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Background. Neuronal apoptosis, which is the primary pathological transform of cerebral injury following ischemic stroke (IS), is
considered to be induced by endoplasmic reticulum stress (ERS) by numerous reports. However, ERS biomarkers in IS have not
been fully identified yet. Consequently, the present study is aimed at exploring potential blood biomarkers by investigating the
molecular mechanisms of ERS promoting neuronal apoptosis following IS development. Methods. A comprehensive analysis
was performed with two free-accessible whole-blood datasets (GSE16561 and GSE37587) from the Gene Expression Omnibus
database. Genetic information from 107 IS and 24 healthy controls was employed to analyze the differentially expressed genes
(DEGs). Genes related to ERS (ERS-DEGs) were identified from the analysis. Enrichment analyses were performed to explore
the biofunction and correlated signal pathways of ERS-DEGs. Protein-protein interaction (PPI) network and immune
correlation analyses were performed to identify the hub genes along with their correspondent expressions and functions, all of
which contributed to incremental diagnostic values. Results. A total of 60 IS-related DEGs were identified, of which 27 genes
were confirmed as ERS-DEGs. GO and KEGG enrichment analysis corroborated that upregulated ERS-DEGs were principally
enriched in pathways related to immunity, including neutrophil activation and Th17 cell differentiation. Moreover, the GSEA
and GSVA indicated that T cell-related signal pathways were the most considerably immune pathways for ERS-DEG
enrichment. A total of 10 hub genes were filtered out via the PPI network analysis. Immune correlation analysis confirmed
that the expression of hub genes is associated with immune cell infiltration. Conclusions. By integrating and analyzing the two
gene expression data profiles, it can be inferred that ERS may be involved in the development of neuronal apoptosis following
IS via immune homeostasis. The identified hub genes, which are associated with immune cell infiltration, may serve as
potential biomarkers for relative diagnosis and therapy.

1. Introduction

Stroke is one of the leading causes of mortality and disability
worldwide. Ischemic stroke (IS) attributes to over 85% mor-
bidity of total stroke cases [1]. Injury ensuing consequent to
the interruption in cerebral blood flow, known as “ischemia
and brain hypoxia,” can ultimately result in cell degenera-
tion, apoptosis, and neurological dysfunction. Pathology of

the transversion entangles a variety of cellular and biochem-
ical molecular mechanisms, including apoptosis, neuroin-
flammation, oxidative stress, glutamate excitotoxicity, and
energy depletion, in which neuronal apoptosis was consid-
ered to be the primary pathological metamorphosis follow-
ing IS [2]. Early and effective neuroprotective therapies are
needed to decrease the disability and mortality rates of IS
[3]. However, the complexity of its pathophysiological
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mechanisms poses a major challenge to clinical treatments,
and effective neuroprotectors have not been established yet
[4]. Therefore, it is of great demand to explore the molecular
mechanisms that regulate neuronal apoptosis and identify
potential biomarkers for improvement of the current diag-
nostic and therapeutic procedures.

Numerous reports have confirmed that cerebral
ischemia-induced ERS is a critical precipitating factor of
neuronal apoptosis [5]. Endoplasmic reticulum (ER) con-
ducts the proper folding and assembly of secretory and
membranous proteins. However, when ER homeostasis is
disturbed, unfolded and misfolded proteins accumulate in
the ER lumen, resulting in ER stress (ERS). ERS can trigger
neuronal apoptosis by multiple mechanisms, including
inducing calcium overload, suppressing protein synthesis,
and activating the inflammatory signal pathways [6]. Previ-
ous reports have shown that ERS may be a potential target
for the diagnosis and treatment of IS; however, the key bio-
markers of ERS in IS injury have not been identified yet [7].
Among all kinds of biomarkers, blood-based biomarkers
contain a notable preponderance, such as minimal invasive-
ness, cost-effectiveness, high patient acceptability, and avail-
ability in different clinical settings [8]. The combination of
microarray techniques and bioinformatics analysis was clas-
sified as a high-throughput, effective, and comprehensive
method to detect the objective biomarkers [9]. Thus, we used
bioinformatics analysis for the exploration of ERS blood-
based biomarkers.

The aim of the present IS study is to explore the blood
biomarkers associated with ERS by utilizing the whole-
blood samples from the Gene Expression Omnibus (GEO)
database. Differentially expressed genes (DEGs) between
the patients with IS and healthy controls were identified,
and the DEGs that correlated to ERS (ERS-DEGs) were fur-
ther screened. Moreover, the biological functions of ERS-
DEGs were analyzed via four enrichment analyses. Hub
genes were screened out from ERS-DEGs via PPI analysis.
Furthermore, correlation analysis and immune infiltration
were used to assess the diagnostic value of the hub genes.
In conclusion, the present study identified a few ERS-
related biomarkers that may serve as potential determinants
for further diagnosis and treatment of IS.

2. Materials and Methods

2.1. Data Download and Preprocess. GEO (http://www.ncbi
.nlm.nih.gov/geo) [10] is a free-accessible database that pro-
vides reliable profiles of IS, from where two gene expression
profiles, GSE16561 [11] and GSE37587 [12], were searched
with the keyword “ischemic stroke” and downloaded origi-
nally via GEOquery package [13] of R software V.3.6.5
(http://www.r-project.org/). Data type description is termed
“expression profiling by array,” and the species is Homo
sapiens. The platform for both databases is “GPL6883 Illu-
mina HumanRef-8 v3.0 expression beadchip,” which com-
prises a total of 131 human whole-blood samples.
Specifically, GSE16561 consists of the whole-blood samples
of 39 patients with IS and 24 healthy controls, and
GSE37587 contained 68 whole-blood samples of patients

with IS. The raw datasets of GSE16561 and GSE37587 were
combined. The sva package [14] was employed for back-
ground correction and data normalization, and the obtained
result was demonstrated using the boxplot diagrams. Fur-
thermore, diagrams of principal component analysis (PCA)
were drawn using the ggplot2 package.

2.2. Identification of Differentially Expressed Genes. DEGs in
the combined dataset were screened out via limma package
[15] according to the inclusion criteria of adjusted p value
< 0.05 and ∣log2FC ∣ >0:1. Visualization of DEGs was plotted
using the ggplot2 package along with volcano plot and heat-
map. The list of ERS-related genes (ERSGs) was procured
from the GeneCards database (https://www.genecards.org/)
[16]. Venn diagram was applied to illustrate the intersection
of corresponding genes, which are related to DEGs and ERS
and thus, contributing to the filtrate, ERS-DEGs.

2.3. Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) Analysis. GO analysis is a conven-
tional and pragmatic method for interpreting the character-
istic biological functions of genes [17], including annotation
of biological processes (BP), molecular functions (MF), and
cellular components (CC). KEGG analysis provides all
known biochemical pathways documented in a comprehen-
sive biological database [18]. GO and KEGG pathway
enrichment analyses for the ERS-DEGs were implemented
via clusterProfiler package [19]. An adjusted p value < 0.05
would be considered statistically significant. Furthermore,
we selected the GO/KEGG pathway terms with the highest
enrichment degree to draw the network maps, respectively.

2.4. Gene Set Enrichment Analysis (GSEA) and Gene Set
Variation Analysis (GSVA). To further evaluate the signifi-
cant alterations in the functions and pathways of the gene
expression matrix of ERS-DEGs, GSEA was performed using
the clusterProfiler R package. Reference gene sets were
selected as “c2.cp.kegg.v7.0.symbols.gmt.” Results with a
false discovery rate ðFDRÞ < 0:25 and adjusted p < 0:05 were
set as the threshold for determining the significance of
enrichment. Based on the results obtained from the GSEA,
we explored the signal pathways of ERS-DEGs in IS via the
GSVA R package [20]. Enrichment was considered signifi-
cant for adjusted p < 0:05.

2.5. Protein–Protein Interaction Network Analysis and Hub
Gene Identification. The protein-protein interaction (PPI)
network of ERS-DEGs was constructed by the Retrieval of
Interacting Genes (STRING) database (http://string-db.org)
[21], which is an online tool to identify functional interac-
tions. Furthermore, “cytoHubba,” a plugin in Cytoscape
software, was employed to screen hub genes within the PPI
network.

2.6. Network Analysis of Hub Genes. The online visual analyt-
ics platform NetworkAnalyst (https://www.networkanalyst
.ca/) [22] was used to predict latent transcription factors
(TFs) and miRNAs associated with the hub genes. The inter-
action of ERS-DEGs and potential TFs was evaluated using
the obtained results of Gene Regulatory Networks (GRN)
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Figure 1: Continued.
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and gene-targeted record of ENCODEChIP-seq data. The TF-
miRNA coregulatory network and RegNetwork databases
were used to explore the interactions between ERS-DEGs
and potential miRNAs. The interaction data of ERS-DEGs
and potential drugs was obtained from the DrugBank database
and the analysis of protein-drug interactions in diseases,
drugs, and chemicals.

2.7. Correlation Analysis of Hub Genes and Immune
Infiltration. CIBERSORT is a tool used for deconvolution
of the expression matrix of transcriptome, based on the prin-
ciple of linear support vector regression. The tool can also be
used to estimate the compositions and abundances of
immune cells in a mixed cell population [23]. Thus, the gene
expression data was uploaded to CIBERSORT, and the cut-
off criteria for statistical significance was set at a p value less
than 0.05. Consequently, the matrix data of infiltrating
immune cells was obtained. The distribution of 22 types of
infiltrating immune cells in each sample was presented on
the heatmap plot using the heatmap R package. The correla-
tion of 22 types of infiltrating immune cells was also visual-
ized in the heatmaps, drawn by the corrplot package in R
software.

3. Results

3.1. Preprocessing of Datasets and Identification of DEGs.
The two gene expression datasets (GSE16561 and
GSE37587) of blood samples were first merged. The result-
ing single dataset was normalized and standardized prior

to analysis. Illustration of datasets before and after calibra-
tion is shown in the boxplots (Figures 1(a) and 1(b)). We
proceeded to evaluate the variations between healthy con-
trols and the IS group via PCA and sample clustering analy-
sis. As shown in Figures 1(c) and 1(d), the clustering of each
group was more marked following the data preprocessing.
Hence, the sample data were considered as a reliable source.

Following data preprocessing, a total of 60 DEGs; includ-
ing 38 downregulated genes and 22 upregulated genes, were
extracted from the gene expression matrix. This is shown in
the heatmap and volcano plots (Figures 2(a) and 2(b)). Sub-
sequently, a total of 7092 ERSGs were sorted out from the
GeneCards database, and Venn diagram was applied to visu-
alize the overlap and differences between DEGs and ERSGs.
The two datasets showed an overlap of 27 ERS-DEGs
(Figure 2(c)).

3.2. KEGG and GO Enrichment Analysis of ERS-DEGs. GO
analysis results indicate that the upregulated ERS-DEGs
were significantly enriched in BP pathways, including
immune response-activating cell surface receptor signaling
pathway, immune response-activating signal transduction,
neutrophil degranulation, and neutrophil activation; all of
which are involved in immune homeostasis. As for MF
and CC analysis, the ERS-DEGs were mainly implicated
with the external side of plasma membrane and MHC class
II receptor activity, respectively (Figures 3(a)–3(d)). The
results are detailed in Table 1. KEGG pathway analysis dem-
onstrated that the upregulated ERS-DEGs were predomi-
nantly enriched in immune-related pathways, including
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interbatch difference were removed before and after to calibration. (c, d) The PCA diagrams of the datasets with the interbatch difference
were removed before and after calibration.
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leishmaniasis, staphylococcus aureus infection, Th17 cell
differentiation, systemic lupus erythematosus, phagosome,
and tuberculosis (Figures 3(e) and 3(f)). These results are

shown in detail in Table 2. The pathways that were most
significantly enriched from ERS-DEGs in GO and KEGG
analysis are shown in diagrams (Figures 3(g) and 3(h)).
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Figure 2: ERS-DEGs were obtained from the intersection of DEGs and ERS-related genes. (a) Heatmap of DEGs; (b) volcano plot of the
distributions of DEGs. Red and blue dots represent upregulated and downregulated genes, respectively. No significantly changed genes
were marked as grey dots; (c) Venn diagram of ERS-DEGs. Venn diagram analysis executed an intersection of DEGs and ERSGs to
reveal the ERS-DEGs.
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(h)

Figure 3: GO/KEGG enrichment analyses of ERS-DEGs. (a) Advanced bubble chart shows GO functional enrichment significance items of
ERS-DEGs in three functional groups: BP, MF, and CC. The x-axis and y-axis labels represent the gene ratios enriched in the GO analysis
group and GO terms, respectively. The color of dots represents the adjusted p value: the redder the color, the lesser the adj. p value; the bluer
the color, the greater the adj. p value. The size of dots represents gene counts. (b–d) Chord diagrams show the distribution of ERS-DEGs in
the three different GO-enriched functions. The color of dots represents the log FC of the genes. (e) Advanced bubble chart shows
enrichment of ERS-DEGs in signal pathways. (f) The chord diagram shows the distribution of ERS-DEGs in different KEGG pathways.
(g) The pathway diagram shows the immune response-activating cell surface receptor signaling pathway with the highest enrichment
degree in GO analysis. (h) The pathway diagram shows that the leishmaniasis pathway has the highest enrichment degree in KEGG analysis.

Table 1: GO enrichment analysis of ERS-DEGs.

Ontology ID Description GeneRatio BgRatio p value p.adjust q value

BP GO:0043312 Neutrophil degranulation 12/49 485/18670 3.18e-09 1.67e-06 1.30e-06

BP GO:0002283 Neutrophil activation involved in immune response 12/49 488/18670 3.41e-09 1.67e-06 1.30e-06

BP GO:0042119 Neutrophil activation 12/49 498/18670 4.28e-09 1.67e-06 1.30e-06

BP GO:0002446 Neutrophil mediated immunity 12/49 499/18670 4.38e-09 1.67e-06 1.30e-06

BP GO:0030098 Lymphocyte differentiation 9/49 353/18670 2.94e-07 8.99e-05 7.00e-05

CC GO:0009897 External side of plasma membrane 11/50 393/19717 3.19e-09 4.09e-07 2.76e-07

CC GO:0042581 Specific granule 7/50 160/19717 1.51e-07 9.69e-06 6.53e-06

CC GO:0070820 Tertiary granule 6/50 164/19717 3.55e-06 1.51e-04 1.02e-04

CC GO:1904724 Tertiary granule lumen 4/50 55/19717 1.13e-05 3.54e-04 2.38e-04

CC GO:0034774 Secretory granule lumen 7/50 321/19717 1.56e-05 3.54e-04 2.38=-04

MF GO:0019864 IgG binding 2/49 11/17697 4.07e-04 0.073 0.058
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3.3. GSEA and GSVA. GSEA was performed to identify the
biological pathways with significant alterations towards IS
pathology. A total of 10 pathways were enriched by this
method. Interestingly, five of them were closely associated
with T cells, including T cytotoxic, T helper, IL17, NO2IL12,
and CTL pathways (Figures 4(a)–4(j)). The results are
detailed in Table 3. Furthermore, GSVA was conducted to
further explore the signal pathways in IS, including GNF2_
CD33, GSE 3688 STAT5 AB knockin vs WT T cell IL 2
T-related 17h DN, and GSE29618_monocyte_vs_PDC_up
(Figure 5).

3.4. PPI Network Analysis. To identify the interactions of the
ERS-DEGs, PPI network of ERS-DEGs was established and
is shown in Figure 6(a). The identified hub genes, predicted
via cytoHubba plugin is also shown in the aforementioned
figure. The top 10 hub genes in an increasing order of inter-
action degree are as follows: HIF1A, CREBBP, EP300,
ARNT, TP53, PPARG, VHL, EPAS1, HIF1AN, and CREB1
(Figure 6(b)). The hub genes may be key ERS-related bio-
markers of IS, which require further clinical trials for
validation.

3.5. Network Analysis of Hub Genes. Transcriptional regula-
tory network analysis was performed to analyze the interac-
tion between TFs and the hub genes (Figure 7(a)). The top 3
hub genes associated with TFs were TP53, EPAS1, and VHL.
Moreover, a network of miRNAs and hub genes was con-
structed (Figure 7(b)). The top 3 hub genes associated with
miRNAs were TP53, CREB1, and HIF1A. As potential ther-
apeutic targets, relative drugs and molecular compounds of
the hub genes were also explored by the drug-gene interac-
tion networks. As shown in Figure 7(c), a total of 7 drugs
or molecular compounds were found to interact with hub
genes of HIF 1A, CREB1, and HIF1AN. They are carvedilol,
2-methoxyestradiol, N-[(1-chloro-4-hydroxyisoquinolin-3-
YL)carbonyl] glycine, naloxone, adenosine monophosphate,
D-tartaric acid, and N-(carboxyvarbonyl)-D-phenylalanine.

3.6. Immune-Related Gene Identification and Functional
Correlation Analysis. The result of the CIBERSORT analysis
revealed that the T and NK cell subtypes were predominant
among the 22 types of infiltrating immune cells
(Figure 8(a)). The correlation between 22 immune cell sub-
types was also performed and presented via heatmap. The
result revealed that M0 macrophages and resting NK cells
had the strongest and weakest correlation with other
immune cells, respectively (Figure 8(b)). Furthermore, the
hub genes, ARNT, CREB1, CREBBP, EP300, EPAS1, HIF

1A, HIF 1AN, and TP53, were identified, and they correlated
with 11 different types of immune cells (Figure 8(c)). We
found a significant correlation between the number of neu-
trophil and T cell subtypes and the expression level of hub
genes. The results suggested that neutrophils and T cells play
a critical role in the development of ERS following IS.

4. Discussion

IS is the primary cause of mortality and disability among
Chinese residents, and its morbidity has increased over the
last decade, thus, posing a huge burden to national medical
and economic systems [24]. Neuronal apoptosis is the key
etiological factor of neuronal damage following cerebral
ischemia. Activated ERS has been reported to play a critical
role in inducing neuronal cell apoptosis in IS [25]. There-
fore, exploring potential biomarkers related to ERS is indis-
pensable for the elucidation of neuronal damage following
IS. However, ERS biomarkers in IS have not yet been fully
identified. In this study, we comprehensively analyzed two
mRNA microarray datasets (GSE16561 and GSE37587),
including 107 and 24 whole-blood samples from reliable
profiles of IS and healthy controls, respectively. A total of
60 DEGs were distinguished from the two datasets, includ-
ing 38 and 22 downregulated and upregulated genes, respec-
tively. Subsequently, the intersection analysis of DEGs and
ERSGs was performed to obtain 27 ERS-DEGs. Enrichment
analysis revealed that the modules and pathways ERS-DEGs
enriched in were closely related to immunity. The data sug-
gest that local inflammation may be involved in the develop-
ment of IS. Moreover, we constructed a PPI network, and 10
hub genes with the highest scores in ERS-DEGs were identi-
fied. Our results suggested that the identified hub genes may
interact with each other in the network and are also associ-
ated with immune cell infiltration.

ERS is a pathological condition related to hypoxia,
starvation, calcium imbalance, and free radical excess. Con-
trarily, ERS can trigger the unfolded protein response, which
restores homeostasis by decreasing protein translation and
upregulation of ER chaperone gene expression [26]. Interest-
ingly, unregulated ERS can initiate neuronal apoptosis by
activating apoptosis signal pathways directly and also further
exacerbates neuronal damage through activating inflamma-
tory signal pathways. Recent studies have reported that
ERS is a major cause of neuronal apoptosis [27]. A previous
study has revealed that the promotion of ERS via knock-
down Hes1 induced vast neuronal apoptosis in a mouse
model with middle cerebral artery occlusion (MCAO) [25].
In addition, Li et al. reported that the inhibition of ERS

Table 2: KEGG enrichment analysis of ERS-DEGs.

Ontology ID Description GeneRatio BgRatio p value p.adjust q value

KEGG hsa04640 Hematopoietic cell lineage 5/32 99/8076 3.87e-05 0.004 0.004

KEGG hsa05140 Leishmaniasis 4/32 77/8076 2.24e-04 0.013 0.010

KEGG hsa05340 Primary immunodeficiency 3/32 38/8076 4.34e-04 0.015 0.012

KEGG hsa05150 Staphylococcus aureus infection 4/32 96/8076 5.22e-04 0.015 0.012

KEGG hsa04659 Th17 cell differentiation 4/32 107/8076 7.87e-04 0.018 0.014
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signal pathway by γ-glutamylcysteine attenuated neuronal
apoptosis in the ischemic brain of mice [28]. The aforemen-
tioned results support the idea that ERS may be a potential
target in IS injury. Therefore, exploring biomarkers of ERS
in blood samples of patients with IS is necessary for early
diagnosis and treatment. Furthermore, it may aid the identi-
fication of novel therapeutic targets.

To investigate the involvement of ERS-DEGs in the bio-
logical mechanism of IS, GO and KEGG enrichment analy-
ses were performed, and the results revealed that ERS-
DEGs are mainly enriched in immune-related pathways. In
the BP annotations, neutrophil degranulation and neutro-
phil activation involved in immune response were found to
be significantly related to the development of IS. Neutrophils
are the first inflammatory responders to be recruited to the
site of cerebral infarction after IS [29]. Enhanced ERS was
suggested to be associated with severe neutrophil inflamma-
tion [30]. Notably, activated neutrophils release neutrophil
argininase-1, which induces cell apoptosis through the ERS
pathway [31]. Clinical researches have established that neu-
trophil overexpression is a positive indicator of stroke pro-
gression [32]. Further research has shown that inhibition
of neutrophil infiltration into ischemic lesions decreases
infarct size and mitigates stroke pathology [33]. These
results are similar to our predictions.

Similarly, GSEA and GSVA enrichment analyses also
revealed that ERS-DEGs were significantly enriched in T
cell-related pathways, including T cytotoxic, T helper, IL17,
NO2IL12, and CTL pathways. The results above indicate
that T cells play an important role in IS. Few researchers
have observed significant increases in CD4+ and CD8+ T
cells in the peri-infarct area one month following IS experi-

ments [34]. Persistent neuronal ERS has been reported to
promote CD4+ and CD8+ T cell priming by inducing activa-
tion of STING signal cascade [35]. Several studies have
reported that CD8+ T cells could induce neuronal damage
directly by the cytotoxic function, while CD4+ T cells could
aggravate the local inflammation by activating the effector
T cell. Researches supported that T cell-targeted therapy
could effectively reduce the infarct size of brain tissues by
depleting T cells [34, 36]. In summary, our results further
confirmed that T cell responses associated with ERS play
an integral role in post-IS neuroinflammation.

In addition, among the 20 KEGG-enriched signaling
pathways, we observed that the pathway with high enrich-
ment was Th17 cell differentiation. In previous studies,
Th17 cells were observed to be differentiated from CD4+ T
cell in response to TGF-β and IL-6 and can as well produce
proinflammatory cytokines. However, the unstable and plas-
tic Th17 cells can also be transdifferentiated into Treg cells,
which can attenuate inflammation [37]. Hence, T cells have
a dual role in the inflammatory response after stroke. ERS
was reported one of the mechanisms that deregulate Th17/
Treg cells [38]. Therefore, suppressing ERS may be the effec-
tive therapeutic approach that regulated the balance between
proinflammatory and anti-inflammatory mechanisms. In
summary, ERS is indispensable for inflammatory responses,
and our results are consistent with these findings.

PPI molecular interaction network was employed to ana-
lyze the protein interaction of ERS-DEGs. Hypoxia inducible
factor 1 subunit alpha (HIF1A) was identified as one of the
top hub genes in this study, which is an important transcrip-
tion factor in the hypoxic or ischemic brain and aids cells in
the adaptation to hypoxic conditions [39]. During hypoxia,
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Figure 4: The top 10 significantly enriched pathways based on GSEA. (a) WP purine metabolism; (b) BioCarta T cytotoxic pathway; (c)
BioCarta T helper pathway; (d) Reactome mRNA decay by 3′ to 5′ exoribonuclease; (e) BioCarta IL17 pathway; (f) Reactome transport
of nucleoside-free purine and pyrimidine bases across the plasma membrane; (g) KEGG primary immunodeficiency; (h) BioCarta
NO2IL12 pathway; (i) BioCarta CTL pathway; (j) Reactome mitochondrial calcium ion transport.
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Table 3: GSEA in IS.

ID Description Set size Enrichment score NES p value p.adjust q values Rank

GO:0031982 Vesicle 485 0.172714697 3.411234438 0.001432665 0.004133545 0.001924525 700

GO:0005576 Extracellular region 410 0.174994196 3.266701279 0.001449275 0.004133545 0.001924525 435

GO:0005739 Mitochondrion 243 0.142281361 2.213093251 0.001464129 0.004133545 0.001924525 983

GO:0005615 Extracellular space 329 0.19021029 3.274198836 0.001474926 0.004133545 0.001924525 252

GO:0043230 Extracellular organelle 263 0.22061393 3.541020551 0.001477105 0.004133545 0.001924525 621

GO:0070062 Extracellular exosome 261 0.220698869 3.524995246 0.001477105 0.004133545 0.001924525 621

GO:1903561 Extracellular vesicle 263 0.22061393 3.541020551 0.001477105 0.004133545 0.001924525 621

GO:0030054 Cell junction 201 0.16579481 2.408482794 0.001481481 0.004133545 0.001924525 189

GO:0031410 Cytoplasmic vesicle 322 0.145729015 2.48768047 0.001481481 0.004133545 0.001924525 589

GO:0097708 Intracellular vesicle 322 0.145729015 2.48768047 0.001481481 0.004133545 0.001924525 589

GO:0031967 Organelle envelope 204 0.186841967 2.730329262 0.001485884 0.004133545 0.001924525 788

GO:0031975 Envelope 204 0.186841967 2.730329262 0.001485884 0.004133545 0.001924525 788

GO:0030141 Secretory granule 150 0.225718868 2.855414686 0.001497006 0.004133545 0.001924525 404

GO:0098796 Membrane protein complex 150 0.162131482 2.051014249 0.001497006 0.004133545 0.001924525 656

GO:0099503 Secretory vesicle 171 0.222023193 2.994872073 0.001510574 0.004133545 0.001924525 404

GO:0005740 Mitochondrial envelope 137 0.190035312 2.306946726 0.001529052 0.004133545 0.001924525 616

GO:1990904 Ribonucleoprotein complex 129 0.179654365 2.131343914 0.001531394 0.004133545 0.001924525 902

GO:0031966 Mitochondrial membrane 130 0.177934672 2.116907669 0.001533742 0.004133545 0.001924525 616

GO:0019866 Organelle inner membrane 100 0.24461389 2.624119415 0.001572327 0.004133545 0.001924525 609

GO:0070161 Anchoring junction 104 0.251547714 2.735235303 0.001589825 0.004133545 0.001924525 149

GO:0012506 Vesicle membrane 121 0.174348266 1.997474797 0.00311042 0.007397923 0.003444377 1110

GO:0030659 Cytoplasmic vesicle membrane 118 0.177306426 2.00809075 0.00312989 0.007397923 0.003444377 1110

GO:0031090 Organelle membrane 474 0.102433696 2.016629844 0.004341534 0.009815642 0.004570036 656

GO:0000228 Nuclear chromosome 129 -0.149453948 -1.990943144 0.005730659 0.012416428 0.005780928 647

GO:1902494 Catalytic complex 204 0.125116027 1.828325596 0.013372957 0.02781575 0.012950653 1192

GO:0045202 Synapse 122 0.147449379 1.693366467 0.020344288 0.040688576 0.018944074 167

GO:0000790 Nuclear chromatin 107 -0.137337172 -1.666983644 0.024456522 0.047101449 0.021929825 621
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Figure 5: Heatmap of 10 signal pathways of ERS-DEGs based on GSVA.
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the upregulation of HIF1A can induce glycolysis and inhibit
mitochondrial respiration to decrease oxygen consumption,
thus, improving cell proliferation. Researches support the
important role of HIF1A as a neuroprotector in ischemic
brain injury [40]. Furthermore, other members in the
hypoxia-inducible factor family, including EPAS1 (HIF2A)
and ARNT (HIF1β) genes, were also identified as hub genes.
Notably, cAMP response element-binding protein 1
(CREB1), was also reported as one of the hub genes that
are related to neuronal survival after ischemia. CREB-
related therapeutics have extensive application prospects in
cerebral protection after IS [41]. Although the CREB1 inhib-
itor, naloxone, is conventionally used for the treatment of
opioid addiction, its neurorestorative effects have been
observed in patients with IS and MCAO mouse models
[42]. Hence, our results indicate that the hypoxia-inducible

factor family and CREB family genes are potential therapeu-
tic targets and biomarkers of ERS in IS.

Our results indicate that CREB binding protein
(CREBBP) is the top hub gene in the PPI network analysis.
It has been reported to have an increased expression after
IS and to be involved in neurovascular reconstruction and
neuron protection [43]. Moreover, persistent ERS can pro-
mote the stability of CREBBP [44]. These findings are con-
sistent with our results, which suggest that CREBBP may
be a potential biomarker of ERS in IS. An analogue of
CREBBP, EP300, was also identified as a hub gene in the
PPI network. It participates in mediating the ubiquitination
and degradation of CHOP protein and prevents ERS-
induced apoptosis under hypoxic conditions [45]. This hub
gene has been previously reported as a potential biomarker
of IS, which is consistent with our report. However, the

(a)

VHL

HIF1A

CREB1

TP53EP300

CREBBP

HIF1AN

EPAS1

ARNT
PPARG

(b)

Figure 6: Protein–protein interaction (PPI) networks. (a) PPI network analysis of ERS-DEGs. Red and blue colors represent high and low
expression levels of genes, respectively. (b) The top 10 hub genes from the PPI network were predicted and shown on the subnetwork. Node
color reflects the degree of accuracy in prediction with a gradient shift from yellow to red. Illustratively, the redder the color, the higher the
accuracy of prediction.
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function of EP300 in IS pathology has not yet been eluci-
dated [46]. Therefore, as a potential biomarker of IS, future
investigation of EP300 is worthwhile.

In the correlation analysis between hub genes and TF or
hub genes and miRNA, TP53 was found to have rich net-
works. Previous reports have shown that ERS can induce sig-
nificant upregulation of TP53 [47]. Rapid and substantial
accumulation of TP53 was observed in the ischemic penum-
bra, which resulted in neuronal apoptosis [48]. Therefore,
TP53 may be a potential therapeutic target of IS. Interest-
ingly, it has been reported that the inhibition of TP53 can
considerably decrease infarct size [49]. Our results are con-
sistent with the aforementioned reports, indicating that
TP53 may be a potential biomarker of IS. Further investiga-
tion of the molecular mechanisms of hub genes in IS may
provide novel innovations for the diagnosis and treatment
of IS.

However, there are several limitations to this study. First,
the results were not backed up with experiments in vitro and
in vivo, to further verify the biological functions of these
potential ERSGs after IS. Secondly, the research was not able
to evaluate the correlation between hub genes and severity of
pathology in patients with IS, due to a lack of corresponding
clinical studies. We also observed that the batch differences
cannot be avoided and removed by the analysis, due to
high-content datasets. Thus, a larger sample size and clinical
study setting are required for further studies, in order to
strengthen the statistical power and obtain more reliable
results. Related experimental evidence is also required to
fully elucidate the role of the hub genes at the molecular
cellular level in IS. In addition, considering that protein
biomarkers are more reliable and applicable than gene
biomarkers in clinical practices, proteomics data is required
for further validation of our results.

(a) (b)
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Figure 7: Network analyses of the hub genes. (a) Network of hub gene-TFs. Dots in blue to green represent the hub genes, and dots in red to
yellow represent the TFs. (b) Network of hub gene-miRNA. Red and blue nodes are hub genes and miRNAs, respectively. (c) Networks of
hub gene-related drug. Red and blue circle nodes are hub genes and drugs/molecular compounds, respectively.
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Figure 8: Continued.
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5. Conclusions

In conclusion, we performed a comprehensive analysis of
the differentially expressed genes associated with ERS fol-
lowing IS, by combining two datasets (GSE16561 and
GSE37587) to explore the molecular mechanism and bio-

markers of ERS, which are involved in neuronal damage of
IS. ERS-DEGs and hub genes were identified, which may
be potential therapeutic targets and biomarkers of IS.
Enrichment analysis indicated that the immune-related sig-
nal pathway is an assignable mechanism in the progression
of IS. Network and immune correlation analyses further
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Figure 8: The nose cone is detachable upon impact. Evaluation and visualization of infiltrating immune cells. (a) Bar diagram displayed the
proportion of infiltrating immune cells based on CIBERSORT algorithm. (b) Heatmap of the correlation between 22 subtypes of immune
cells. Blue and red areas indicate positive and negative correlations, respectively. The darker the color, the stronger the correlation. (c)
The correlations between hub genes and immune cells.
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confirmed that the identified hub genes are closely related to
immune infiltration. However, further clinical studies should
be conducted in order to validate our findings.
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