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Sexual transmission of Zika Virus (ZIKV) elevates the risk of its dissemination in the female
reproductive tract and causes a serious threat to the fetus. However, the available animal
models are not appropriate to investigate sexual transmission, dynamics of ZIKV infection,
replication, and shedding. The use of tree shrew as a small animal model of ZIKV vaginal
infection was assessed in this study. A total of 23 sexually mature female tree shrews were
infected with ZIKV GZ01 via the intravaginal route. There was no significant difference in
change of body weight, and the temperature between ZIKV infected and control animals.
Viral RNA loads were detected in blood, saliva, urine, and vaginal douching. ZIKV RNA was
readily detected in vaginal lavage of 22 animals (95.65%, 22/23) at 1 dpi, and viral load
ranged from 104.46 to 107.35 copies/ml, and the peak of viral load appeared at 1 dpi. The
expression of key inflammatory genes, such as IL6, 8, CCL5, TNF-a, and CXCL9, was
increased in the spleen of ZIKV infected animals. In the current study, female tree shrews
have been successfully infected with ZIKV through the vaginal route for the first time.
Interestingly, at first, ZIKV replicates at the local site of infection and then spreads throughout
the host body to develop a robust systemic infection and mounted a protective immune
response. This small animal model is not only valuable for exploring ZIKV sexual transmission
and may also help to explain the cause of debilitating manifestations of the fetus in vivo.

Keywords: vaginal infection, tree shrew, Zika, animal model, vaginal douching
INTRODUCTION

Zika virus, a member of the Flaviviridae family first reported in 1947 (Wikan and Smith, 2016), is an
arthropod-based-vector-born virus (Epelboin et al., 2017). It is pathogenic to humans and
nonhuman primates (Nugent et al., 2017), associated with self-limiting symptoms such as fever,
muscle aches, rashes, conjunctivitis, arthralgia (Nugent et al., 2017; Almeida et al., 2020),
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unexpected clinical outcomes such as meningoencephalitis and
Guillain-Barré syndrome in adults (Nugent et al., 2017),
spontaneous abortion, microcephaly, and intrauterine growth
restriction of the fetus (Nugent et al., 2017; Peregrine et al., 2019).
Different ZIKV animal models such as rodents, sheep, pigs,
hamsters (Zhang N. N. et al., 2016; Narasimhan et al., 2020),
and non-human primates (NHPs) (Osuna et al., 2016; Mohr,
2018) have been developed. Previously reported ZIKV animal
models have provided useful information to help us to
understand the pathogenesis of infection, initial drug, and
possible vaccine candidate screening. However, the anatomy,
physiology, and brain size of these models are quite distinct as
compared to humans particularly rodents. Therefore, rodent
model is not always an appropriate model for ZIKV. Another
leading unanticipated consequence of ZIKV infection is sexual
transmission. Sexual transmission of ZIKV from female to male,
male to female (Russell et al., 2017; Counotte et al., 2018), and
from male to male partners have already been reported (Deckard
et al., 2016). Sexual or intrauterine transmission of ZIKV is the
main cause of debilitating manifestations such as abortion or
microcephaly of fetus (Peregrine et al., 2019). Therefore, the
application of rodent models to study the vertical or sexual
transmission of ZIKV infection is further limited. NHPs are
valuable models for investigation of the basic and applied
research of human viral infections including ZIKV (Osuna
et al., 2016; Mohr, 2018) but the application of NHPs in
biomedical research is very limited (only one-half of the one
percent) due to serious ethical and practical concerns (Friedman
et al., 2017). Therefore, there is a critical need for alternative
animal models of ZIKV that certainly develop infections like
humans and can be a more appropriate animal model.

Tree shrew (Tupaia belangeri) is a small-sized mammal (Cao
et al., 2003) and commonly populated in South, Southeast Asia,
and the southern part of China (Schmitt et al., 2015). It is an
extremely valuable animal model for studying human infectious
diseases (Cao et al., 2003; Li et al., 2018). Tree shrew has unique
characteristics such as low production cost, short reproductive
and gestation period, and high brain-to-body mass ratio, etc.
(Cao et al., 2003). Additionally, whole-genome analysis of
Chinese tree shrew suggested that Tupaia belangeri are more
closely related to humans and NHPs as compared to other
animal models (Fan et al., 2013). Our group has already
established tree shrew as ZIKV model by subcutaneous
injection and described ZIKV’s infectivity in the primary cell-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
derived from different tissues of tree shrew (Zhang N. N. et al.,
2019). Here for the first time, we have infected tree shrews with
ZIKV through the vaginal route. Interestingly, adult female tree
shrews developed a robust systemic infection and mounted a
protective immune response although the symptoms of rashes
are not distinct.
METHODS

Ethics Statement
Chinese tree shrews (Tupaia belangeri Chinensis) (F1 generation)
were acquired from the Kunming Institute of Zoology. In this
study, all the animal related experiments were strictly
accomplished following the instruction of Chinese Regulations
of Laboratory Animals (Ministry of Science and Technology of
the People’s Republic of China) and Laboratory Animal—
Requirements of Environment and Housing Facilities (GB
14925-2010, National Laboratory Animal Standardization
Technical Committee). Animal experiments were performed
under sodium pentobarbital anesthesia. This study was
approved by the Animal Experiment Committee of the
Laboratory Animal Center, Faculty of Life Science and
Technology, Kunming University of Science and Technology.

Viruses and Cells
ZIKV strain GZ01 (GenBank accession number KU820898) was
originally isolated from a Chinese male patient who returned from
Venezuela (Zhang F. C. et al., 2016). ZIKV stocks were propagated
in Aedes albopictus C6/36 cells and titrated by a plaque-forming
assay in BHK-21, cells as previously described (Dai et al., 2016;
Li X. F. et al., 2016). All experiments involving infectious ZIKV
were conducted in biosafety level 2 (BSL2) facilities. All further
details related to cell culture and virus purification has been
previously described (Zhang N. N. et al., 2019).

Animal Experiments
A total of 23 sexually mature female tree shrews were infected with
105 or 106 PFU of ZIKV GZ01 via the intravaginal route
(Figure 1A). Four animals were inoculated with phosphate
Buffer Saline and Heat-inactivated ZIKV via vaginal route as
controls. All the animals were regularly monitored for 21 days
for body clinical symptoms such as fever, skin rashes, behavior,
and weight change. Blood, saliva, douche, and urine samples were
A B C

FIGURE 1 | (A) Experimental design and sampling index. (B) Changes in body temperature. (C) Body weight of tree shrews after ZIKV infection.
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collected at 1, 2, 3, 5, 7, 10, 15 dpi for viral load analysis (Zhang N.
N. et al., 2019). The remaining method has been previously
described (Zhang N. N. et al., 2019). Vaginal douching was
performed to collect vaginal secretion. All collected samples
were stored at −80°C till further use. Animals were given
pentobarbital intramuscularly before euthanasia. Detail of
animal related experiments such as liver, spleen, lung, kidney,
ovary, uterus, vagina, vulva, bladder, muscle, and skin samples
collection, PCR, and histopathological analysis has been already
explained in our pervious study (Zhang N. N. et al., 2019).

RNA Extraction, RT-qPCR, and Cytokines
Expression Analysis
Total RNA from blood, urine, saliva, douching, and organ samples
were extracted using TRIZOL reagent (Life Technologies)
according to the manufacturer’s recommendations. Total RNA
concentration and quality was measured with agarose-gel
electrophoresis and NanoDrop2000 spectrophotometer
(NanoDrop; Thermo Fisher Scientific, Wilmington, DE, USA)
respectively. The first-strand cDNA was produced with a High-
Capacity cDNA Archive Kit (Applied Biosystems) by using 1 mg
RNA as templet per reaction.

In this study, a probe and virus-specific primers were used
that has been previously described (Koide et al., 2016; Li X. F.
et al., 2016). A One Step PrimeScript™ RT-PCR Kit (064A,
TaKaRa, Japan) was used to perform RT-qPCR on a LightCycler
system (Roche, USA). The viral titer for organ weight and
volume for reporting the organ loads as RNA copies/gram and
RNA copies/ml were adjusted. While SYBR green RT-qPCR mix
(TaKaRa, Japan) was used according to manufacturer’s
recommendation to measure various cytokines mRNA levels
(Zhang N. N. et al., 2019).

The expression of cytokines in the cell lysates was measured at
a different time of post-infection by qRT-PCR with GAPDH as a
housekeeping control gene. Primers used RT-qPCR reactions are
available on request. Further experimental detail has been
previously described (Zhang L. et al., 2019).

Statistical Analysis
We used GraphPad Prism Software version 5.01 (GraphPad
Software Inc., La Jolla, CA, USA) for statistical data analysis. A
log-rank test was applied for Survival curves comparison.
Unpaired and Student’s t-test was performed for statistical
evaluation. P < 0.05 was considered to be statistically significant.
RESULTS

ZIKV Vaginal Infection Causes No Clinical
Symptoms in Tree Shrew
After vaginal infection, the body weight and temperature were
regularly monitored. There was no change of body mass and
body temperature (Tb) between ZIKV infected and control
group (Figure 1B). No dermatological manifestations were
observed in ZIKV-infected group as compared to the control
throughout the study period (Figure 1C).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
Viral RNA Loads in Blood, Vaginal
Douching, Urine, and Saliva After ZIKV
Vaginal Infection in Tree Shrew
To further characterize ZIKV vaginal infection dynamics in tree
shrews, blood, saliva, urine, and vaginal douching samples were
collected from animals and subjected to virological assays. A
transient low-load viremia appeared at 5–7 dpi (Figure 2A), and
the peak of viremia appeared at 5 dpi (Figure 2A). ZIKV viremia
was detected in 17.39% (4/23) tree shrews at 5 dpi and 21.74% (5/
23) at 7dpi, and the viral loads in serum ranged from 104.85 to
105.6 copies/ml (Figure 2B) and became undetectable at 10 dpi.

Following vaginal infection, ZIKV viremia was readily
detected in vaginal lavage of 22 animals 95.65% (22/23) at 1
dpi and viral load ranged from 104.46 to 107.35 copies/ml. The
peak of viremia appeared at 1 dpi (Figure 2C). Interestingly, a
transient high-load viremia (104.46 to 106.10 copies/ml) persisted
at 10 dpi in three animals 13.04% (3/23) except that of one
animal that still exhibited delayed viremia having a low level at
15 dpi (Figure 2D). Furthermore, to confirm the production of
the infectious progeny of ZIKV virions, vaginal lavage at 1 dpi
was collected and subjected to virus isolation in mosquito C6/36
cells (Figure 2E).

Urine and saliva samples were collected from animals for
further characterization of ZIKV infection dynamics. Following
vaginal inoculation, a transient low-load viremia appeared at 1–3
dpi in the urine of ZIKV infection (Figure 3A). The peak of
viremia appeared at 3 dpi (Figure 3A). One animal also exhibited
delayed viremia having a low level at 15 dpi (Figure 3A). ZIKV
secretion in urine detected in 34.78% (8/23) tree shrews at 1 dpi
and 34.78% (8/23) at 3 dpi Figure 3B, and the viral loads in
urine ranged from 104.40 to 105.92 copies/ml, and the lavage fluid
was 104.46–107.35 copies/ml, the viral load of urine is an order
of magnitude lower than that of lavage fluid, but the time of
infection extended to 15 dpi. ZIKV secretion was radially
detected at 1–7 dpi (Figure 3C) but the detection situation in
the saliva is irregular. ZIKV secretion in saliva was detected
in 13.04% (3/23) tree shrews at 1 dpi and 13.04% (3/23) at
3 dpi (Figure 3D).

Tissue Distribution After Vaginal Infection
of Tree Shrew With GZ01 Strain
To determine the ZIKV replication and tissue tropism in tree
shrews infected with ZIKV, liver, spleen, lung, kidney, ovary,
uterus, vagina, vulva, bladder, muscle, and skin samples were
collected. In this study, viral RNA was found in the liver, spleen,
lung, kidney, ovary, uterus, vagina, vulva, bladder, muscle, and skin
(Figure 4A) which indicates that ZIKV vaginal infection has been
established as a systemicmulti-tissue andmulti-organ infections. In
brief, viral RNAwas only detected in reproductive organs or tissues
(Ovary, Uterus, Vaginal, Labia, Bladder) at 3 dpi (Figure 4A) and
viral RNA was detected in liver, spleen, lung, ovary, uterus, vagina,
bladder, andmuscle at 5dpi.While, viralRNAwasonly found in the
liver, spleen, kidney, muscle, and skin at 7 dpi and viral RNA was
found only in the spleen, vagina, and labia at 10 dpi (Figure 4A).
ZIKVRNAwas persistently detected in the spleen at 5–10 dpi, with
the highest viral load of 107.63 copies/g at 7 dpi.
June 2021 | Volume 11 | Article 687338
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ZIKV is a single-stranded positive-strand RNA virus and the
negative-strand RNA is the intermediate of viral nucleic acid
replication. Therefore, the detection of negative-strand RNA is
an important indicator of replication of ZIKV. In this study, both
positive and negative-RNA strand of ZIKV was detected in
different tissues and organs, with high RNA concentration.
Negative-strand RNA virus was detected in the ovaries, vagina,
vulva, and bladder at 3 dpi, in lungs and muscles at 5 dpi, and
in the liver, spleen, and muscle at 7 dpi. The viral load of
viral RNA, positive-strand RNA, and negative-strand RNA in
the spleen can reach 107.63, 105.99, and 105.55 copies/g,
respectively (Figure 4A).

As in this study, a high viral load of ZIKV was detected in the
spleen and vaginal tissues at 7 dpi after the successful vaginal
infection. Then, immunostaining of spleen and vaginal tissues
were performed with convalescence serum from a recovered ZIKV
patient and the mouse-derived NS1 protein produced in our
laboratory. ZIKV antigens were predominantly detected in the
spleen (Figure 4B) and not in vaginal tissues (Figure 4C). Further,
it was found that the spleen tissue was atrophic, the capsule was
thickened, uneven, and the number of spleen nodules was reduced.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Irregular cavities were seen in the middle of the spleen, and these
cavities were wrapped by thinner connective tissues and
macrophages with increased the red pulp (Figure 4D).

Detection of Tissue Cytokines After Vaginal
Infection of GZ01 Virus in Tree Shrew
Different types of immune cells secrete a variety of cytokines after
viral infection. Therefore, a variety of cytokines such as IL-6, IL-
8, TNF-a, IL-8 (CXCL8), and CXCL9 were further detected
(Figure 5) which participate in or mediate the antiviral immune
response, inflammatory response, and primer sequences are
available on request. In this study, the expression of IL-6
peaked at 5 dpi and decreased as the virus was gradually
cleared out of the body. IL-8 (CXCL8) was significantly up-
regulated at 5–10 dpi, and the expression level of CXCL9 showed
a trend of first increasing and then decreasing at 5–10 dpi, which
was consistent with the trend of viral load in the spleen. While,
TNF-a which is a marker of viral infection, stimulates T-
lymphocytes to produce a variety of inflammatory factors,
thereby promoting the occurrence of inflammatory reactions,
and their expression also tends to increase at 5–7 dpi.
A B

D

E

C

FIGURE 2 | ZIKV establishes systemic infection in tree shrews infected via vaginal inoculation. Viral loads in blood and vaginal douching were determined by
RT-qPCR. (A, B) The kinetics and time courses of viremia in blood of ZIKV-infected tree shrews. (C, D) The kinetics and time courses of the viral load in vaginal
douching of infected tree shrews. The detection limit is indicated by the dotted line. (E) C6/36 cell were used to isolate the virus from the douche of ZIKV infected
tree shrews 1 dpi. The symbol “#” means number.
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A B

DC

FIGURE 4 | (A) Viral loads in different tissues of ZIKV infected tree shrews were detected by RT-qPCR. (B) IHC detected ZIKV proteins of the spleen of tree shrew
7dpi, Positive viral proteins were shown in brown and DAPI in blue. (C) Histopathological changes in the spleen of tree shrew 7 dpi. The cavities are surrounded by
thin connective tissue (black arrows), and macrophages proliferate in the red pulp (red arrows). (D) IHC detected ZIKV proteins of the vagina of tree shrew 3 dpi,
Positive viral proteins were shown in brown and DAPI in blue.
A B

DC

FIGURE 3 | ZIKV establishes systemic infection in tree shrews infected via Vaginal inoculation. Viral loads in urine and saliva were determined by RT-qPCR.
(A, B) The kinetics and time courses of viremia in urine of ZIKV-infected tree shrews. (C, D) The kinetics and time courses of the viral load in saliva in infected tree
shrews. The detection limit is indicated by the dotted line.
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DISCUSSION

There are different animal models available to study the
pathogenesis of ZIKV infection (Zhang N. N. et al., 2016;
Abdullah et al., 2019). However, application of these models is
limited due to their genetic variation, high cost of production,
ethical concern, specific facilities, and workers needed
(Montagutelli and Barré-Sinoussi, 2015; Julander, 2016). A Tree
shrew model of viral infections shows a potential to replace other
models due to genetic and physiologic similarities among NHPs,
human, and tree shrews (Cao et al., 2003; Li et al., 2018; Abdullah
et al., 2019).Additionally, tree shrewshave alreadybeen successfully
developed as animal models of different viral infections including
influenza (Yang et al., 2013), herpes simplex (Li L. et al., 2016),
hepatitis C virus (Feng et al., 2017), and ZIKV (Abdullah et al.,
2019). Successful establishmentof the tree shrewmodelofZIKVhas
beendemonstrated by SC inoculation (Shuaib et al., 2016; Abdullah
et al., 2019). In this study, all animals were regularly monitored for
Tb, animal weight, etc. throughout the experiment period. There
was no significant change in animal Tb, weight, and animal
behavior. The observations of this study are consistent with
previously reported observations (Zhang N. N. et al., 2019).
Additionally, there were no skin rashes, deaths, and the body coat
was also normal. All animals were agile. Results showed that ZIKV
vaginal infection did not affect the normal life of tree shrews.

Viremia is a typical marker offlavivirus replication in the host
body (Li X. F. et al., 2016). To establish tree shrew as a ZIKV
vaginal infection model, 23 tree shrews were challenged via a
vaginal route, and the samples were collected from blood, urine,
saliva, and vaginal douching at days 1, 3, 5, 7, 10, 15. A low-load
transient viremia was detected with RT-qPCR in blood at 5–7 dpi
(105.6 RNA copies/ml), which peaked at 7 dpi and disappeared.
In Rhesus monkeys after vaginal inoculation, viremia was
detected at 4–6 dpi, which peaked at 6–10 dpi (Li X. F. et al.,
2016). A transient viremia (106.15 RNA copies/ml) was detected
at 1 dpi in immunocompetent mice after SC inoculation (Zhang
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
N. N. et al., 2016). Similarly, a constant viremia (104.4–106.02

RNA copies/ml) was detected from 2 to 5 dpi in Guinea pigs
infected via a subcutaneous and vaginal route which peaked at 3
dpi (Saver et al., 2019). Current study viremia initiation is
consistent with detection of ZIKV viremia in Rhesus monkeys
(Li X. F. et al., 2016), mice (Zhang N. N. et al., 2016), and Guinea
pigs (Saver et al., 2019) but the peak of viremia is only
comparable with Rhesus monkeys (Li X. F. et al., 2016). ZIKV
shedding in urine, salvia, a low load transient viremia was
detected at 1–7 dpi and peaked at 3 dpi which is consistent
with the detection of viremia in mice (Zhang N. N. et al., 2016)
and tree shrews (Zhang N. N. et al., 2019).

The dynamics of ZIKV shedding in vaginal douching was
assessed. High-level viremia was detected at day 1 followed by
days 3, 5, 7, 10, 15, and a peak of viremia was achieved at day 1
ranged from 104.46 to 107.35 copies/ml. ZIKV RNA remained
detectable on day 15. Further, the infectious ZIKV from vaginal
douching was recovered from 1 to 3 dpi. C6/36 cells were infected to
isolate infectious ZIKV. After 7 days of culture, the supernatant was
taken for quantitative detection. Comparing the virus copy number
of different generations with the virus copy number of the initial
lavage fluid, a sample titer 103 times high as compared to the copy
number of original virus was selected for virus isolation. This
showed that there is an infectious live virus in the vaginal
douching fluid which produces effective replication on C6/36 cells.
Unfortunately, the infectious live virus has not been successfully
isolated from the 1 dpi vaginal douching fluid. The reason may be
that themost of the virus in the vagina at day 1was the residual virus.

Ovary, uterus, vagina, vulva, bladder, muscle, liver, spleen,
lung, kidney, and skin are the possible site of virus replication.
Further, ZIKV RNA copy numbers, +ve and –ve strand were
detected in different body tissues to verify virus replication.
Mainly, ZIKV RNA load +ve and –ve strand were detected in
reproductive organ at 3–5 dpi but spleen was the organ with
ZIKV RNA load, +ve and –ve strand numbers at 5–10 dpi.
Observations of this study are consistent with the Guinea pigs
model (Saver et al., 2019), as high viral load was detected in the
spleen and vaginal tissues. Therefore, immunostaining of spleen
and vaginal tissues were performed. Histopathology of the spleen
and vaginal tissues showed that lesions generally appeared to be
distributed more diffusely throughout the spleen but not in
vaginal tissues.

Inflammation is an important marker of the natural immune
action against infection (Ali et al., 2020). Key inflammatory
genes, such as IL6, 8, CCL5, TNF-a, and CXCL9 by RT-qPCR
expression were further validated. Results showed a strong
antiviral immune resistance against ZIKV infection. The
expression of IL6, TNF-a, CCL5, and CXCL9 in the spleen was
up-regulated, especially the expression of CCL5 and CXCL9
showed a trend of first increasing and then decreasing at 5–10
dpi, in line with the trend of viral load in the spleen (Zhang N. N.
et al., 2019). Further, TNF-aexpression is high which may induce
endothelial barrier dysfunction (Dewi et al., 2004; Zhang L. et al.,
2019). These results showed active and recruit immune cells
movement toward the sites of infection (Avirutnan et al., 1998;
Zhang L. et al., 2019).
FIGURE 5 | Inflammatory genes expression pattern in spleen of tree shrews
infected ZIKV via vaginal route.
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CONCLUSION

In this study, the female tree shrew as ZIKV vaginal infection
model has been successfully established. Interestingly, at first,
ZIKV replicates at the local site of infection, and then spreads
throughout the host body to develop a robust systemic infection
and mounted a protective immune response. This small animal
model is not only valuable for exploring ZIKV sexual
transmission, but may also help to explain the cause of
debilitating manifestations of the fetus in vivo and also a useful
platform to characterize the novel therapeutics against ZIKV.
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