic and chemical in-
sults (Chen et al., 2011; Elinav et al., 2011; Huber et al., 2012;
Hu et al., 2013; Nowarski et al., 2015). The identity of the li-
gand that activates NLRP6 remained elusive until a recent study
identified taurine, a microbial metabolite, as its activator (Levy
et al., 2015). The authors demonstrated that NLRP6-ASC-
caspase-1 axis, through IL-18 production, promotes induction
of antimicrobial peptides that resist microbial dysbiosis. The
normal microbiota in turn produces a specific metabolite profile
enriched in taurine that engages NLRPG6 in the gut to provide
mucosal immunity (Levy et al., 2015). NLRP6 therefore has a
central role in gut homeostasis and associated disorders (Henao-
Mejia et al., 2012). It should be noted that altered or dysbiotic
microbiota is also observed in mice lacking inflammasome sen-
sors NLRP3 (Henao-Mejia et al., 2012) and AIM2 (Man et al.,
2015b), suggesting that the inflammasome plays a nonredun-
dant role in maintaining gut bacterial symbiosis. The role of
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NLRP6 at mucosal sites is relevant even in the context of viral
infection. During systemic infection with encephalomyocarditis
and norovirus, NLRP6 affected viral loads specifically in the
gastrointestinal tract, and oral infection with the same viruses
required NLRP6-mediated defense to confer survival (Wang et
al., 2015). However, direct proof for the importance of NLRP6
at nonmucosal sites is yet to be demonstrated and further inves-
tigation is needed to uncover the molecular mechanisms gov-
erning this putative inflammasome.

NLRP12

NLRPI12 was initially characterized as an inhibitor of nonca-
nonical NF-xB signaling (Williams et al., 2005; Lich et al.,
2007). It was also involved in caspase-1 activation in response
to Yersinia pestis and Plasmodium infection (Vladimer et al.,
2012; Ataide et al., 2014). The role of NLRP12 in NF-kB—
mediated signaling makes it an important regulator of immune
response after Salmonella infection and during colorectal cancer
(Zaki et al., 2011, 2014). Further, it modulates NF-xB signaling
intrinsically in T cells during their activation, thereby affecting
their colitogenic and encephalitogenic potential (Lukens et al.,
2015). However, the ligands that activate NLRP12 and its regu-
latory mechanisms remain poorly understood.

ALR family

The ALR family is named for its most well-characterized
member, AIM2 (absent in melanoma 2). The members of the
ALR family are characterized by an N-terminal PYD and a
C-terminal hematopoietic interferon-inducible nuclear protein
with 200—amino acid repeat (HIN200) domain. The expression
of ALRs is restricted to and conserved among mammalian spe-
cies (Cridland et al., 2012). AIM2 has a distinct cytosolic local-
ization by virtue of lacking a nuclear localization signal that is
present in all other members. Further, the PYD of AIM2 is func-
tionally distinct from other ALRs in its ability to interact with
the PYD of ASC (Hornung et al., 2009). It is because of this
specific interaction that AIM2 is the only member of this fam-
ily known to be capable of forming an inflammasome. Other
mouse ALRs have been shown to interact with ASC, making
them potential regulators of inflammasome responses (Brunette
et al., 2012), and another human ALR, y-IFN—inducible protein
16, is considered a putative inflammasome (Kerur et al., 2011).
However, most major studies have concerned the identification
and regulation of the AIM2 inflammasome.

AlM2

AIM?2 was initially identified as a y-IFN—inducible protein in a
tumor suppressor screen. A later study redefined it as a nucleic
acid sensor that assembles into an inflammasome, specifically
in response to double-stranded DNA (dsDNA; Fig. 1; Biirck-
stimmer et al., 2009; Fernandes-Alnemri et al., 2009; Hornung
et al., 2009; Roberts et al., 2009). AIM2 is critical to immune
responses after infection with various viral and bacterial infec-
tious agents, such as vaccinia virus, mouse cytomegalovirus
(Rathinam et al., 2010), Francisella tularensis (Fernandes-
Alnemri et al., 2010; Jones et al., 2010; Rathinam et al., 2010),
and Listeria (Kim et al., 2010; Rathinam et al., 2010).

The HIN200 domain of AIM?2 is involved in ligand bind-
ing and mediates dsDNA recognition, independent of sequence
identity, but requires the dsDNA to be of a certain length (~80
bp; Jin et al., 2012). Structural and biophysical studies suggest
existence of sequence-neutral electrostatic interactions between



the HIN200 domain and DNA bases (Jin et al., 2012; Li et al.,
2014). Structural analysis also ascribes an autoinhibitory role to
the HIN200 domain, because in the absence of a ligand, it inter-
acts with the PYD of AIM2. DNA binding by the HIN200 do-
main relieves this autoinhibition, allowing the PYD of AIM2 to
undergo homotypic interaction with the adaptor ASC (Jin et al.,
2013b). Reconstituted AIM2—ASC—caspase-1 inflammasome,
viewed by EM, exhibits a star-shaped structure with multiple
filaments radiating from a central hub. In this complex, AIM2
and ASC form the center, whereas caspase-1 makes up the fila-
ments (Lu et al., 2014).

Although AIM2 binds to both viral and bacterial DNA,
there is a distinct difference in their inflammasome engage-
ment. Type I IFN signaling is required for AIM2 activation in
response to bacterial stimuli, such as Francisella, but not viral
stimuli, like mouse cytomegalovirus (Man et al., 2015a; Meu-
nier et al., 2015). Type I IFN signaling induces expression of
IFN regulatory genes that mediate bacterial cytosolic escape
and bacterial lysis, releasing the ligand for AIM2 activation
(Man et al., 2015a; Meunier et al., 2015). Despite the ubiqui-
tous nature of this ligand, not all bacteria and viruses activate
the AIM2 inflammasome. Recent studies indicate that certain
bacteria, such as Mycobacterium and Legionella, encode viru-
lence factors that can reduce dsDNA release and thereby evade
detection by AIM2 (Peng et al., 2011; Ge et al., 2012; Shah
et al.,, 2013). The AIM2 inflammasome is also inhibited by
host-encoded decoy molecules and dominant-negative regula-
tors (Dombrowski et al., 2011; Morizane et al., 2012; Khare
et al., 2014). Another member of the HIN200 family, p202,
lacks the N-terminal PYD and acts as a negative regulator of
the AIM?2 inflammasome, perhaps by sequestering dsDNA and/
or AIM2 through heterodimerization (Roberts et al., 2009; Yin
et al., 2013). Recognition of nucleic acids also grants AIM2 the
ability to respond to host DNA released in response to cellular
damage. This recognition and the ensuing inflammasome ac-
tivation underlie various autoinflammatory diseases, such as
psoriasis, systemic lupus erythematosus, and abdominal aortic
aneurysm (Dombrowski et al., 2011; Choubey, 2012; Dihlmann
et al., 2014), raising the possibility of AIM2 as a therapeutic
target for these autoimmune disorders.

Pyrin

Pyrin is associated with an autoinflammatory disorder called fa-
milial Mediterranean fever and was only recently identified as
an inflammasome-forming protein. Pyrin was first implicated
in inflammasome activation from a mouse model expressing
familial Mediterranean fever mutation—containing pyrin; these
mice exhibited an ASC and IL-1-mediated autoinflammatory
disorder (Chae et al., 2011). A more recent study provided de-
finitive proof by showing that the pyrin inflammasome assem-
bles in response to Rho-modifying toxins produced by various
bacterial species, including Clostridium difficile (TcdB), Vibrio
parahemolyticus (VopS), Histophilus somni (IbpA), Clostrid-
ium botulinum (C3), and Burkholderia cenocepacia (Fig. 1; Xu
et al., 2014). These toxins induce covalent modifications that
include glycosylation, adenylylation, and ADP ribosylation
within the Switch I region of Rho family members, suggesting
a universal signature detected by the pyrin inflammasome. In
another study, pertussis toxin, through its ADP-ribosyltrans-
ferase activity, was shown to engage the pyrin inflammasome
(Dumas et al., 2014). Although a direct interaction between Rho
and pyrin has not been detected, Rho modification seems to be

essential for pyrin inflammasome activation, suggesting that
pyrin responds to the functional activity of Rho. However, the
consequence of Rho modification and the intermediary steps in-
volved in pyrin activation are currently unknown. As Rho modi-
fications are closely associated with multiple cellular functions,
including division and migration, pyrin activation is likely
kept in check during these processes. A recent study identified
14-3-3 proteins as regulators of pyrin activity until a pyrin-ac-
tivating stimuli releases pyrin from this inhibition (Masters et
al., 2016). Pyrin phosphorylation targets 14-3-3 for binding
under basal conditions and dephosphorylation attenuates 14-3-3
binding. Further, a human mutation in this phosphosite reca-
pitulates pyrin activation, even in the absence of an exogenous
stimuli (Masters et al., 2016). The molecular regulators con-
trolling pyrin phosphorylation and dephosphorylation are still
being elucidated. 14-3-3 proteins are critical scaffolds involved
in cell cycle progression and cell death, so it remains to be seen
whether 14-3-3 interaction forms a nexus between these cellular
processes and pyrin activation.

ASC oligomerization and the “ASC speck?”
The interaction between major inflammasome components oc-
curs through homotypic PYD-PYD or CARD-CARD interac-
tions. The PYD and CARD domains possess nucleating ability
that allows them to induce oligomerization, forming the struc-
tural basis for assembly of inflammasomes (Cai et al., 2014;
Lu et al., 2014; Sborgi et al., 2015). Based on these domains,
inflammasome sensors assemble into complexes with or with-
out the adaptor ASC. CARD-containing NLRP1 and NLRC4
directly recruit caspase-1 (Nour et al., 2009; Jin et al., 2013a;
Ponomareva et al., 2013), whereas PYD-containing NLRP3,
AIM2, and pyrin recruit ASC for inflammasome assembly.
Even though NLRP1 and NLRC4 can induce pyroptosis in an
ASC-independent manner, efficient cytokine processing de-
pends on ASC-mediated supramolecular complex assembly
(Mariathasan et al., 2004; Broz et al., 2010b; Guey et al., 2014;
Van Opdenbosch et al., 2014). Because of the homotypic in-
teractions underlying inflammasome assembly, pyrin-only pro-
teins and CARD-only proteins can act as dominant-negative
regulators to block transduction of inflammasome signaling
(Matusiak et al., 2015).

ASC-dependent NLRP3 and AIM2 activation have been
recapitulated in vitro and proceeds through two subsequent
nucleation events. First, the sensor nucleates ASC to form
oligomeric filaments. Second, ASC nucleates caspase-1, such
that the sensor, the adaptor, and the enzyme are present at in-
creasing concentrations within the larger complex to effectuate
signal amplification (Lu et al., 2014). ASC specks generated
in response to inflammasome activation can be visualized as
micrometer-sized foci and can be recapitulated in vitro. Under
physiological pH, ASC assembles into filaments through elec-
trostatic and hydrophobic interactions among the PYD domains,
as observed by nuclear magnetic resonance spectroscopy and
cryo-EM (Moriya et al., 2005; Sborgi et al., 2015). The CARD
domain in these filaments is dynamic to facilitate interaction
with the CARD domain of caspase-1. Mutational studies pin-
pointed multiple interacting surfaces between ASC—-CARD and
caspase-1-CARD, and inflammasome activity is dependent
on these interfaces (Proell et al., 2013). Although large strides
have been made in determining the structural features of in-
flammasomes, the architecture of the inflammasome in intact
cells remains unresolved.
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Activation of inflammasome is an all-or-none phenome-
non (Liu et al., 2014), and a pathogen can simultaneously en-
gage multiple inflammasome sensors within a single cell (Broz
et al., 2010a; Man et al., 2014b; Karki et al., 2015). It is nota-
ble that irrespective of activation of multiple inflammasomes,
they all converge on a single supramolecular structure and ASC
speck per cell (Broz et al., 2010a; Man et al., 2014b; Karki
et al., 2015). It was recently demonstrated that in response to
Salmonella infection, NLRC4 recruits NLRP3 and ASC to pro-
mote inflammasome activation, highlighting crosstalk between
the inflammasome sensors (Qu et al., 2016). Salmonella acti-
vates NLRP3 and NLRC4 through distinct stimuli (Broz et al.,
2010a), so it remains to be seen how and at what stage these
signals are integrated. It is possible that the two sensors, once
in close proximity, somehow interact and merge to form one
complex, though this remains to be confirmed through direct
visualization of such events.

In addition to driving pyroptosis and cytokine matura-
tion, inflammasome activation leads to release of ASC specks
that are phagocytosed by adjacent cells. This drives ASC nu-
cleation, demonstrating the ability of specks to act as inflam-
masome-perpetuating signals in recipient cells (Baroja-Mazo
et al., 2014; Franklin et al., 2014). Given the ability of PYD
and CARD domains to assemble into filamentous structures,
the initial nucleation event might allow an ASC speck to act
as a scaffold for addition of soluble ASC monomers, via a pri-
onic, self-propagating mechanism (Cheng et al., 2010; Cai et
al., 2014; Franklin et al., 2014). Thus, the ASC speck can poten-
tiate inflammation by amplifying the inflammasome response
through multiple mechanisms (Fig. 2).

Caspase-11 and the NLRP3 inflammasome

Caspase-11 is an inflammatory caspase identified as a binding
partner and mediator of caspase-1 activation (Wang et al., 1998).
The functional significance of caspase-11 was masked for a
long time because of its high genetic linkage to caspase-1 (Kay-
agaki et al., 2011). It was eventually identified as an inducer of
pyroptosis independent of caspase-1 and was further required
for NLRP3 inflammasome activation specifically in response to
gram-negative bacteria through its CARD domain (Shi et al.,
2014). Caspase-11 acts as both the sensor and the inducer of
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Figure 2. ASC-mediated amplification of
inflammasome activation. ASC mediates am-
plification of inflammasome signals through
at least three distinct mechanisms. (1) Signal
transduction during inflammasome assembly,
such that the sensor, ASC, and caspase-1 are
present at increasing concentrations and each
sensor activates a much greater number of the
enzyme molecules. (2) Caspase-1-mediated
maturation and release of bioactive cytokines
affects activation and further infiltration of im-
mune cells, eventually amplifying the overall
inflammatory response. (3) The released ASC
speck can be taken up by neighboring cells
and promotes ASC assembly in the recipient
cells, consequently providing another mode of
inflammasome amplification.

Cellular
infiltration
and activation

lipopolysaccharide (LPS)-induced pyroptotic responses and
further triggers assembly of the NLRP3 inflammasome. This
distinguishes the two functions of inflammasome activation,
such that pyroptosis proceeds through activation of caspase-11,
whereas cytokine processing occurs through NLRP3-mediated
caspase-1 activation (Fig. 3).

How caspase-11 promotes the noncanonical NLRP3
activation is not entirely known. Although caspase-11 can in-
teract with caspase-1 (Wang et al., 1998), loss of caspase-11
does not affect canonical NLRP3-ASC complex assembly,
disproving its role as an essential adaptor. Another possibility
is that caspase-11 employs a downstream molecule to instigate
NLRP3 inflammasome assembly. For example, caspase-11 ac-
tivation causes a drop in intracellular potassium levels, suggest-
ing that potassium efflux could bridge caspase-11 and NLRP3
activation (Riihl and Broz, 2015; Schmid-Burgk et al., 2015).
Pannexin-1 is also a caspase-11 target, and pannexin-1 cleavage
induces activation of the NLRP3 inflammasome through a drop
in intracellular potassium levels (Yang et al., 2015). However,
the specificity of potassium efflux to NLRP3 activation has not
been established (Pétrilli et al., 2007), so it remains to be seen
whether intracellular potassium is the exclusive link between
caspase-11 and NLRP3 activation.

Pyroptosis and GSDMD
Inflammasome activation leads to a distinct form of programmed
cell death termed pyroptosis, characterized by cellular lysis, re-
lease of intracellular components, and an inflammatory response.
To date, caspase-induced pyroptosis has been demonstrated in
macrophages (Fink et al., 2008), dendritic cells (Edgeworth et al.,
2002), enterocytes (Sellin et al., 2014), and hematopoietic pro-
genitors (Masters et al., 2012), whereas neutrophils and mono-
cytes do not undergo pyroptosis after inflammasome activation
(Miao et al., 2010a; Chen et al., 2014; Gaidt et al., 2016). Pyro-
ptosis also appears to be evolutionarily conserved, as loss of mac-
rophages caused by pyroptosis has been visualized in zebrafish
larvae after Listeria infection, marked by ASC speck and nuclear
condensation (Vincent et al., 2016). Pyroptosis is therefore a crit-
ical feature of inflammasome activation in a wide variety of cells.
Pyroptosis is a distinct form of cell death but shares
certain features with both apoptosis and necrosis. Similar to
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The NLRP3 inflammasome can be assembled in response
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necrosis, pyroptosis involves the formation of 1- to 2-nm pores
on the cell membrane (Fink and Cookson, 2006). It further
proceeds through cytoplasmic swelling, osmotic lysis, and
release of intracellular contents. Similar to apoptosis are the
features of nuclear condensation and DNA damage (Monack
et al., 1996; Fink and Cookson, 2006; Lamkanfi et al., 2008).
Furthermore, processing of executioner caspase-3 and -7 is ob-
served in both apoptosis and pyroptosis (Lamkanfi et al., 2008;
Akhter et al., 2009), though it is important to note that, during
pyroptosis, membrane permeabilization and DNA fragmen-
tation can occur even in the absence of executioner caspases.
These studies highlight both the similarities and distinctions in
these cell death pathways.

Until recently the mediators driving cell death after
caspase-1 or caspase-11 activation were completely unknown.
Although caspase-7 was identified as a caspase-1 target (Lam-
kanfi et al., 2008; Akhter et al., 2009), pyroptosis can occur
independently of executioner caspases, ruling out its role in
pyroptosis. A missing link between caspase-1 activation and
pyroptosis was later identified as GSDMD by three indepen-
dent groups (He et al., 2015; Kayagaki et al., 2015; Shi et al.,
2015). GSDMD was found to be a direct target of inflammatory
caspase-1, caspase-4, and caspase-11 and is essential for pyro-
ptosis and IL-1f release after inflammasome activation (Kay-
agaki et al., 2015; Shi et al., 2015). Caspase-1, -4, -5, and -11
recognize and cleave GSDMD at the same site (Kayagaki et
al., 2015; Shi et al., 2015). GSDMD cleavage is required for its
activity, and the N terminus is sufficient to induce pyroptosis,
suggestive of an autoinhibitory role for the GSDMD C termi-
nus (Shi et al., 2015). These studies highlight the importance of
GSDMD as a critical inducer of pyroptosis and provide one of
the missing links between activation of inflammatory caspases
and cell death. These studies also shed light on the process of
IL-1p secretion; although maturation is caspase-1 dependent,

release requires pyroptosis (He et al., 2015; Kayagaki et al.,
2015; Shi et al., 2015). This idea of dying cells as the major
source of secreted IL-13 was put forth and demonstrated in
another study that characterized caspase-1 activation as an all-
or-none signal (Liu et al., 2014). However, how GSDMD exe-
cutes cell death is still not known. Nevertheless, identification
of GSDMD will now allow investigators to assess the physio-
logical relevance of pyroptosis independent of other aspects of
inflammasome activation.

Caspase-8 and inflammasomes

Although caspase-8 has long been considered to be in the do-
main of apoptosis, recent studies have highlighted its contri-
bution to inflammasome activation, IL-1f production, and cell
death in response to a range of ligands. Fungal, mycobacterial,
or p-glycan recognition through dectin-1 induces caspase-8—
dependent IL-1p processing (Gringhuis et al., 2012) via a com-
plex composed of caspase-8, MALT1, and ASC (Gringhuis et
al., 2012). Although this complex employs the inflammasome
adaptor ASC and leads to processing of IL-1p, a typical in-
flammasome readout, it does not proceed through activation
of inflammatory caspase-1 or caspase-11. For this reason, it is
not widely accepted as an inflammasome platform (Man and
Kanneganti, 2016). In response to NLRC4 activation by Salmo-
nella, caspase-8 is recruited to the inflammasome via ASC and
contributes to IL-1f processing (Man et al., 2013). Caspase-8
was also shown to have a role in both priming and activation of
the NLRP3 inflammasome (Gurung et al., 2014). This role for
caspase-8 in mediating inflammasome activation is supported
by another study in which caspase-8 inhibition reduced NLRP3
and AIM2-induced caspase-1 activation (Wu et al., 2014).
Caspase-8 additionally acts in concert with NLRP3 inflam-
masome to drive IL-1p-mediated osteomyelitis in PSTPIP2cmo
mice (Lukens et al., 2014; Gurung et al., 2016). ASC-mediated
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caspase-8 recruitment and activation additionally leads to apop-
tosis in response to AIM2 and NLRP3 activation. This study
proposed that although pyroptosis is a rapid form of cell death,
cells lacking caspase-1 undergo caspase-8—mediated apop-
tosis induced with delayed kinetics (Sagulenko et al., 2013).
This ASC/caspase-8—mediated apoptosis in response to AIM2
stimulation is also observed in response to Francisella infec-
tion (Pierini et al., 2012). Even though caspase-8 is known to
be a determinant of cell survival or cell death through apopto-
sis, these studies have ascribed a pivotal role for caspase-8 in
inflammasome activation.

Autophagy and inflammasomes
Autophagy involves the degradation of damaged organelles and
recycling of cellular metabolites. Inflammasomes, on the other
hand, respond to stimuli that mark cellular damage through aber-
rant physiological functions or in response to infectious agents.
The intersection of these two cellular responses is therefore in-
evitable and critical to the maintenance of cellular physiology.
Cells activate autophagy in response to a pathogenic insult to
contain the infection and promote clearance of the pathogen
(Shi et al., 2012). Autophagy also clears damaged organelles
generated as a byproduct of homeostatic or activatory conditions
(Jabir et al., 2015) and thereby attenuates the inflammasome re-
sponse. Mechanisms so far identified to mediate inflammasome
inhibition via autophagy include the dampening of ROS produc-
tion (Zhou et al., 2011; Lupfer et al., 2013), removal of damaged
mitochondria (Jabir et al., 2015), degradation of ASC aggregates
(Shi et al., 2012), and sequestration of pro-IL-1p (Harris et al.,
2011). Conversely, blocking autophagy promotes inflammasome
activation through accumulation of ROS-generating mitochon-
dria (Zhou et al., 2011; Jabir et al., 2015). Further, cells lack-
ing components of autophagosome assembly, such as ATG16L,
LC3B, and beclin-1 (Saitoh et al., 2008; Nakahira et al., 2011),
show increased inflammasome activation. In addition, IL-1f
promotes autophagy, highlighting a negative feedback mecha-
nism for inflammasome activation (Peral de Castro et al., 2012).
Conversely, autophagy can be regulated by inflammasome
components. NLRP3 and NLRC4 can interact with beclin 1, an
important regulator of autophagy. Association with NLRC4 in-
hibits autophagy under both physiological conditions and bac-
terial infection. NLRC4 additionally interacts with the class C
vacuolar protein-sorting complex and inhibits autophagosome
maturation (Jounai et al., 2011). Caspase-1 activation can also
inhibit autophagy in response to inflammasome activation after
bacterial stimuli. Toll/Interleukin receptor domain-containing
adapter-inducing interferon p (TRIF) is a caspase-1 substrate,
such that caspase-1 activation reduces TRIF-dependent type I
IFN—mediated autophagy (Jabir et al., 2014). The functional
consequence of this modulation is not entirely known and seems
to be a mechanism to amplify the inflammatory response by
blocking autophagy-mediated bacterial clearance and removal
of endogenous inflammasome activators. In addition to auto-
phagy, inflammasome activation can affect other physiological
processes associated with cellular metabolism. Glycolytic en-
zymes are direct caspase-1 substrates, and reduced glycolytic
flux is observed in response to inflammasome activation (Shao
et al.,, 2007). Inflammasome activation additionally induces
lipid synthesis and membrane biogenesis through activation of
sterol regulatory element binding proteins (Gurcel et al., 2006).
This serves as a means to promote cell membrane repair and
consequent cell survival.
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These studies highlight that inflammasome activation
controls multiple processes involved in cellular biology. In ad-
dition to inducing cell death, caspase-1 activation affects sig-
nals regulating cell metabolism and survival. It is tempting to
hypothesize that in response to a cellular stress, multiple sig-
naling modules are affected, including pyroptosis/apoptosis and
cellular metabolism, such that based on the degree of damage,
the overall fate of the affected cell could be repair or death.

Conclusion and future directions
Inflammasome activation is intricately intertwined with basic
cellular functions. In addition to removal of damaged cells,
inflammasomes are also involved in cell repair, metabolism,
and proliferation. Various molecules believed to be involved
in the maintenance of cellular homeostasis have been demon-
strated to act as critical regulators of inflammasome function
and vice versa. Newly uncovered functions for the inflam-
masome in cell metabolism and proliferation require further
investigation. In addition, several questions still remain: What
are the endogenous triggers of inflammasome activation, and
how are they generated during physiological processes? What
is the link between cell division and inflammasome activa-
tion? What regulates inflammasome assembly in response to
multiple-sensor activation to permit one ASC speck per cell?
What are the cytoskeletal changes involved in inflammasome
activation, and how are they brought about? What are the mol-
ecules involved in GSDMD-mediated cell rupture? What reg-
ulates the crosstalk between different cell death mechanisms?
Investigating these and other research avenues highlighted in
this review will expand our current understanding of the cell
biology of inflammasomes and fuel the interest of the research
community for years to come.
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